8
1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Lec 8: September 18, 2015 MOS Transistor Operating Regions Part 2 1 Penn ESE370 Fall2015 – Khanna Today ! Operating Regions (continued) " Resistive " Saturation " Velocity Saturation " Subthreshold ! Drain Induced Barrier Lowering " V th 2 Penn ESE370 Fall2015 – Khanna Last Time… 3 Penn ESE370 Fall2015 – Khanna Channel Evolution - Increasing Vgs 4 Penn ESE370 Fall2015 – Khanna Threshold ! Voltage where strong inversion occurs # threshold voltage " V th ~= 2ϕ F " Engineer by controlling doping (N A ) φ F = φ T ln N A n i # $ % & ' ( 5 Penn ESE370 Fall2015 – Khanna Linear Region ! V GS >V th and V DS small I DS = μ n C OX W L ( ) V GS V th ( ) V DS V DS 2 2 " # $ % & ' C OX = ε OX t OX 6 Penn ESE370 Fall2015 – Khanna

Today Modeling, Design, and Optimizationese370/fall2015/handouts/lec...1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Lec 8: September 18, 2015 MOS

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

1

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems

Lec 8: September 18, 2015 MOS Transistor Operating Regions

Part 2

1 Penn ESE370 Fall2015 – Khanna

Today

!  Operating Regions (continued) "  Resistive "  Saturation "  Velocity Saturation "  Subthreshold

!  Drain Induced Barrier Lowering "  Vth

2 Penn ESE370 Fall2015 – Khanna

Last Time…

3 Penn ESE370 Fall2015 – Khanna

Channel Evolution - Increasing Vgs

4 Penn ESE370 Fall2015 – Khanna

Threshold

!  Voltage where strong inversion occurs # threshold voltage "  Vth ~= 2ϕF

"  Engineer by controlling doping (NA)

φF = φT lnNA

ni

#

$ %

&

' (

5 Penn ESE370 Fall2015 – Khanna

Linear Region

!  VGS>Vth and VDS small

IDS = µnCOXWL( ) VGS −Vth( )VDS −

VDS2

2"

#$

%

&'

COX =εOXtOX

6 Penn ESE370 Fall2015 – Khanna

2

!  What does voltage along the channel look like?

Voltage along Channel

x=0 x=L

x V(x)

Vs

Vd

7 Penn ESE370 Fall2015 – Khanna

V (x) =VS +VD −VSL

x

VG −V (x) =VG −VS +VD −VSL

x

Channel Field

!  When voltage gap VG-Vx drops below Vth, drops out of inversion "  What if VDS > VGS – Vth #VDS – VGS > Vth?

"  Upper limit on current, channel is “pinched off”

8 Penn ESE370 Fall2015 – Khanna

VG −V (x) =VG −VS +VD −VSL

x =VT

x = VG −VS −VTVD −VS

L = VGS −VTVDS

L

VDS >VGS −VT ⇒ x < L

Saturation

!  In saturation, VDS-effective=Vx= VGS-VT

!  Becomes:

IDS = µnCOXWL

"

# $

%

& ' VGS −VT( )VDS −

VDS2

2)

* +

,

- .

IDS = µnCOXWL

"

# $

%

& ' VGS −VT( )2 −

VGS −VT( )2

2

)

* + +

,

- . .

9 Penn ESE370 Fall2015 – Khanna

IDS =µnCOX

2WL

"

# $

%

& ' VGS −VT( )2[ ]

MOSFET – IV Characteristics

VDS

IDSVGS -Vth

VDS ≥VGS -VTH

VDS <VGS -VTH

10 Penn ESE370 Fall2015 – Khanna

New Stuff

11 Penn ESE370 Fall2015 – Khanna

Preclass 1

!  What is electrical field in channel?

!  Velocity:

!  Electron mobility: !  What is electron velocity?

Leff = 25nm,VDS =1V

Field = VDSLeff

v = F ⋅µn

µn = 500cm 2 / (V ⋅ s)

12 Penn ESE370 Fall2015 – Khanna

3

Moving Charge

!  I increases linearly in V

!  What’s I? "  ΔQ/Δt "  Speed at which charge

moves

!  Velocity increases linearly in V

!  What’s a moving electron?

Field = VDSLeff,v = µn ⋅F

v = µ ⋅VDSLeff

=µn

Leff

"

#$$

%

&''VDS

I = 1R!

"#

$

%&V

13 Penn ESE370 Fall2015 – Khanna

Short Channel

!  Model assumes carrier velocity increases with field "  Increases with voltage

!  Are there limits to how fast things (including electrons) can move?

14 Penn ESE370 Fall2015 – Khanna

Short Channel

!  Model assumes carrier velocity increases with field "  Increases with voltage

!  There is a limit to how fast carriers can move "  Limited by scattering effects

"  ~ 105m/s

!  How does this relate to preclass 1b calculated velocity?

!  Encounter velocity saturation when channel short "  Modern processes, L is short enough to reach this region

of operation

15 Penn ESE370 Fall2015 – Khanna

Velocity Saturation

!  At what voltage do we hit the speed limit? (preclass 1d) "  Vdsat = voltage at which velocity (current) saturates

16 Penn ESE370 Fall2015 – Khanna

Velocity Saturation

!  Once velocity saturates:

IDS = µnCOXWL

!

"#

$

%& VGS −Vth( )VDS −

VDS2

2(

)*

+

,-

VDS =VDSAT ⇒ IDS = µnVDSATL

!

"#

$

%&COXW VGS −Vth( )−VDSAT

2(

)*+

,-

VDSAT ≈LvSATµn

⇒ IDS ≈ vsatCOXW VGS −Vth( )−VDSAT2

(

)*+

,-

17 Penn ESE370 Fall2015 – Khanna

Velocity Saturation

!  Long Channel !  Short Channel

18 Penn ESE370 Fall2015 – Khanna

4

Velocity Saturation

19 Penn ESE 370 Fall 2015 - Khanna

Velocity Saturation

!  Once velocity saturates we can still increase current with parallelism "  Effectively make a wider device

20 Penn ESE370 Fall2015 – Khanna

Subthreshold

21 Penn ESE370 Fall2015 – Khanna

Below Threshold

!  Transition from insulating to conducting is non-linear, but not abrupt

!  Current does flow "  But exponentially dependent on VGS

22 Penn ESE370 Fall2015 – Khanna

Subthreshold

If VGS <Vth,

IDS = ISWL

!

"#

$

%&e

VGS−VthnkT /q

!

"#

$

%&

1− e−VDSkT /q!

"#

$

%&!

"

##

$

%

&&

1+λVDS( )

23 Penn ESE370 Fall2015 – Khanna

!  Current is from the parasitic NPN BJT transistor when gate is unbiased and there is no conducting channel

Subthreshold

!  W/L dependence follow from resistor behavior (parallel, series) "  Not shown explicitly in text

!  λ is a channel-length modulation parameter "  Defined empirically

IDS = ISWL

!

"#

$

%&e

VGS−VthnkT /q

!

"#

$

%&

1− e−VDSkT /q!

"#

$

%&!

"

##

$

%

&&1+λVDS( )

24 Penn ESE370 Fall2015 – Khanna

5

Steady State

!  What current flows in steady state? !  What causes (and determines)

the magnitude of current flow? !  Which device?

25 Penn ESE370 Fall2015 – Khanna

Leakage

!  Call this steady-state current flow leakage !  Idsleak

26 Penn ESE370 Fall2015 – Khanna

Subthreshold Slope

!  Exponent in VGS determines how steep the turnon is

"  Units: V/dec "  Every S Volts, IDS is scaled by factor of 10

IDS = ISWL

!

"#

$

%&e

VGS−VthnkT /q

!

"#

$

%&

1− e−VDSkT /q!

"#

$

%&!

"

##

$

%

&&1+λVDS( )

S = n kTq

"

# $

%

& ' ln 10( )

27 Penn ESE370 Fall2015 – Khanna

Subthreshold Slope

!  Exponent in VGS determines how steep the turnon is

"  Units: V/dec "  Every S Volts, IDS is scaled by factor of 10

!  n – depends on electrostatics "  n=1 # S=60mV at Room Temp. (ideal) "  n=1.5 # S=90mV "  Single gate structure showing S=90-110mV

S = n kTq

"

# $

%

& ' ln 10( )

28 Penn ESE370 Fall2015 – Khanna

IDS vs. VGS

(Logscale)

29 Penn ESE370 Fall2015 – Khanna

IDS vs. VGS

(Logscale) S

30 Penn ESE370 Fall2015 – Khanna

6

Subthreshold Slope

!  If S=100mV and Vth=300mV, what is Ids(Vgs=300mV)/Ids(Vgs=0V) ?

!  What if S=60mV?

IDS = ISWL

!

"#

$

%&e

VGS−VthnkT /q

!

"#

$

%&

1− e−VDSkT /q!

"#

$

%&!

"

##

$

%

&&1+λVDS( )

S = n kTq

"

# $

%

& ' ln 10( )

31 Penn ESE370 Fall2015 – Khanna

Threshold

32 Penn ESE370 Fall2015 – Khanna

Threshold

!  Describe VT as a constant !  Induce enough electron collection to invert channel

33 Penn ESE370 Fall2015 – Khanna

VDS impact

!  In practice, VDS impacts state of channel

34 Penn ESE370 Fall2015 – Khanna

VDS impact

!  Increasing VDS, already depletes portions of channel

35 Penn ESE370 Fall2015 – Khanna

VDS impact

!  Increasing VDS, already depletes portions of channel !  Need less charge, less voltage to create inversion

layer

36 Penn ESE370 Fall2015 – Khanna

7

Drain-Induced Barrier Lowering (DIBL)

VT

VDS

37 Penn ESE370 Fall2015 – Khanna

DIBL Impact

38 Penn ESE370 Fall2015 – Khanna

In a Gate?

!  What does it impact most? "  Which device, has large Vds?

"  Vin=Vdd ? "  Vin=Gnd ?

"  How effect operation?

"  Speed of switching? "  Leakage?

39 Penn ESE370 Fall2015 – Khanna

In a Gate

!  VDS largest for output charging/discharging device "  Easier to turn on

IDS ≈ ν satCOXW VGS −Vth −VDSAT2

#

$%

&

'(

40 Penn ESE370 Fall2015 – Khanna

In a Gate

!  VDS largest for off device "  Easier to turn on "  Leak more

IDS = ISWL

!

"#

$

%&e

VGS−VthnkT /q

!

"#

$

%&

1− e−VDSkT /q!

"#

$

%&!

"

##

$

%

&&1+λVDS( )

41 Penn ESE370 Fall2015 – Khanna

PMOS

!  Analagous phenomena to NMOS !  Signs different

"  Negative Vth

!  Reason based on oppositely charged carriers

42 Penn ESE370 Fall2015 – Khanna

8

Big Idea

!  3 Regions of operation for MOSFET "  Subthreshold "  Linear "  Saturation

"  Pinch Off "  Velocity Saturation, DIBL

"  Short channel

43 Penn ESE370 Fall2015 – Khanna

Admin

!  Text 3.3.2 – highly recommend read !  Office Hours: M (Khanna), T (Giesen) !  HW4 due Wednesday

"  If you haven’t looked at it yet, you’re behind!

!  Midterm 1 Review session on Thursday "  5pm? 6pm? 7pm?

!  Midterm 1 Monday 9/28 "  No Lecture "  Midterms from 2010, 2011, 2012, 2013, 2014

"  All online with and without answers "  Suggest start without answers

44 Penn ESE370 Fall2015 – Khanna