38
Introduction Elastic-Plastic Models Summary Nonlinear Soil Modeling for Seismic NPP Applications Boris Jeremi´ c and Federico Pisanò University of California, Davis Lawrence Berkeley National Laboratory, Berkeley LBNL Seminar, December 2012 Jeremi´ c Nonlinear Soil Modeling for Seismic NPP Applications

Nonlinear Soil Modeling for Seismic NPP Applicationssokocalo.engr.ucdavis.edu/~jeremic/ · I Seismic response of Nuclear Power Plants I Soil modeling in particular I Linear elastic

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Nonlinear Soil Modeling for Seismic NPP Applicationssokocalo.engr.ucdavis.edu/~jeremic/ · I Seismic response of Nuclear Power Plants I Soil modeling in particular I Linear elastic

Introduction Elastic-Plastic Models Summary

Nonlinear Soil Modeling forSeismic NPP Applications

Boris Jeremic and Federico Pisanò

University of California, DavisLawrence Berkeley National Laboratory, Berkeley

LBNL Seminar, December 2012

Jeremic

Nonlinear Soil Modeling for Seismic NPP Applications

Page 2: Nonlinear Soil Modeling for Seismic NPP Applicationssokocalo.engr.ucdavis.edu/~jeremic/ · I Seismic response of Nuclear Power Plants I Soil modeling in particular I Linear elastic

Introduction Elastic-Plastic Models Summary

Outline

Introduction

Elastic-Plastic Models

Summary

Jeremic

Nonlinear Soil Modeling for Seismic NPP Applications

Page 3: Nonlinear Soil Modeling for Seismic NPP Applicationssokocalo.engr.ucdavis.edu/~jeremic/ · I Seismic response of Nuclear Power Plants I Soil modeling in particular I Linear elastic

Introduction Elastic-Plastic Models Summary

Outline

Introduction

Elastic-Plastic Models

Summary

Jeremic

Nonlinear Soil Modeling for Seismic NPP Applications

Page 4: Nonlinear Soil Modeling for Seismic NPP Applicationssokocalo.engr.ucdavis.edu/~jeremic/ · I Seismic response of Nuclear Power Plants I Soil modeling in particular I Linear elastic

Introduction Elastic-Plastic Models Summary

Motivation

The Problem

I Seismic response of Nuclear Power Plants

I Soil modeling in particular

I Linear elastic

I Equivalent Linear Elastic (current state of practice/art)

I 3D elastic-plastic modeling

I Combine frictional (elastic-plastic, displacementproportional) and viscous (velocity proportional) energydissipation in one model.

Jeremic

Nonlinear Soil Modeling for Seismic NPP Applications

Page 5: Nonlinear Soil Modeling for Seismic NPP Applicationssokocalo.engr.ucdavis.edu/~jeremic/ · I Seismic response of Nuclear Power Plants I Soil modeling in particular I Linear elastic

Introduction Elastic-Plastic Models Summary

Micromechanical Origins of Elasto-Plasticity

Granular MaterialsI Pressure sensitive materials (particles)I Usually assumed to be linear elastic (at least in the NPP

field (?!))I Can be (rigorously) shown that as they can never be linear

elastic (with normal and/or shear contact forces.I R. D. Mindlin and H. Deresiewicz. Elastic spheres in

contact under varying oblique forces. ASME Journal ofApplied Mechanics, 53(APM-14):327-344, September1953.

I Izhak Etsion. Revisiting the Cattaneo-Mindlin concept ofinterfacial slip in tangentially loaded compliant bodies.Journal of Tribology, 132(2):020801, 2010.

Jeremic

Nonlinear Soil Modeling for Seismic NPP Applications

Page 6: Nonlinear Soil Modeling for Seismic NPP Applicationssokocalo.engr.ucdavis.edu/~jeremic/ · I Seismic response of Nuclear Power Plants I Soil modeling in particular I Linear elastic

Introduction Elastic-Plastic Models Summary

Micromechanical Origins of Elasto-Plasticity

Two Spheres

Jeremic

Nonlinear Soil Modeling for Seismic NPP Applications

Page 7: Nonlinear Soil Modeling for Seismic NPP Applicationssokocalo.engr.ucdavis.edu/~jeremic/ · I Seismic response of Nuclear Power Plants I Soil modeling in particular I Linear elastic

Introduction Elastic-Plastic Models Summary

Micromechanical Origins of Elasto-Plasticity

Contact Zone

contact zone

Jeremic

Nonlinear Soil Modeling for Seismic NPP Applications

Page 8: Nonlinear Soil Modeling for Seismic NPP Applicationssokocalo.engr.ucdavis.edu/~jeremic/ · I Seismic response of Nuclear Power Plants I Soil modeling in particular I Linear elastic

Introduction Elastic-Plastic Models Summary

Micromechanical Origins of Elasto-Plasticity

Normal StressesHertz (1882)

contact zone

Jeremic

Nonlinear Soil Modeling for Seismic NPP Applications

Page 9: Nonlinear Soil Modeling for Seismic NPP Applicationssokocalo.engr.ucdavis.edu/~jeremic/ · I Seismic response of Nuclear Power Plants I Soil modeling in particular I Linear elastic

Introduction Elastic-Plastic Models Summary

Micromechanical Origins of Elasto-Plasticity

Normal and Shear StressesCattaneo (1938), Mindlin (1949), Etsion (2010)

στ

stick zone

slip zone

Jeremic

Nonlinear Soil Modeling for Seismic NPP Applications

Page 10: Nonlinear Soil Modeling for Seismic NPP Applicationssokocalo.engr.ucdavis.edu/~jeremic/ · I Seismic response of Nuclear Power Plants I Soil modeling in particular I Linear elastic

Introduction Elastic-Plastic Models Summary

Micromechanical Origins of Elasto-Plasticity

Granular Materials (Summary)

I Particulate materials are never linear elastic

Jeremic

Nonlinear Soil Modeling for Seismic NPP Applications

Page 11: Nonlinear Soil Modeling for Seismic NPP Applicationssokocalo.engr.ucdavis.edu/~jeremic/ · I Seismic response of Nuclear Power Plants I Soil modeling in particular I Linear elastic

Introduction Elastic-Plastic Models Summary

Outline

Introduction

Elastic-Plastic Models

Summary

Jeremic

Nonlinear Soil Modeling for Seismic NPP Applications

Page 12: Nonlinear Soil Modeling for Seismic NPP Applicationssokocalo.engr.ucdavis.edu/~jeremic/ · I Seismic response of Nuclear Power Plants I Soil modeling in particular I Linear elastic

Introduction Elastic-Plastic Models Summary

Classical Material Models

von Mises perfectly plastic model

I f =

√32

sijsij − σ0 = 0

I undrained shear strength su (su = σ0/√

3)

Jeremic

Nonlinear Soil Modeling for Seismic NPP Applications

Page 13: Nonlinear Soil Modeling for Seismic NPP Applicationssokocalo.engr.ucdavis.edu/~jeremic/ · I Seismic response of Nuclear Power Plants I Soil modeling in particular I Linear elastic

Introduction Elastic-Plastic Models Summary

Classical Material Models

Drucker-Prager kinematic hardening model

I f =√(

sij − pαij) (

sij − pαij)−√

23kp = 0

I εpij = λmij , mij =

(∂f∂σij

)dev

− 13

Dδij ,

dilatancy coefficient D = ξ

(√23

kd −√

rmnrmn

)

I αij =23

ha

(εpij

)dev− crαij

√23(εprs)dev (

εprs)dev

Jeremic

Nonlinear Soil Modeling for Seismic NPP Applications

Page 14: Nonlinear Soil Modeling for Seismic NPP Applicationssokocalo.engr.ucdavis.edu/~jeremic/ · I Seismic response of Nuclear Power Plants I Soil modeling in particular I Linear elastic

Introduction Elastic-Plastic Models Summary

Classical Material Models

Drucker-Prager kinematic hardening model

0 0.02 0.04 0.06 0.08 0.10

20

40

60

80

100

120

140

160

εdev

[−]

q [k

Pa]

0 0.02 0.04 0.06 0.08 0.1

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

εdev

[−]

ε vol [−

]

kd=1.0

kd=0.6

kd=0.0

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08−150

−100

−50

0

50

100

150

εdev

[−]

q [k

Pa]

Jeremic

Nonlinear Soil Modeling for Seismic NPP Applications

Page 15: Nonlinear Soil Modeling for Seismic NPP Applicationssokocalo.engr.ucdavis.edu/~jeremic/ · I Seismic response of Nuclear Power Plants I Soil modeling in particular I Linear elastic

Introduction Elastic-Plastic Models Summary

Classical Material Models

Drucker-Prager Kinematic Hardening Model withViscosity

−10 −8 −6 −4 −2 0 2 4 6 8

x 10−3

−100

−80

−60

−40

−20

0

20

40

60

80

100

γ [−]

τ [k

Pa]

from GPfrom reactions

0 5 10 15 20 25 30130

140

150

160

170

180

190

200

210

220

230

time [s]

norm

al s

tres

s [k

Pa]

σx

σy

σz

p

Jeremic

Nonlinear Soil Modeling for Seismic NPP Applications

Page 16: Nonlinear Soil Modeling for Seismic NPP Applicationssokocalo.engr.ucdavis.edu/~jeremic/ · I Seismic response of Nuclear Power Plants I Soil modeling in particular I Linear elastic

Introduction Elastic-Plastic Models Summary

Classical Material Models

DK - Variation in Yield Stress

10−3

10−2

10−1

100

101

0

0.2

0.4

0.6

0.8

1

γ [%]

G/G

max

[−]

10−3

10−2

10−1

100

101

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

γ [%]

D [−

]

σ0=50 kPa (GP)

σ0=50 kPa (react)

σ0=100 kPa (GP)

σ0=100 kPa (react)

σ0=200 kPa (GP)

σ0=200 kPa (react)

σ0=400 kPa (GP)

σ0=400 kPa (react)

Jeremic

Nonlinear Soil Modeling for Seismic NPP Applications

Page 17: Nonlinear Soil Modeling for Seismic NPP Applicationssokocalo.engr.ucdavis.edu/~jeremic/ · I Seismic response of Nuclear Power Plants I Soil modeling in particular I Linear elastic

Introduction Elastic-Plastic Models Summary

Classical Material Models

DK - Variation in Damping Coefficient

10−3

10−2

10−1

100

101

0

0.2

0.4

0.6

0.8

1

γ [%]

G/G

max

[−]

10−3

10−2

10−1

100

101

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

γ [%]

D [−

]

ζ=0.005 (GP)ζ=0.005 (react)ζ=0.01 (GP)ζ=0.01 (react)ζ=0.02 (GP)ζ=0.02 (react)ζ=0.05 (GP)ζ=0.05 (react)

Jeremic

Nonlinear Soil Modeling for Seismic NPP Applications

Page 18: Nonlinear Soil Modeling for Seismic NPP Applicationssokocalo.engr.ucdavis.edu/~jeremic/ · I Seismic response of Nuclear Power Plants I Soil modeling in particular I Linear elastic

Introduction Elastic-Plastic Models Summary

Classical Material Models

DK - Variation in Initial Confinement

10−3

10−2

10−1

100

101

0

0.2

0.4

0.6

0.8

1

γ [%]

G/G

max

[−]

10−3

10−2

10−1

100

101

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

γ [%]

D [−

]

p0=50 kPa (GP)

p0=50 kPa (react)

p0=100 kPa (GP)

p0=100 kPa (react)

p0=200 kPa (GP)

p0=200 kPa (react)

p0=500 kPa (GP)

p0=200 kPa (react)

Jeremic

Nonlinear Soil Modeling for Seismic NPP Applications

Page 19: Nonlinear Soil Modeling for Seismic NPP Applicationssokocalo.engr.ucdavis.edu/~jeremic/ · I Seismic response of Nuclear Power Plants I Soil modeling in particular I Linear elastic

Introduction Elastic-Plastic Models Summary

Classical Material Models

Comparison with G/Gmax and Damping Curves

10−4

10−3

10−2

10−1

100

101

0

0.2

0.4

0.6

0.8

1

γ [%]

G/G

max

[−]

GP/RFSeed & Idriss

10−4

10−3

10−2

10−1

100

101

0

0.2

0.4

0.6

0.8

1

γ [%]

ζ [−

]

GPRFSeed & Idriss

Jeremic

Nonlinear Soil Modeling for Seismic NPP Applications

Page 20: Nonlinear Soil Modeling for Seismic NPP Applicationssokocalo.engr.ucdavis.edu/~jeremic/ · I Seismic response of Nuclear Power Plants I Soil modeling in particular I Linear elastic

Introduction Elastic-Plastic Models Summary

Classical Material Models

Comparison with G/Gmax and Damping Curves

10−4

10−3

10−2

10−1

100

101

0

0.2

0.4

0.6

0.8

1

γ [%]

G/G

max

[−]

GP/RFSeed & Idriss

10−4

10−3

10−2

10−1

100

101

0

0.2

0.4

0.6

0.8

1

γ [%]

ζ [−

]

GPRFSeed & Idriss

Jeremic

Nonlinear Soil Modeling for Seismic NPP Applications

Page 21: Nonlinear Soil Modeling for Seismic NPP Applicationssokocalo.engr.ucdavis.edu/~jeremic/ · I Seismic response of Nuclear Power Plants I Soil modeling in particular I Linear elastic

Introduction Elastic-Plastic Models Summary

Classical Material Models

Comparison with G/Gmax and Damping Curves

10−4

10−3

10−2

10−1

100

101

0

0.2

0.4

0.6

0.8

1

γ [%]

ζ [−

]

GPRFSeed & Idriss

10−4

10−3

10−2

10−1

100

101

0

0.2

0.4

0.6

0.8

1

γ [%]

G/G

max

[−]

GP/RFSeed & Idriss 1970

Jeremic

Nonlinear Soil Modeling for Seismic NPP Applications

Page 22: Nonlinear Soil Modeling for Seismic NPP Applicationssokocalo.engr.ucdavis.edu/~jeremic/ · I Seismic response of Nuclear Power Plants I Soil modeling in particular I Linear elastic

Introduction Elastic-Plastic Models Summary

Pisanò-Jeremic Material Model

PJ Model: Assumptions

I Split stress into frictional and viscous componentsσij = σf

ij + σvij

I Remove the elastic region (limit analysis)I Rotating kinematic hardening

Jeremic

Nonlinear Soil Modeling for Seismic NPP Applications

Page 23: Nonlinear Soil Modeling for Seismic NPP Applicationssokocalo.engr.ucdavis.edu/~jeremic/ · I Seismic response of Nuclear Power Plants I Soil modeling in particular I Linear elastic

Introduction Elastic-Plastic Models Summary

Pisanò-Jeremic Material Model

PJ Model: Elasticity

dσij = Deijhk(dεhk − dεphk

)dsij = 2Gmax

(dehk − dep

hk

)

dp = −K(dεvol − dεpvol

)where p = −σkk/3, εvol = εkk , sij = σdev

ij , eij = εdevij ,

Gmax = E/2 (1 + ν) and K = E/3 (1− 2ν)

Jeremic

Nonlinear Soil Modeling for Seismic NPP Applications

Page 24: Nonlinear Soil Modeling for Seismic NPP Applicationssokocalo.engr.ucdavis.edu/~jeremic/ · I Seismic response of Nuclear Power Plants I Soil modeling in particular I Linear elastic

Introduction Elastic-Plastic Models Summary

Pisanò-Jeremic Material Model

PJ Model: DP Yield and Bounding Surface

fy =32(sij − pαij

) (sij − pαij

)− k2p2 = 0

fB =32

sijsij −M2p2 = 0

σij

_

σij

β(σij−σ

ij0)

boundingsurface

σij0

σ2

σ3

σ1

Jeremic

Nonlinear Soil Modeling for Seismic NPP Applications

Page 25: Nonlinear Soil Modeling for Seismic NPP Applicationssokocalo.engr.ucdavis.edu/~jeremic/ · I Seismic response of Nuclear Power Plants I Soil modeling in particular I Linear elastic

Introduction Elastic-Plastic Models Summary

Pisanò-Jeremic Material Model

PJ Model: Plastic Flow and Translation Rule

Borrowed from Manzari and Dafalias (1997)

dεphk = dλ(

ndevij − 1

3Dδij

)

D = ξ(αd

ij − αij

)ndev

ij = ξ

(√23

kdndevij − αij

)ndev

ij

dαij = ‖dαij‖ndevij

Jeremic

Nonlinear Soil Modeling for Seismic NPP Applications

Page 26: Nonlinear Soil Modeling for Seismic NPP Applicationssokocalo.engr.ucdavis.edu/~jeremic/ · I Seismic response of Nuclear Power Plants I Soil modeling in particular I Linear elastic

Introduction Elastic-Plastic Models Summary

Pisanò-Jeremic Material Model

PJ Model: Vanishing Elastic Region

limk→0

fy = 0⇒ limk→0

sij = pαij ⇒ dsij = dαijp + αijdp

ndevij =

dsij − αijdp‖dsij − αijdp‖

‖dαij‖ =1

pNdev∂f∂σij

dσij

‖dαij‖ =

√23

dqp

σij

_

σij

β(σij−σ

ij0)

boundingsurface

σij0

σ2

σ3

σ1

Jeremic

Nonlinear Soil Modeling for Seismic NPP Applications

Page 27: Nonlinear Soil Modeling for Seismic NPP Applicationssokocalo.engr.ucdavis.edu/~jeremic/ · I Seismic response of Nuclear Power Plants I Soil modeling in particular I Linear elastic

Introduction Elastic-Plastic Models Summary

Pisanò-Jeremic Material Model

PJ Model: Hardening Modulus and Plastic Multiplier

‖dαij‖ =23

Hdλp

dλ =2Gmax‖deij‖+ Kdεvolαijndev

ij

2G +23

H − KDαijndevij

Jeremic

Nonlinear Soil Modeling for Seismic NPP Applications

Page 28: Nonlinear Soil Modeling for Seismic NPP Applicationssokocalo.engr.ucdavis.edu/~jeremic/ · I Seismic response of Nuclear Power Plants I Soil modeling in particular I Linear elastic

Introduction Elastic-Plastic Models Summary

Pisanò-Jeremic Material Model

PJ Model: Stress Projection, Hardening andUnloading

dβ = − (1 + β)sijdsij −

23

M2pdp

sij

(sij − s0

ij

)− 2

3M2p

(p − p0

) > 0

σij

_

σij

β(σij−σ

ij0)

boundingsurface

σij0

σ2

σ3

σ1Jeremic

Nonlinear Soil Modeling for Seismic NPP Applications

Page 29: Nonlinear Soil Modeling for Seismic NPP Applicationssokocalo.engr.ucdavis.edu/~jeremic/ · I Seismic response of Nuclear Power Plants I Soil modeling in particular I Linear elastic

Introduction Elastic-Plastic Models Summary

Pisanò-Jeremic Material Model

PJ Model: Triaxial Response

0 5 10 15 200

50

100

150

200

250

εax

[%]

q [

kPa]

kd=0

kd=0.4

kd=1.2

0 5 10 15 20

−30

−20

−10

0

εax

[%]

ε vol [

%]

kd=0

kd=0.4

kd=1.2

Jeremic

Nonlinear Soil Modeling for Seismic NPP Applications

Page 30: Nonlinear Soil Modeling for Seismic NPP Applicationssokocalo.engr.ucdavis.edu/~jeremic/ · I Seismic response of Nuclear Power Plants I Soil modeling in particular I Linear elastic

Introduction Elastic-Plastic Models Summary

Pisanò-Jeremic Material Model

PJ Model: Pure Shear Cyclic

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

−5

0

5

γ [%]

τ [k

Pa]

frictionalfrictional+viscous

−20 −15 −10 −5 0 5 10 15 20−100

−50

0

50

100

γ [%]

τ [k

Pa]

frictionalfrictional+viscous

Jeremic

Nonlinear Soil Modeling for Seismic NPP Applications

Page 31: Nonlinear Soil Modeling for Seismic NPP Applicationssokocalo.engr.ucdavis.edu/~jeremic/ · I Seismic response of Nuclear Power Plants I Soil modeling in particular I Linear elastic

Introduction Elastic-Plastic Models Summary

Pisanò-Jeremic Material Model

PJ Model: Calibration for G/Gmax and Damping

10−4

10−3

10−2

10−1

100

1010

0.2

0.4

0.6

0.8

1

γmax

[%]

G/G

max

[−]

10−4

10−3

10−2

10−1

100

1010

0.1

0.2

0.3

0.4

γmax

[%]

ζ [−

]

Seed & Idriss

frict, frict+visc

frict

frict+visc

Seed & Idriss

Figure: Comparison between experimental and simulated G/Gmaxand damping curves (p0=100 kPa, T=2π s, ζ = 0.003, Gmax = 4 MPa,ν=0.25, M=1.2, kd=ξ=0, h=G/(112p0), m=1.38)

Jeremic

Nonlinear Soil Modeling for Seismic NPP Applications

Page 32: Nonlinear Soil Modeling for Seismic NPP Applicationssokocalo.engr.ucdavis.edu/~jeremic/ · I Seismic response of Nuclear Power Plants I Soil modeling in particular I Linear elastic

Introduction Elastic-Plastic Models Summary

Pisanò-Jeremic Material Model

PJ Model: Calibration for G/Gmax and Damping

10−4

10−3

10−2

10−1

100

1010

0.2

0.4

0.6

0.8

1

γmax

[%]

G/G

max

[−]

10−4

10−3

10−2

10−1

100

1010

0.1

0.2

0.3

0.4

γmax

[%]

ζ [−

]

Seed & Idriss

frict, frict+visc

Seed & Idriss

frict

frict+viscous

Figure: Comparison between experimental and simulated G/Gmaxand damping curves (p0=100 kPa, T=2π s, ζ = 0.003, Gmax = 4 MPa,ν=0.25, M=1.2, kd=ξ=0, h=Gmax /(15p0), m=1)

Jeremic

Nonlinear Soil Modeling for Seismic NPP Applications

Page 33: Nonlinear Soil Modeling for Seismic NPP Applicationssokocalo.engr.ucdavis.edu/~jeremic/ · I Seismic response of Nuclear Power Plants I Soil modeling in particular I Linear elastic

Introduction Elastic-Plastic Models Summary

Pisanò-Jeremic Material Model

PJ Model: Variation in Confining Pressure

10−4

10−3

10−2

10−1

100

1010

0.2

0.4

0.6

0.8

1

γmax

[%]

G/G

max

[−]

10−4

10−3

10−2

10−1

100

1010

0.1

0.2

0.3

0.4

γmax

[%]

ζ [−

]

p0=50kPa

p0=100kPa

p0=200kPa

p0=300kPa

p0=200kPa

p0=300kPa

p0=100kPa

p0=50kPa

Figure: Simulated G/Gmax and damping curves at varying confiningpressure (T=2π s, Gmax = 4 MPa, ν=0.25, M=1.2, kd=ξ=0,h=G/(15p0), m=1)

Jeremic

Nonlinear Soil Modeling for Seismic NPP Applications

Page 34: Nonlinear Soil Modeling for Seismic NPP Applicationssokocalo.engr.ucdavis.edu/~jeremic/ · I Seismic response of Nuclear Power Plants I Soil modeling in particular I Linear elastic

Introduction Elastic-Plastic Models Summary

Pisanò-Jeremic Material Model

PJ Model: Variation in Hardening Parameter h

10−4

10−3

10−2

10−1

100

1010

0.2

0.4

0.6

0.8

1

γmax

[%]

G/G

max

[−]

10−4

10−3

10−2

10−1

100

1010

0.1

0.2

0.3

0.4

γmax

[%]

ζ [−

]h=G/150p

0

h=G/15p0

h=G/1500p0

h=G/1.5p0

h=G/1.5p0

h=G/1500p0

h=G/150p0

h=G/15p0

Figure: Simulated G/Gmax and damping curves at varying h (p0=100kPa, T =2π s, Gmax = 4 MPa, ν=0.25, M=1.2, kd=ξ=0, m=1)

Jeremic

Nonlinear Soil Modeling for Seismic NPP Applications

Page 35: Nonlinear Soil Modeling for Seismic NPP Applicationssokocalo.engr.ucdavis.edu/~jeremic/ · I Seismic response of Nuclear Power Plants I Soil modeling in particular I Linear elastic

Introduction Elastic-Plastic Models Summary

Pisanò-Jeremic Material Model

PJ Model: Variation in Hardening Parameter m

10−4

10−3

10−2

10−1

100

1010

0.2

0.4

0.6

0.8

1

γmax

[%]

G/G

max

[−]

10−4

10−3

10−2

10−1

100

1010

0.1

0.2

0.3

0.4

0.5

γmax

[%]

ζ [−

]m=1

m=0.5

m=2

m=3

m=0.5

m=3

m=2

m=1

Figure: Simulated G/Gmax and damping curves at varying m (p0=100kPa, T =2π s, Gmax = 4 MPa, ν=0.25, M=1.2, kd=ξ=0, h=Gmax /(15p0))

Jeremic

Nonlinear Soil Modeling for Seismic NPP Applications

Page 36: Nonlinear Soil Modeling for Seismic NPP Applicationssokocalo.engr.ucdavis.edu/~jeremic/ · I Seismic response of Nuclear Power Plants I Soil modeling in particular I Linear elastic

Introduction Elastic-Plastic Models Summary

Pisanò-Jeremic Material Model

PJ Model: Variation in Viscous Damping

10−4

10−3

10−2

10−1

100

101

0

0.2

0.4

0.6

0.8

1

γ [%]

G/G

max

[−]

10−4

10−3

10−2

10−1

100

1010

0.1

0.2

0.3

0.4

γmax

[%]

ζ [−

]

ζ0=0

ζ0=0.003

ζ0=0.005

ζ0=0.001

Figure: Damping curves simulated at varying ζ0 (p0=100 kPa, T =2πs, Gmax = 4 MPa, ν=0.25, M=1.2, kd=ξ=0, h=Gmax /(15p0), m=1)

Jeremic

Nonlinear Soil Modeling for Seismic NPP Applications

Page 37: Nonlinear Soil Modeling for Seismic NPP Applicationssokocalo.engr.ucdavis.edu/~jeremic/ · I Seismic response of Nuclear Power Plants I Soil modeling in particular I Linear elastic

Introduction Elastic-Plastic Models Summary

Outline

Introduction

Elastic-Plastic Models

Summary

Jeremic

Nonlinear Soil Modeling for Seismic NPP Applications

Page 38: Nonlinear Soil Modeling for Seismic NPP Applicationssokocalo.engr.ucdavis.edu/~jeremic/ · I Seismic response of Nuclear Power Plants I Soil modeling in particular I Linear elastic

Introduction Elastic-Plastic Models Summary

Summary

I Frictional and Viscous energy dissipation for granularmaterials

I Classical elastic-plastic models with addition of viscousdamping

I Vanishing elastic region elastic-plastic material model

I Important for professional practice since G/Gmax anddamping curves (all just in 1D !) is what is available, andthis model calibrates well, and is full 3D model.

Jeremic

Nonlinear Soil Modeling for Seismic NPP Applications