23
LRA DSP LRA DSP Estimation Nonlinear Estimation Linear & Polynomial Estimation Minimum Mean Square Error Estimation: Wiener Filtering Professor L R Arnaut © 1

Nonlinear Estimation Linear & Polynomial Estimation Wiener ... · DSP IIR Wiener Filter ⎟⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ = −∑ − +∞ = 2 0 ( )2 ( ) ( ) ( ) k E e n E d n h k x

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

  • LRA

    DSP

    LRA

    DSP Estimation

    Nonlinear Estimation

    Linear & Polynomial Estimation

    Minimum Mean Square Error Estimation:Wiener Filtering

    Professor L R Arnaut © 1

  • LRA

    DSP

    LRA

    DSP

    Given:

    Source generating nonobservable stochastic signals Xe.g., signal + noise, bits, characters, …

    Stochastic LTI channel (extendable to LTV)e.g., 1/f noise from resistor, ionospheric propagation, …

    Observable outputs of channel, Yconstitutes a new random variable, because stochastic channel

    Find:“best” estimate of X, based on Y

    Professor L R Arnaut © 2

    Estimation Problem

  • LRA

    DSP

    LRA

    DSP

    Assume:If we know the distribution of X, , then we do not know Y exactly, but we know its conditional distribution (=forward probability),

    NB: (=backward probability) is unknown!

    Then:We know the joint distribution of X and Y:

    Now: design optimal estimator for Xi.e., design system that out of all possible transfer functions g(.) it selects the one gopt(.) for which

    is “closest” to xProfessor L R Arnaut © 3

    Optimal Estimation

    ( )xXyf XY =||

    )()|(),( |, xfxXyfyxf XXYYX ⋅==

    )(xfX

    )|(| yYxf YX =

    )(ˆ ygx opt=

  • LRA

    DSP

    LRA

    DSP

    Criterion: minimise the mean squared deviation

    Since , we should minimise it:

    Thus,

    Professor L R Arnaut © 4

    Optimal MMSE Estimator

    [ ]

    ∫=∫ ∫ =−=

    ∫∫ −=−

    dyyKyf

    dxyYxfygxyfdy

    dydxyxfygxXX

    Y

    YXY

    YX

    )()(

    )|()]([)(

    ),()(])ˆ[(E

    |2

    ,22

    &

    0)( ≥yK

    )()|(E)(2)|(E

    )|()]([)(22

    |2

    ygyYXygyYX

    dxyYxfygxyK YX+=−==

    ∫ =−=

    ⇔ )|(E)( yYXyg ==yields best (MMSE) estimate

    0)( =dg

    ydK

  • LRA

    DSP

    LRA

    DSP

    Associated mean squared deviation (error) for this choice of g(.):

    Using Schwartz inequality ⇒Optimal estimator is in general nonlinear

    Professor L R Arnaut © 5

    Optimal MMSE Estimation Error

    ∫ =−= dyyfyYXEXE Y )()|()(222

    optε

    22opt0 Xσε ≤≤

  • LRA

    DSP

    LRA

    DSP Optimal MMSE Estimation Why MMSE?

    With this choice: estimation error is orthogonal to g(y)Proof: projection of MMSE error onto g(y):

    [ ]dydxyxfygyX

    dydxyxfygxdydxyxfygyXx

    YX

    YXYX

    ),()()|(E),()(),()()|(E

    ,

    ,,

    ∫∫−∫∫=∫∫ −

    dyyfygyXdydxyxfygx YYX ∫−∫∫= )()()|(E),()( ,dyyfygdxyxfxdydxyxfygx YYXYX ∫ ∫−∫∫= )()()|(),()( |,

    dydxyxfygxdydxyxfygx YXYX ∫∫−∫∫= ),()(),()( ,,0=

    Professor L R Arnaut © 6

  • LRA

    DSP

    LRA

    DSP Optimal Estimation Special cases:

    (i) X and Y are statistically independenti.e., observation of Y does not teach us anything about X:

    Corollary: if X andY are dependent, then optimal estimate of X after observation of Y yields MSE that is never larger than if we choose without observing Y

    (ii) Deterministic lossless channel:

    Professor L R Arnaut © 7

    )(),( 1 YXXY −== φφ

    ),(E)|(E)( XyYXyg === 22opt Xσε =

    )(Eˆ xx =

    0,)(ˆ 2opt1 === − εφ XYX

  • LRA

    DSP

    LRA

    DSP

    Optimal estimator often difficult to realiseSuboptimal: approximate by best linearestimator:

    Then: yields

    Using Schwartz inequality (do!) ⇒

    Professor L R Arnaut © 8

    Linear Estimator: Wiener Filter

    βα += yx̂

    ⎪⎩

    ⎪⎨⎧

    −=

    =

    )(E)(E

    ,

    YX

    rY

    X

    αβσσα

    ⎪⎪⎩

    ⎪⎪⎨

    =∂

    −−∂

    =∂

    −−∂

    0])[(E

    0])[(E

    2

    2

    ββα

    αβα

    YX

    YX

    )1( 222min rX −=σε

    22min

    2opt Xσεε ≤≤

    YX

    XYrσσ

    σ=

    )|(E yYX =

  • LRA

    DSP

    LRA

    DSP

    For Gaussian X and Y (do!):

    i.e., linear!

    Thus, linear estimate for Gaussian random variable is its optimal estimate

    Professor L R Arnaut © 9

    Optimal Linear Estimation

    [ ] )(E)(E)|(E XYyryYXY

    X +−==σσ

  • LRA

    DSP

    LRA

    DSP

    Extension of suboptimal linear estimator to quadratic:

    i.e., a linear problem of solving for α, β, γ

    Now, 3rd- and 4th-order moments are neededFor Gaussian X, Y: 3rd-order moments =0; 4th-order moments calculable from 2nd-order moments via Isserlis’s theorem

    Professor L R Arnaut © 10

    Polynomial Estimation

    γβα ++= yyx 2ˆ

    ⎪⎪⎩

    ⎪⎪⎨

    =++

    =++

    =++

    XYY

    YXYYY

    YXYYY

    γβα

    γβα

    γβα

    2

    33

    2234

  • LRA

    DSP

    LRA

    DSP Optimum LSE Filters

    Minimum Mean Square Error Estimation:IIR Wiener Filtering

    Professor L R Arnaut © 1

  • LRA

    DSP

    LRA

    DSP Optimum LSE Filters

    Innovations Process & Whitening Filter

    Professor L R Arnaut © 2

  • LRA

    DSP

    LRA

    DSP Innovations ProcessProblem statement:

    Find:(I) linear causal filter such that a given WSS random process x(t) as input yields a white noise output signal: whitening filter

    (II) (inverse problem) linear causal filter such that white noise input process produces a given WSS random process x(t) as its output (“correlator”)

    We shall show: transfer functions of both filters are each other’s inverse

    Practical significance: non-ideal WSS process (non-vanishing correlation) can be represented as a linearly filtered ideal (white) WSS process

    Professor L R Arnaut © 3

  • LRA

    DSP

    LRA

    DSP Innovations ProcessDefine:

    : wide-sense stationary (WSS) random process

    : autocorrelation sequence of : power spectrum of

    Assume is analytic (holomorph) in an annular region in the z-plane comprising the unit circle

    Professor L R Arnaut © 4

    )}({ nx

    )}({ mxxγ)( fxΓ )}({ nx

    )}({ nx

    )(ln zxΓ

    21 1 rr

  • LRA

    DSP

    LRA

    DSP Innovations ProcessParenthetically, Wiener-Khinchine theorem (for z-transforms):

    Expansion of in Laurent series w.r.t. z=0 (generalization of Taylor series in z-plane):

    Alternative interpretation of : the function is the z-transform of

    ∑=Γ∞+

    −∞=

    m

    mxxx zmz )()( γ

    )(ln zxΓ

    ∑=Γ∞+

    −∞=

    m

    mx zmvz )()(ln

    )}({ mv)(ln zxΓ∑=Γ∞+

    −∞=

    m

    mx zmvz )()(ln

    Professor L R Arnaut © 5

  • LRA

    DSP

    LRA

    DSP Innovations Process

    Professor L R Arnaut © 6

    For real & even: Fourier coefficients are even:

    Factorisation:

    Thus,

    where

    {v(m)} = cepstrum of {γxx(m)} and Γx(f )

    ∑=Γ∞+

    −∞=

    m

    mx zmvz )()(ln

    ( ) ∑+∑ −+= ∞+=

    −∞+

    =

    −−

    11'

    '1 )()'()0(m

    m

    m

    mzmvzmvv

    ( ) ∑+∑+= ∞+=

    −∞+

    =

    −−

    11'

    '12 )()'(lnm

    m

    m

    mw zmvzmvσ

    )( fxΓ

    ( )( ) ( ) )(2expln)( 5.0 5.0 mvdffmjfmv x −=∫ Γ= − π

    )()()(exp)( 12 zHzHzmvz wm

    mx

    −∞+

    −∞=

    − =⎟⎠⎞

    ⎜⎝⎛ ∑=Γ σ

    ⎟⎠⎞

    ⎜⎝⎛ ∑=

    ∞+

    =

    1)(exp)(

    m

    mzmvzH

  • LRA

    DSP

    LRA

    DSP Innovations ProcessInterpretation:

    for : causal response

    for : non-causal

    In , is analytic (no poles) with Laurent series reducing to a Taylor series:

    If is analytic in , then is analytic in

    ⎟⎠⎞

    ⎜⎝⎛ ∑=

    ∞+

    =

    1)(exp)(

    m

    mzmvzH 1||1

  • LRA

    DSP

    LRA

    DSP Innovations ProcessFurther interpretation:

    From , i.e., this represents a linear filter having input with power spectral density , output with power spectral density Since is causal, represents a linear filter with input and as output the innovation process : whitening filter

    Professor L R Arnaut © 8

    )(zH

    )()()( 12 −=Γ zHzHz wx σ22*2 )()()()( fHfHfHf wwx σσ ==Γ

    )}({ nw)}({ nx )( fxΓ

    2)( ww f σ=Γ

    H(z)w(n) x(n)

    )(zH

    )}({ nw

    )}({ nx

    22 )(/)( fHfxw Γ=σ

    )(/1 zH

    1/H(z) w(n)x(n))(/1 zH

  • LRA

    DSP

    LRA

    DSP Optimum LSE Filters

    IIR Wiener Filter

    Professor L R Arnaut © 9

  • LRA

    DSP

    LRA

    DSP IIR Wiener Filter

    ( ) ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛∑ −−=∞+

    =

    2

    0

    2 )()()()(k

    knxkhndEneE

    MMSE problem:

    Filter cffs. to be chosen as solutions of infinite linear system (Wiener-Hopf equation)

    Problem: system cannot be solved with z-transform for only (Wiener-Khinchine N/A)

    Solution: use auxiliary equivalent representation of input , which transforms it into sequence defined over to which z-transform can be applied: innovations representation

    ∑ ≥=−∞+

    =00),()()(

    kdxxx mmkmkh γγ

    )(kh

    )(nx

    0≥m

    +∞

  • LRA

    DSP

    LRA

    DSP IIR Wiener FilterInnovations representation of x(n):

    Idea: Cascading whitening filter 1/G(z) with second filter Q(z) such that cascade is optimum Wiener filter H(z) for x(n):

    (Wiener-Hopf)Since , filter cffs. are

    )()()( 12

    Professor L R Arnaut © 11

    −=Γ zGzGz wx σ1/G(z)x(n)

    w(n)Q(z)

    y(n)

    ∑ ≥=−∞+

    =00),()()(

    kdwww mmkmkq γγ

    H(z)

    ,)()()()()(00

    ∑ −=∑ −=∞+

    =

    ∞+

    = kkknxkhknwkqny )(/)()( zGzQzH =

    ( )kmkm www −=− δσγ 2)(

    0,)()( 2 ≥= mmmq

    w

    dw

    σγ

  • LRA

    DSP

    LRA

    DSP IIR Wiener FilterRepresentation of in terms of :

    hence

    Professor L R Arnaut © 12

    )(mdwγ (.)dxγ

    ∑ ==∞+

    =

    0 )(1)()(

    k

    k

    zGzkvzV,)()()(

    0∑ −=∞+

    =kknxkvnw

    V(z)=1/G(z) w(n)x(n)

    )()(

    )]()([)(

    )]()([)(

    0

    *

    0

    *

    mkmv

    mknxndEmv

    knwndEk

    dxm

    m

    dw

    +∑=

    −−∑=

    −=

    ∞+

    =

    ∞+

    =

    γ

    γ

  • LRA

    DSP

    LRA

    DSP IIR Wiener Filterz-transformation:

    Extracting causal part:

    ⇒ Optimum IIR Wiener filter:(causal)

    Professor L R Arnaut © 13

    )(

    10

    )(

    )()()()(

    +

    ∞+

    =

    −+⎥⎦

    ⎤⎢⎣

    ⎡ Γ≡∑=Γ

    zGzzkz dx

    k

    kdwdw γ

    )(

    12 )()(

    )(1)(

    +

    − ⎥⎦

    ⎤⎢⎣

    ⎡ Γ=

    zGz

    zGzH dx

    ( ))()()(

    )()(

    )()(

    )()()()(

    11

    0

    )(

    0

    0

    −−

    ∞+

    =

    ∞+

    −∞=+

    +−+

    ∞+

    =

    ∞+

    −∞=

    ∞+

    −∞=

    −∞+

    =

    ∞+

    −∞=

    Γ≡Γ=

    ∑ ∑ +=

    ∑ ∑ +=

    ∑ ⎥⎦⎤

    ⎢⎣⎡ ∑ +=∑=Γ

    zGzzzV

    zmkzmv

    zmkmv

    zmkmvzkz

    dxdx

    m mk

    mkdx

    m

    m k

    kdx

    k

    k

    mdx

    k

    kdwdw

    γ

    γ

    γγ

    Wiener_v2.pdfIIRWiener_v2