34
������

NonlinearWave Dynamics in Nonlocal Media.indico.ictp.it/event/a04206/session/62/contribution/42/material/0/0.pdfNonlinear Wave Dynamics in Nonlocal Media Jens Juul Rasmussen1 O. Bang2

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: NonlinearWave Dynamics in Nonlocal Media.indico.ictp.it/event/a04206/session/62/contribution/42/material/0/0.pdfNonlinear Wave Dynamics in Nonlocal Media Jens Juul Rasmussen1 O. Bang2
Page 2: NonlinearWave Dynamics in Nonlocal Media.indico.ictp.it/event/a04206/session/62/contribution/42/material/0/0.pdfNonlinear Wave Dynamics in Nonlocal Media Jens Juul Rasmussen1 O. Bang2

Nonlinear Wave Dynamics inNonlocal Media

Jens Juul Rasmussen1

O. Bang2 W.Z. Krolikowski3,J. Wyller4

N.I. Nikolov1,2, D. Neshev3, and D. Edmundson3, P.L. Christiansen2

[email protected]

1 Risø National Laboratory, OPL-128 DK-4000 Roskilde, Denmark

2 Technical University of Denmark, DK-2800 Kgs. Lyngby

3 Australian National University, Canberra ACT 0200

4 Agricultural University of Norway, N-1432 As

New Trends in Nonlinear Physics, ICTP, September 17, 2005 Back Next – p. 1/2

Page 3: NonlinearWave Dynamics in Nonlocal Media.indico.ictp.it/event/a04206/session/62/contribution/42/material/0/0.pdfNonlinear Wave Dynamics in Nonlocal Media Jens Juul Rasmussen1 O. Bang2

Contents

Nonlocal nonlinear media; examples

Modulational instability of plane waves; NL suppressMI

Interaction of solitons; dark solitons

Wave collapse/self-focusing; NL prevents blow-up

Conclusions

New Trends in Nonlinear Physics, ICTP, September 17, 2005 Back Next – p. 2/2

Page 4: NonlinearWave Dynamics in Nonlocal Media.indico.ictp.it/event/a04206/session/62/contribution/42/material/0/0.pdfNonlinear Wave Dynamics in Nonlocal Media Jens Juul Rasmussen1 O. Bang2

Nonlocal nonlinear interaction

Spatial nonlocality: response in a point depends on theintensity in its vicinity

Nonlocality results from a transport process: atomdiffusion, heat transfer, drift of charges.

Generic feature in many nonlinear systems: plasma,atom gasses, liquid crystals, Bose-Einsteincondensates

Stationary solutions in quadratic nonlinear (χ(2)) mediaare equivalent to stationary solutions in nonlocalKerr-media

New Trends in Nonlinear Physics, ICTP, September 17, 2005 Back Next – p. 3/2

Page 5: NonlinearWave Dynamics in Nonlocal Media.indico.ictp.it/event/a04206/session/62/contribution/42/material/0/0.pdfNonlinear Wave Dynamics in Nonlocal Media Jens Juul Rasmussen1 O. Bang2

References

W. Krolikowski and O. Bang, Phys. Rev. E 63, 016610 (2001)W. Krolikowski, O. Bang, J.J. Rasmussen, and J. Wyller, Phys. Rev. E 64,016612 (2001)O. Bang, W. Krolikowski, J. Wyller, J.J. Rasmussen, Phys. Rev. E 66,046619 (2002)J. Wyller, W. Krolikowski, O. Bang, J.J. Rasmussen, Phys. Rev. E 66,066615 (2002)N.I. Nikolov, D. Neshev, O. Bang, and W. Krolikowski, Phys. Rev. E 68,036614 (2003)N.I. Nikolov, W. Królikowski, O. Bang, J. J. Rasmussen, andP.L.Christiansen, Optics Lett. 29, 286-288, (2004)D. Briedis, D.E. Petersen, D. Edmundson, W. Krolikowski, and O. Bang,Optics Express 13, 435 (2005)

W. Królikowski, O. Bang, N.I. Nikolov, D. Neshev, J. Wyller, J.J.Rasmussen, and D. Edmundson, J.Opt. B 6 S288 (2004)

New Trends in Nonlinear Physics, ICTP, September 17, 2005 Back Next – p. 4/2

Page 6: NonlinearWave Dynamics in Nonlocal Media.indico.ictp.it/event/a04206/session/62/contribution/42/material/0/0.pdfNonlinear Wave Dynamics in Nonlocal Media Jens Juul Rasmussen1 O. Bang2

Model equations

Optical beam propagating along the z-axis of a nonlinearmedium;ψ(r, z) is the slowly varying amplitude

E(r, z) = ψ(r, z) exp(iKz − iΩt) + c.c.

New Trends in Nonlinear Physics, ICTP, September 17, 2005 Back Next – p. 5/2

Page 7: NonlinearWave Dynamics in Nonlocal Media.indico.ictp.it/event/a04206/session/62/contribution/42/material/0/0.pdfNonlinear Wave Dynamics in Nonlocal Media Jens Juul Rasmussen1 O. Bang2

Model equations

E(r, z) = ψ(r, z) exp(iKz − iΩt) + c.c.

Refractive index change N(I); I(r, z) = |ψ(r, z)|2

N(I) = s

∫R(ξ − r)I(ξ, z)dξ,

s = 1 (s = −1): focusing (defocusing) nonlinearityR(r) = R(r), r = |r| real, localized:

∫R(r)dr = 1.

New Trends in Nonlinear Physics, ICTP, September 17, 2005 Back Next – p. 5/2

Page 8: NonlinearWave Dynamics in Nonlocal Media.indico.ictp.it/event/a04206/session/62/contribution/42/material/0/0.pdfNonlinear Wave Dynamics in Nonlocal Media Jens Juul Rasmussen1 O. Bang2

Model equations

E(r, z) = ψ(r, z) exp(iKz − iΩt) + c.c.

N(I) = s

∫R(ξ − r)I(ξ, z)dξ,

R(r) = R(r), r = |r| real, localized:∫R(r)dr = 1.

Nonlocal nonlinear Schrödinger (NLS) equation

i∂zψ +1

2∇2

⊥ψ +N(I)ψ = 0,

New Trends in Nonlinear Physics, ICTP, September 17, 2005 Back Next – p. 5/2

Page 9: NonlinearWave Dynamics in Nonlocal Media.indico.ictp.it/event/a04206/session/62/contribution/42/material/0/0.pdfNonlinear Wave Dynamics in Nonlocal Media Jens Juul Rasmussen1 O. Bang2

Model equations

E(r, z) = ψ(r, z) exp(iKz − iΩt) + c.c.

N(I) = s

∫R(ξ − r)I(ξ, z)dξ,

R(r) = R(r), r = |r| real, localized:∫R(r)dr = 1.

i∂zψ +1

2∇2

⊥ψ +N(I)ψ = 0,

Singular response, R(r) = δ(|r|), : N(I) = sI(r, z): ,

i∂zψ +1

2∇2

⊥ψ + sψ|ψ|2 = 0

s = 1 (s = −1): focusing (defocusing) nonlinearityNew Trends in Nonlinear Physics, ICTP, September 17, 2005 Back Next – p. 5/2

Page 10: NonlinearWave Dynamics in Nonlocal Media.indico.ictp.it/event/a04206/session/62/contribution/42/material/0/0.pdfNonlinear Wave Dynamics in Nonlocal Media Jens Juul Rasmussen1 O. Bang2

Degrees of nonlocality

Weakly nonlocal:N(I) = I + γ∇2

⊥I,γ = 1

2

∫r2R(r)dr

Strongly nonlocal:N(I) = sR(r)P ,P =

∫Idr

(a)

(d)(c)

(b)R(x'-x) R(x'-x)

R(x'-x) R(x'-x)

I(x')I(x')

I(x') I(x')

0 x'x0 x'x

0 x'x0 x'x

New Trends in Nonlinear Physics, ICTP, September 17, 2005 Back Next – p. 6/2

Page 11: NonlinearWave Dynamics in Nonlocal Media.indico.ictp.it/event/a04206/session/62/contribution/42/material/0/0.pdfNonlinear Wave Dynamics in Nonlocal Media Jens Juul Rasmussen1 O. Bang2

Modulational Instability

Plane waveψ(r, z) =

√ρ0 exp(i k0 · r − iβz), ρ0 > 0, β =

1

2k20 − sρ0,

New Trends in Nonlinear Physics, ICTP, September 17, 2005 Back Next – p. 7/2

Page 12: NonlinearWave Dynamics in Nonlocal Media.indico.ictp.it/event/a04206/session/62/contribution/42/material/0/0.pdfNonlinear Wave Dynamics in Nonlocal Media Jens Juul Rasmussen1 O. Bang2

Modulational Instability

ψ(r, z) =√ρ0 exp(i k0 · r − iβz), ρ0 > 0, β =

1

2k20 − sρ0,

Perturbation to the plane wave solutionψ(r, z) = [

√ρ0 + a1(r, z) + cc] exp(i( k0 · r − βz)),

a1(r, z) =

∫a1(k)exp(ik · r + λz)dk

New Trends in Nonlinear Physics, ICTP, September 17, 2005 Back Next – p. 7/2

Page 13: NonlinearWave Dynamics in Nonlocal Media.indico.ictp.it/event/a04206/session/62/contribution/42/material/0/0.pdfNonlinear Wave Dynamics in Nonlocal Media Jens Juul Rasmussen1 O. Bang2

Modulational Instability

ψ(r, z) =√ρ0 exp(i k0 · r − iβz), ρ0 > 0, β =

1

2k20 − sρ0,

ψ(r, z) = [√ρ0 + a1(r, z) + cc] exp(i( k0 · r − βz)),

a1(r, z) =

∫a1(k)exp(ik · r + λz)dk

Dispersion relation

λ2 = −k2ρ0

[k2

4ρ0− sR(k)

],

New Trends in Nonlinear Physics, ICTP, September 17, 2005 Back Next – p. 7/2

Page 14: NonlinearWave Dynamics in Nonlocal Media.indico.ictp.it/event/a04206/session/62/contribution/42/material/0/0.pdfNonlinear Wave Dynamics in Nonlocal Media Jens Juul Rasmussen1 O. Bang2

Modulational Instability

ψ(r, z) =√ρ0 exp(i k0 · r − iβz), ρ0 > 0, β =

1

2k20 − sρ0,

ψ(r, z) = [√ρ0 + a1(r, z) + cc] exp(i( k0 · r − βz)),

a1(r, z) =

∫a1(k)exp(ik · r + λz)dk

λ2 = −k2ρ0

[k2

4ρ0− sR(k)

],

k = |k| spatial frequency, R(k ) =∫R(r ) exp(ik · r)dr Fourier

spectrum of R(r).

New Trends in Nonlinear Physics, ICTP, September 17, 2005 Back Next – p. 7/2

Page 15: NonlinearWave Dynamics in Nonlocal Media.indico.ictp.it/event/a04206/session/62/contribution/42/material/0/0.pdfNonlinear Wave Dynamics in Nonlocal Media Jens Juul Rasmussen1 O. Bang2

Modulational Instability

ψ(r, z) =√ρ0 exp(i k0 · r − iβz), ρ0 > 0, β =

1

2k20 − sρ0,

ψ(r, z) = [√ρ0 + a1(r, z) + cc] exp(i( k0 · r − βz)),

a1(r, z) =

∫a1(k)exp(ik · r + λz)dk

λ2 = −k2ρ0

[k2

4ρ0− sR(k)

],

R(k ) positive definite: s = 1 MI; s = −1 stabilityR(k ) sign indefinite: s = 1 MI; s = −1 possibility for MI!

New Trends in Nonlinear Physics, ICTP, September 17, 2005 Back Next – p. 7/2

Page 16: NonlinearWave Dynamics in Nonlocal Media.indico.ictp.it/event/a04206/session/62/contribution/42/material/0/0.pdfNonlinear Wave Dynamics in Nonlocal Media Jens Juul Rasmussen1 O. Bang2

MI in focusing media(a)

σ =0.5

σ =1

σ =10

ρ =1

λ

0

G

G

G

(b)

λ

ρ =10σ =0.5

σ =1

σ =10σ =20

MI gain for ρ0 = 1, s = 1

(a) Gaussian: R (x) = 1σ√

πexp

[− x2

σ2

]with R (k) = exp

[− 14σ2k2

](b) Rectangular: R (x) = 1

2σ for |x| ≤ σ and R (x) = 0 for |x| > σ

R (k) = sin(kσ)kσ

New Trends in Nonlinear Physics, ICTP, September 17, 2005 Back Next – p. 8/2

Page 17: NonlinearWave Dynamics in Nonlocal Media.indico.ictp.it/event/a04206/session/62/contribution/42/material/0/0.pdfNonlinear Wave Dynamics in Nonlocal Media Jens Juul Rasmussen1 O. Bang2

MI in focusing media

σ =

σ = 1

10-3

MI evolution ρ0 = 1, s = 1Gaussian response profiles:

R (x) = 1σ√

πexp

[−x2

σ2

]Experimental verificationPeccianti et al.PRE 68 025602 (2003)

New Trends in Nonlinear Physics, ICTP, September 17, 2005 Back Next – p. 9/2

Page 18: NonlinearWave Dynamics in Nonlocal Media.indico.ictp.it/event/a04206/session/62/contribution/42/material/0/0.pdfNonlinear Wave Dynamics in Nonlocal Media Jens Juul Rasmussen1 O. Bang2

MI in de-focusing media

λ

ρ =10 s=-1

σ =5σ =10

σ =20R (x) =

⎧⎪⎪⎨⎪⎪⎩

12σ ; |x| ≤ σ

0; |x| > σ

R (k) =sin (kσ)

MI in de-focusing nonlocal media with rectangular response function

New Trends in Nonlinear Physics, ICTP, September 17, 2005 Back Next – p. 10/2

Page 19: NonlinearWave Dynamics in Nonlocal Media.indico.ictp.it/event/a04206/session/62/contribution/42/material/0/0.pdfNonlinear Wave Dynamics in Nonlocal Media Jens Juul Rasmussen1 O. Bang2

MI in de-focusing media

0 5 10 15 20 25 30 35

0.8

0.6

0.4

0.2

0.0

nonlocality parameter σ

wav

e nu

mbe

r k

σ=20 σ=35σ=5

1.0

Wave number for maximum gain versus σ. sρ0 = −1 and rectangularresponse function.

New Trends in Nonlinear Physics, ICTP, September 17, 2005 Back Next – p. 11/2

Page 20: NonlinearWave Dynamics in Nonlocal Media.indico.ictp.it/event/a04206/session/62/contribution/42/material/0/0.pdfNonlinear Wave Dynamics in Nonlocal Media Jens Juul Rasmussen1 O. Bang2

Dark solitons: interaction

i∂zu + ∂2xu + ∆nu = 0,

∆n(I) = −∫ ∞

−∞R(x − τ)I(τ)dτ,

R(x) = (2σ)−1 exp(−|x|/σ):

∆n − σ2∂2x∆n = −|u|2,

Dark solitons:u(x, z) = u(x) exp(iλz)u(0)=0, π phase jump at x = 0Equivalent χ(2)-solitons

−10 0 100

0.4

0.8

1.2

|u|2 a

nd 1

−∆n

prof

iles

Transverse coordinate

( a )

−10 0 10

( b )

Single dark soliton (a) and boundstate (b). Nonlocal effects smear out∆n, creating an effective wavegui-de.

New Trends in Nonlinear Physics, ICTP, September 17, 2005 Back Next – p. 12/2

Page 21: NonlinearWave Dynamics in Nonlocal Media.indico.ictp.it/event/a04206/session/62/contribution/42/material/0/0.pdfNonlinear Wave Dynamics in Nonlocal Media Jens Juul Rasmussen1 O. Bang2

Dark solitons: interaction

Evolution of bound state oftwo nonlocal solitonsSeparation ∆x ≈ 2σ

Evolution of dark soliton in χ(2)-media and in nonlocal media

New Trends in Nonlinear Physics, ICTP, September 17, 2005 Back Next – p. 13/2

Page 22: NonlinearWave Dynamics in Nonlocal Media.indico.ictp.it/event/a04206/session/62/contribution/42/material/0/0.pdfNonlinear Wave Dynamics in Nonlocal Media Jens Juul Rasmussen1 O. Bang2

Dark solitons: interaction

Interaction of dark nonlocal solitons. a) Phase jump = π, σ = 2 and x0 =5.5, 4.0, 2.5 b) Phase jump = 0.95π, σ = 0.1, 1.0, 2.0, and x0 = 2.5. c)Intensity gap width 7.5 and σ = 0.1, 3.0, 6.0. Critical separation x0c ≈ 2σ

New Trends in Nonlinear Physics, ICTP, September 17, 2005 Back Next – p. 14/2

Page 23: NonlinearWave Dynamics in Nonlocal Media.indico.ictp.it/event/a04206/session/62/contribution/42/material/0/0.pdfNonlinear Wave Dynamics in Nonlocal Media Jens Juul Rasmussen1 O. Bang2

Wave Collapse I

Local NLS: Collapse for D ≥ 2

C. Sulem and P. Sulem, The Nonlinear Schrodinger Equation,Springer-Verlag, Berlin (1999)

D = 2: necessary and sufficient condition: Collapse (blow-up) forP > Psol

D = 3: Sufficient condition H < 0Kuznetsov et al Physica D 87, 273 (1995)

New Trends in Nonlinear Physics, ICTP, September 17, 2005 Back Next – p. 15/2

Page 24: NonlinearWave Dynamics in Nonlocal Media.indico.ictp.it/event/a04206/session/62/contribution/42/material/0/0.pdfNonlinear Wave Dynamics in Nonlocal Media Jens Juul Rasmussen1 O. Bang2

Wave Collapse INonlocal NLS: collapse is suppressed:S.K. Turitsyn, Teor. Mat. Fiz. 64, 226 (1985)V.M. Pérez-García et al. Phys Rev E 62, 4300 (2000)

New Trends in Nonlinear Physics, ICTP, September 17, 2005 Back Next – p. 15/2

Page 25: NonlinearWave Dynamics in Nonlocal Media.indico.ictp.it/event/a04206/session/62/contribution/42/material/0/0.pdfNonlinear Wave Dynamics in Nonlocal Media Jens Juul Rasmussen1 O. Bang2

Wave Collapse IGeneral case: symmetric non-singular response function:Conservations of power, P, and Hamiltonian, H(N(I) = s

∫R(ξ − r)I(ξ, z)dξ)

P =

∫Idr, H = ||∇ψ||22 −

1

2

∫NIdr.

New Trends in Nonlinear Physics, ICTP, September 17, 2005 Back Next – p. 15/2

Page 26: NonlinearWave Dynamics in Nonlocal Media.indico.ictp.it/event/a04206/session/62/contribution/42/material/0/0.pdfNonlinear Wave Dynamics in Nonlocal Media Jens Juul Rasmussen1 O. Bang2

Wave Collapse IGeneral case: symmetric non-singular response function:

P =

∫Idr, H = ||∇ψ||22 −

1

2

∫NIdr.

Using: |a − b| ≥ ||a| − |b|| ≥ |a| − |b| and | ∫ f(x)dx| ≤ ∫ |f(x)|dx

|H| =| ||∇ψ||22 −12

∫NIdr |≥ ||∇ψ||22 −

12|∫

NIdr|

New Trends in Nonlinear Physics, ICTP, September 17, 2005 Back Next – p. 15/2

Page 27: NonlinearWave Dynamics in Nonlocal Media.indico.ictp.it/event/a04206/session/62/contribution/42/material/0/0.pdfNonlinear Wave Dynamics in Nonlocal Media Jens Juul Rasmussen1 O. Bang2

Wave Collapse IGeneral case: symmetric non-singular response function:

P =

∫Idr, H = ||∇ψ||22 −

1

2

∫NIdr.

|H| =| ||∇ψ||22 −1

2

∫NIdr |≥ ||∇ψ||22 −

1

2|∫NIdr|

Fourier space ∫NIdr =

1

(2π)D

∫R(k)|I(k)|2dk

New Trends in Nonlinear Physics, ICTP, September 17, 2005 Back Next – p. 15/2

Page 28: NonlinearWave Dynamics in Nonlocal Media.indico.ictp.it/event/a04206/session/62/contribution/42/material/0/0.pdfNonlinear Wave Dynamics in Nonlocal Media Jens Juul Rasmussen1 O. Bang2

Wave Collapse II

|∫NIdr |≤ 1

(2π)D

∫|R(k)||I(k)|2dk ≤ P 2R0

R0 = R(0) ≡ 1

(2π)D

∫|R(k)|dk, P ≡

∫Idr

Demands |R(k)| is integrable

||∇ψ||22 ≤ |H| + 1

2R0P

2

New Trends in Nonlinear Physics, ICTP, September 17, 2005 Back Next – p. 16/2

Page 29: NonlinearWave Dynamics in Nonlocal Media.indico.ictp.it/event/a04206/session/62/contribution/42/material/0/0.pdfNonlinear Wave Dynamics in Nonlocal Media Jens Juul Rasmussen1 O. Bang2

Wave Collapse II

|∫NIdr |≤ 1

(2π)D

∫|R(k)||I(k)|2dk ≤ P 2R0

R0 = R(0) ≡ 1

(2π)D

∫|R(k)|dk, P ≡

∫Idr

||∇ψ||22 ≤ |H| + 1

2R0P

2

||∇ψ||22 is bounded from above ⇒ no blow-up!

Quasi collapse: smallest width ≈ width of R(r).

Width w ≥√

Pσ√P/2π+Hσ2

New Trends in Nonlinear Physics, ICTP, September 17, 2005 Back Next – p. 16/2

Page 30: NonlinearWave Dynamics in Nonlocal Media.indico.ictp.it/event/a04206/session/62/contribution/42/material/0/0.pdfNonlinear Wave Dynamics in Nonlocal Media Jens Juul Rasmussen1 O. Bang2

2D Beam Stability

Soliton solution: ψ(r, z) = φ(r) exp(iλz). Variational results for Gaussian

response R(r ) =(1/πσ2

)D2 exp

(−|r |2/σ2)

and trial functionφ(r) = α exp[−(r/β)2]Different degrees of nonlocality, σ=0, 0.2, 0.4, and 0.6.dPdλ > 0 implies stability

New Trends in Nonlinear Physics, ICTP, September 17, 2005 Back Next – p. 17/2

Page 31: NonlinearWave Dynamics in Nonlocal Media.indico.ictp.it/event/a04206/session/62/contribution/42/material/0/0.pdfNonlinear Wave Dynamics in Nonlocal Media Jens Juul Rasmussen1 O. Bang2

3D Beam Stability

3D variational results with Gaussian response and trial function. σ=0, 0.2,0.4, and 0.6. Dashed line threshold for instability

New Trends in Nonlinear Physics, ICTP, September 17, 2005 Back Next – p. 18/2

Page 32: NonlinearWave Dynamics in Nonlocal Media.indico.ictp.it/event/a04206/session/62/contribution/42/material/0/0.pdfNonlinear Wave Dynamics in Nonlocal Media Jens Juul Rasmussen1 O. Bang2

Stabilized vortex beam

Gaussian-Laguerre vortex beam ψ(r) = r exp(−(r/r0)2 exp(iθ) (charge 1,r0 = 1) in a self-focusing nonlocal medium (Gaussian response function).(a) σ = 0, (b) σ = 1, (c) σ = 10.

New Trends in Nonlinear Physics, ICTP, September 17, 2005 Back Next – p. 19/2

Page 33: NonlinearWave Dynamics in Nonlocal Media.indico.ictp.it/event/a04206/session/62/contribution/42/material/0/0.pdfNonlinear Wave Dynamics in Nonlocal Media Jens Juul Rasmussen1 O. Bang2

Stabilized vortex beam

Propagation of a charge m = 1 vortex beam in a nonlocal medium.Gaussian response function (a) σ = 0.1, (b) σ = 10.Briedis et al. Optics Express 13 435 (2005)

New Trends in Nonlinear Physics, ICTP, September 17, 2005 Back Next – p. 20/2

Page 34: NonlinearWave Dynamics in Nonlocal Media.indico.ictp.it/event/a04206/session/62/contribution/42/material/0/0.pdfNonlinear Wave Dynamics in Nonlocal Media Jens Juul Rasmussen1 O. Bang2

Conclusions

Nonlocal effects have a strong influence on thenonlinear evolution

The modulational instability of plane waves issuppressed for positive definite R(k)

Higher order unstable bands appear for sign indefiniteR(k) and unstable bands may appear in de-focusingmedia.

Nonlocality influences soliton interactions and mayintroduce 2(n)-soliton bound states.

Nonlocality prevents blow-up, stabilize 2 and 3-Dsolitons; quasi collapse is possible.

New Trends in Nonlinear Physics, ICTP, September 17, 2005 Back Next – p. 21/2