9
1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Lec 32: Deceember 2, 2020 Transmission Line Penn ESE 370 Fall 2020 – Khanna 1 Next few Lectures ! Saw in action in lab ! Where transmission lines arise? ! General wire formulation ! Lossless Transmission Line ! End of Transmission Line? ! Termination ! Discuss Lossy ! Implications 2 Penn ESE 370 Fall 2020 – Khanna 2 Where Transmission Lines Arise 3 Penn ESE 370 Fall 2020 – Khanna 3 Transmission Lines ! Cable: coaxial ! PCB " Strip line " Microstrip line ! Twisted Pair (Cat5) 4 Penn ESE 370 Fall 2020 – Khanna 4 Transmission Lines ! How did the traces behave in lab? ! How does this differ from " Ideal equipotential? " RC-wire on chip? 5 Penn ESE 370 Fall 2020 – Khanna 5 Transmission Lines ! This is what long wires/cables look like " Aren’t an ideal equipotential " Signals take time to propagate " Maintain shape of input signal " Within limits " Shape and topology of wiring effects how signals propagate 6 Penn ESE 370 Fall 2020 – Khanna 6

Next few Lectures ESE370: Circuit-Level Modeling, Design, and …ese370/fall2020/handouts/lec... · 2020. 12. 2. · 2 Transmission Lines!Need theory/model to support design " Reason

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • 1

    ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems

    Lec 32: Deceember 2, 2020Transmission Line

    Penn ESE 370 Fall 2020 – Khanna

    1

    Next few Lectures

    ! Saw in action in lab ! Where transmission lines arise?! General wire formulation! Lossless Transmission Line! End of Transmission Line?! Termination! Discuss Lossy! Implications

    2Penn ESE 370 Fall 2020 – Khanna

    2

    Where Transmission Lines Arise

    3Penn ESE 370 Fall 2020 – Khanna

    3

    Transmission Lines

    ! Cable: coaxial! PCB

    " Strip line" Microstrip line

    ! Twisted Pair (Cat5)

    4Penn ESE 370 Fall 2020 – Khanna

    4

    Transmission Lines

    ! How did the traces behave in lab?! How does this differ from

    " Ideal equipotential?" RC-wire on chip?

    5Penn ESE 370 Fall 2020 – Khanna

    5

    Transmission Lines

    ! This is what long wires/cables look like" Aren’t an ideal equipotential" Signals take time to propagate" Maintain shape of input signal

    " Within limits

    " Shape and topology of wiring effects how signals propagate

    6Penn ESE 370 Fall 2020 – Khanna

    6

  • 2

    Transmission Lines

    ! Need theory/model to support design" Reason about behavior" Understand what can cause noise" Engineer high performance/speed communication

    7Penn ESE 370 Fall 2020 – Khanna

    7

    Wire Formulation

    8Penn ESE 370 Fall 2020 – Khanna

    8

    From the Way Way Back

    ! Problem: A long cable – the trans-atlantic telephone cable –is laid out connecting NY to London. We would like analyze the electrical properties of this cable.

    ! For simplicity, assume the cable has a uniform cross-sectional configuration (shown as two wires here)

    Penn ESE 370 Fall 2020 - Khanna 9

    9

    Trans-Atlantic Cable

    ! Can we do it with circuit theory? ! Fundamental problem with circuit theory is that it

    assumes that the speed of light is infinite. So all signals are in phase: V(z) = V(z + ℓ)

    ! Consequently, all variations in space are ignored: ∂/∂z → 0

    ! This allows the lumped circuit approximation

    Penn ESE 370 Fall 2020 - Khanna 10

    10

    Lumped Circuit Properties of Cable

    ! Shorted Line: The long loop has inductance since the magnetic flux ψ is not negligible (long cable) (ψ = LI)

    ! Open Line: The cable also has substantial capacitance (Q = CV)

    Penn ESE 370 Fall 2020 - Khanna 11

    11

    Wires

    ! In general, our “wires” have distributed R, L, C components

    12Penn ESE 370 Fall 2020 – Khanna

    12

  • 3

    RC Wire (Preclass 1)

    ! When R dominates L" We have the distributed RC Wires " Typical of on-chip wires in ICs" What is RC response to step?

    13Penn ESE 370 Fall 2020 – Khanna

    13

    Transmission Line

    ! When resistance is negligible " Have LC wire = Lossless Transmission Line

    " No energy dissipation (loss) through R’s

    " More typical of printed circuit board (PCB) wires and bond wires

    14Penn ESE 370 Fall 2020 – Khanna

    14

    Build Intuition from LC (Preclass 2)

    ! What did one LC do?! What will chain do?

    15Penn ESE 370 Fall 2020 – Khanna

    15

    Build Intuition from LC (Preclass 2)

    ! What did one LC do?! What will chain do?

    16Penn ESE 370 Fall 2020 – Khanna

    16

    Intuitive: Lossless

    ! Pulses travel as waves without distortion" (up to a characteristic frequency)

    17Penn ESE 370 Fall 2020 – Khanna

    17

    SPICE Simulation

    18Penn ESE 370 Fall 2020 – Khanna

    18

  • 4

    Step Response SPICE

    19Penn ESE 370 Fall 2020 – Khanna

    19

    Pulse Response SPICE

    20Penn ESE 370 Fall 2020 – Khanna

    20

    Contrast RC Wire

    21Penn ESE 370 Fall 2020 – Khanna

    21

    Contrast

    22Penn ESE 370 Fall 2020 – Khanna

    22

    Model

    ! Now voltage is a function of time and position" Position along wire – distance from source

    ! Want to get V(x,t)" And I(x,t)

    23Penn ESE 370 Fall 2020 – Khanna

    23

    Setup Relations (Preclass 4)

    ! i is a node, x is the distance from source, Δx is distance between nodes

    ! Position along wire: x=i×Δx! So Vi(t) = V(x=iΔx, t)

    24

    Vi Vi+1Vi-1Ii Ii+1

    Ici

    Penn ESE 370 Fall 2020 – Khanna

    24

  • 5

    Setup Relations

    ! KCL @ Vi: Ii-Ii+1=! Ici=! Vi-Vi-1 =

    25

    Vi Vi+1Vi-1Ii Ii+1

    Ici

    Penn ESE 370 Fall 2020 – Khanna

    25

    Setup Relations

    ! KCL @ Vi: Ii-Ii+1=! Ici=! Vi-Vi-1 =

    26

    Vi Vi+1Vi-1Ii Ii+1

    Ici

    Ii − Ii+1 =CdVidt

    Vi −Vi−1 = −LdIidt

    Penn ESE 370 Fall 2020 – Khanna

    26

    Setup Relations

    ! KCL @ Vi: Ii-Ii+1=! Ici=! Vi-Vi-1 =

    ! i is a node, but has spatial dimension along the Tline" No longer agnostic of wire length

    ! Vi changes at different positions

    27

    Vi Vi+1Vi-1Ii Ii+1

    Ici

    Ii − Ii+1 =CdVidt

    Vi −Vi−1 = −LdIidt

    Penn ESE 370 Fall 2020 – Khanna

    27

    Setup Relations

    28

    Vi Vi+1Vi-1Ii Ii+1

    Ici

    Ii − Ii+1 =CdVidt

    ⇒−dIidx

    =CdVidt

    Vi −Vi−1 = −LdIidt

    ⇒dVidx

    = −LdIidt

    Penn ESE 370 Fall 2020 – Khanna

    ! KCL @ Vi: Ii-Ii+1=! Ici=! Vi-Vi-1 =

    ! i is a node, but has spatial dimension along the Tline" No longer agnostic of wire length

    ! Vi changes at different positions

    28

    Reduce to Single Equation

    ! Eliminate I? Differential equation in voltage only.

    ! Take derivative with respect to time

    29

    dIidt−dIi+1dt

    =C d2Vidt2

    Ii − Ii+1 =CdVidt

    Penn ESE 370 Fall 2020 – Khanna

    29

    Reduce to Single Equation

    ! Eliminate Is ?

    30

    dIidt−dIi+1dt

    =C d2Vidt2

    dVidx

    = −LdIidt

    dVi+1dx

    = −LdIi+1dt

    Penn ESE 370 Fall 2020 – Khanna

    30

  • 6

    Reduce to Single Equation

    ! Eliminate Is ?

    31

    dIidt−dIi+1dt

    =C d2Vidt2

    dVidx

    = −LdIidt

    dVi+1dx

    = −LdIi+1dt

    dIidt

    −dIi+1dt

    =Cd 2Vidt2

    −1LdVidx

    − −1LdVi+1dx

    ⎝⎜

    ⎠⎟=C

    d 2Vidt2

    dVi+1dx

    −dVidx

    = LCd 2Vidt2

    d 2Vidx2

    = LCd 2Vidt2

    Penn ESE 370 Fall 2020 – Khanna

    31

    Implication

    " Wave equation:

    " Solution:

    " What is w?

    32

    ∂ 2V∂x2

    = LC ∂2V∂t 2

    V (x, t) = A+Bex−wt

    Penn ESE 370 Fall 2020 – Khanna

    32

    Implication

    " Wave equation:

    " Solution:

    " What is w?

    33

    V (x, t) = A+Bex−wt

    Bex−wt = LCw2Bex−wt

    w = 1LC

    w is the rate of propagation

    Penn ESE 370 Fall 2020 – Khanna

    ∂ 2V∂x2

    = LC ∂2V∂t 2

    33

    Propagation Rate in Example

    ! L=1uH! C=1pF! What is w?

    34

    w = 1LC

    Penn ESE 370 Fall 2020 – Khanna

    34

    Signal Propagation

    35Penn ESE 370 Fall 2020 – Khanna

    35

    Signal Propagation

    36

    Delay linear in length

    Penn ESE 370 Fall 2020 – Khanna

    36

  • 7

    Contrast RC Wire

    37

    RC wire delay quadratic in length

    Penn ESE 370 Fall 2020 – Khanna

    37

    Propagation

    " Solution:

    " Rate of propagation, w:

    " Previously:

    38

    V (x, t) = A+Bex−wt

    w = 1LC

    CL = εµ

    Penn ESE 370 Fall 2020 – Khanna

    38

    Propagation

    " Solution:

    " Rate of propagation, w:

    " Previously:

    39

    V (x, t) = A+Bex−wt

    w = 1LC

    CL = εµ

    w = 1εµ

    =1

    ε0εrµ0µr

    c2 = 1ε0µ0

    w = cεrµr

    Penn ESE 370 Fall 2020 – Khanna

    39

    Longer LC (open)

    ! 40 Stages! L=100nH! C=1pF

    40

    w = 1LC

    =c0εrµr

    Penn ESE 370 Fall 2020 – Khanna

    Stage delay? How long to propagate?

    40

    Reflection Teaser: Pulse Travel RC

    ! V1,V3,V4,V5,V6 about 10 stages apart

    41Penn ESE 370 Fall 2020 – Khanna

    41

    Wire “Resistance”

    • What is the resistance at Vi ?" Q needed to charge C to Vi?" Ii given velocity w? " R = Vi/Ii?

    Vi Vi+1Vi-1Ii Ii+1

    Ici

    Penn ESE 370 Fall 2020 – Khanna 42

    42

  • 8

    Wire “Resistance”

    • Q=CVi• Ii = dQ/dt• Moving at rate w• Ii=wCVi• R=Vi/Ii=1/(wC)

    43

    w = 1LC

    R = LCC

    Vi Vi+1Vi-1Ii Ii+1

    Ici

    Penn ESE 370 Fall 2020 – Khanna

    43

    Characteristic Impedance

    ! Z0 = R

    44

    R = LCC

    =LC= Z0

    Vi Vi+1Vi-1Ii Ii+1

    Ici

    Penn ESE 370 Fall 2020 – Khanna

    44

    Impedance

    ! Assuming infinitely long wire, how does the impedance look at Vi, Vi+1, Vi+2 ?

    45

    Vi Vi+1Vi-1Ii Ii+1

    Ici

    Penn ESE 370 Fall 2020 – Khanna

    45

    Impedance

    ! Assuming infinitely long wire, how does the impedance look at Vi, Vi+1, Vi+2 ?

    46

    Z0 =LC

    Vi Vi+1Vi-1Ii Ii+1

    Ici

    Penn ESE 370 Fall 2020 – Khanna

    46

    Impedance

    ! Transmission lines have a characteristic impedance

    47€

    Z0 =LC

    Penn ESE 370 Fall 2020 – Khanna

    47

    Infinite Lossless Transmission Line

    ! Transmission line looks likeresistive load

    ! Input waveform travels down line at velocity" Without distortion

    48

    Z0

    Z0 =LC

    w = 1LC

    Penn ESE 370 Fall 2020 – Khanna

    48

  • 9

    Idea

    ! Signal propagates as wave down transmission line" Delay linear in wire length, if resistance negligible " Rate of propagation" Characteristic impedance

    49

    w = 1LC

    =cεrµr

    Penn ESE 370 Fall 2020 – Khanna

    Z0 =LC

    49

    Admin

    ! Project 2 due Friday 12/4! HW 7 out on Friday

    " Due 12/10

    50Penn ESE 370 Fall 2020 – Khanna

    50