45
NSERC STRATEGIC NETWORK ON INNOVATIVE WOOD PRODUCTS AND BUILDING SYSTEMS NEWBuildS WORKSHOP 2014 May 7 & 8, 2014 Vancouver, BC Page 1

NEWBuildS WORKSHOP 2014 - newbuildscanada.canewbuildscanada.ca/.../01/NEWBuildS-Workshop-2014... · 5 Alex Cheng University of British Columbia 50 Hans-Erik Blomgren Arup, USA

Embed Size (px)

Citation preview

Page 1: NEWBuildS WORKSHOP 2014 - newbuildscanada.canewbuildscanada.ca/.../01/NEWBuildS-Workshop-2014... · 5 Alex Cheng University of British Columbia 50 Hans-Erik Blomgren Arup, USA

 

 

 

 

 

 

 

NSERCSTRATEGICNETWORKONINNOVATIVEWOODPRODUCTSANDBUILDINGSYSTEMS

NEWBuildSWORKSHOP2014

May7&8,2014

Vancouver,BC 

 

Page 1

Page 2: NEWBuildS WORKSHOP 2014 - newbuildscanada.canewbuildscanada.ca/.../01/NEWBuildS-Workshop-2014... · 5 Alex Cheng University of British Columbia 50 Hans-Erik Blomgren Arup, USA

NSERC Strategic Network on Innovative Wood Products and Building Systems (NEWBuildS)

Wood Science and Technology Centre University of New Brunswick 1350 Regent Street Fredericton, New Brunswick CANADA E3B 6C2 Tel: (506) 453-4507 Fax: (506) 453-3574

8

www.NEWBuildSCanada.ca 

May 7th, 2014 

Foreword: 

Welcome to NEWBuildS Workshop 2014! 

On behalf of NEWBuildS, we would like to thank you for taking the time and interest 

in attending the Tall Wood Building Design Project Workshop (May 7th morning) and 

the 4th NEWBuildS Annual Workshop (May 7th afternoon and May 8).  

This document  contains  abstracts  for  the presentations  at  these  two events. These 

presentations cover the analysis and design of a 20‐storey wood‐hybrid building and 

the research work of over 30 graduate students and Post‐doctoral fellows, addressing 

a  broad  range  of  topics  related  to  performance  of  wood  building  products  and 

systems.  

We hope at the end of  the Workshop you will  feel that your time  is well spent. We 

would  encourage  you  to  visit  our web  site www.NEWBuildSCanada.ca  to  get more 

details  on  the  operations,  events,  research  program  and  research  output  of 

NEWBuildS. 

Thank you. 

 Dr. Y. H. Chui          Kenneth Koo, P.Eng, P.E.  Scientific Director        Network Liaison Manager NEWBuildS / UNB        NEWBuildS / FPInnovations 

Page 2

Page 3: NEWBuildS WORKSHOP 2014 - newbuildscanada.canewbuildscanada.ca/.../01/NEWBuildS-Workshop-2014... · 5 Alex Cheng University of British Columbia 50 Hans-Erik Blomgren Arup, USA

 

  

Table of Contents                  Page # 

Foreword                      2 

Table of Contents                    3 

Partner University, Network Partners & Funders           5 

Attendee List                    6 

Exit Survey                     8 

TALL WOOD BUILDING DESIGN PROJECT PRESENTATION (May 7 morning)        9 

1. The use of wood as a main building element in tall buildings          10 

2. Building Envelope for a Tall Wood Building              11 

3. Lateral load resisting system for the tall wood building          12 

4. Gravity load resisting system for the tall wood building          13 

5. Fire risk comparison of the demonstration building with a comparable non‐combustible    building                       14 

6. Fire Resistance of Structural Elements and Fire Safety During Construction      15 

NEWBUILDS WORKSHOP 2014  (May 7 afternoon)            16 

Session 1:   Structural  Str 1:   Stability of CLT Wall Panels Subjected to In‐plane Gravity Loading      18 

Str 2:  Force Transfer Around Openings in Walls Subjected to In‐plane Loading    19 

Str 3:  Innovative Post‐tensioned CLT Walls             20 

Str 4:   Nonlinear Dynamic Analyses of FFTT Timber‐steel‐hybrid system      22 

Str 5a:   Practical Height Limits for Tall Timber Buildings          23 

Str 5b.  Capacity surface of hybrid timber buildings under uni‐ and         bi‐directional seismic excitations              25 

Session 2:   Connection Behaviour CB 1:   Localized Rolling Shear Reinforcement of CLT Systems        27 

CB 2:  Continuity Connections for CLT Plates in Hybrid Superstructures      28 

CB 3:  Connections in CLT Building Systems             29 

CB 4:   Development of an Innovative Hybrid Timber‐Steel Moment‐Resisting Frame 

  for Seismic‐Resistant Heavy Timber Structures          30 

CB 5:  Development of Novel Connection Systems for CLT Infilled Steel Moment     

  Resisting Frames                  31 

   

Page 4: NEWBuildS WORKSHOP 2014 - newbuildscanada.canewbuildscanada.ca/.../01/NEWBuildS-Workshop-2014... · 5 Alex Cheng University of British Columbia 50 Hans-Erik Blomgren Arup, USA

 

  

      Page #   

NEWBUILDS WORKSHOP 2014   (May 8)  

1st International Keynote Speaker:         HIGH‐RISE TIMBER BUILDINGS IN EUROPE – PROJECTS, CHALLENGES, SOLUTIONS  AND FUTURE DEVELOPMENT Dr. Dr. Stefan Winter, Technical University of Munich          32 

Session 3:   Fire Performance  FP 1:   Fire Risk Analysis                  34 

FP 2:  Rationalization of Life Safety ‐ Code Requirements for Mid‐rise Buildings    ‐‐‐   

FP 3:  Fire Behaviour of Cross Laminated Timber Panels          35 

FP 4:   Fire Performance of Timber Connections            36 

 

Session 4:   Acoustics & Vibration A & V 1:   Innovative Ways to Make CLT Panels Sound Absorptive        37 

A & V 2:   Technique for Simultaneous Measurement of Elastic Constants of           CLT Panel                    38 

A & V 3:   Vibrational Performance of CLT Floor            39 

 

2nd International Keynote Speaker:   BUILDING ENVELOPE PERFORMANCE OF WOOD‐BASED BUILDING SYSTEMS:  RESEARCH PERSPECTIVE FROM THE US Dr. Sam Glass, U.S. Forest Products Laboratory            40 

Session 5: Durability & Energy D & E 1:   Characterizing Wind‐driven Rain Load on Mid‐rise Buildings      42 

D & E 2:   Developing Durable Building Envelope Assemblies for CLT Construction    43 

D & E 3:   Developing Durable Wood‐frame Building Envelope Systems for Net‐zero       Energy Ready Buildings                44 

D & E 4:   Energy Efficiency of Mid‐rise Building            45 

 

 

 

 

 

  

Page 5: NEWBuildS WORKSHOP 2014 - newbuildscanada.canewbuildscanada.ca/.../01/NEWBuildS-Workshop-2014... · 5 Alex Cheng University of British Columbia 50 Hans-Erik Blomgren Arup, USA

 

  

Partner Universities  

 Carleton University 

  Concordia University    

  McGill University 

 Ryerson University 

 Université du Québec en Abitibi‐Témiscamingue 

 Université Laval 

  University of Alberta 

 University of British Columbia 

 University of New Brunswick 

 uOttawa 

  University of Toronto 

  University of Waterloo 

  Western University 

Network Partners & Funders 

 Alberta Innovates BioSolutions 

  CMHC ‐ Canada Mortgage and Housing Corporation 

  CWC ‐ Canadian Wood Council 

 BC FII ‐ Forestry Innovation Investment  

  NRC ‐ National Research Council  

Workshop Sponsor 

 Structurlam Products LP 

 

Page 5

Page 6: NEWBuildS WORKSHOP 2014 - newbuildscanada.canewbuildscanada.ca/.../01/NEWBuildS-Workshop-2014... · 5 Alex Cheng University of British Columbia 50 Hans-Erik Blomgren Arup, USA

NEWBuildS Workshop 2014

Name: Affiliation Name: Affiliation

1 Aaron Akotuah Ohene Carleton University / NEWBuildS 46 Graham Savage New Brunswick Department of Economic Development2 Adam Gerber University of British Columbia 47 Guido Wimmers Passive House3 Afrin Hossain UBC Faculty of Forestry 48 Haitao Yu Landmark Group of Builders4 Alejandro Medina Hevia Carleton University / NEWBuildS 49 Hanping Hong Western University / NEWBuildS5 Alex Cheng University of British Columbia 50 Hans-Erik Blomgren Arup, USA6 Alpin Kahveci Carleton University / NEWBuildS 51 Helen Griffin Canadian Wood Council7 Andrew Harmsworth GHL Consultants 52 Henrico Rollke Still Creek Engineering Ltd.8 Andrew Wong Thomas Leung Structural Engineering Inc 53 Hua Ge Concordia University / NEWBuildS9 Angelique Pilon University of British Columbia 54 Hyung-Suk Lim University of British Columbia

10 Angelo Croce Component Consultant 55 Iain MacDonald University of British Columbia 11 Arash Azadeh BC Housing 56 Ian de la Roche DELAROCHE Consultancy 12 Banda Logawa University of British Columbia / NEWBuildS 57 Ian Hartley University of North British Columbia / NEWBuildS13 Ben Curry Halsall Associates 58 Ivan Dionne Halsall Associates14 Bert Ponce Louisiana Pacific Corporation 59 J Daniel Dolan Washington State University15 Betty Chan Public Works and Government Services Canada 60 James V Zidek University of British Columbia 16 Bill Downing Structurlam Products Ltd 61 Jasmine B. Wang Canadian Wood Council17 Bob Brown Wood WORKS! BC 62 Jeffrey Erochko Carleton University / NEWBuildS18 Bob Knudson FPInnovations 63 Jianhui Zhou University of New Brunswick / NEWBuildS19 Brad Wang FPInnovations 64 Jianzhong Gu Thompson Rivers University20 Brian Maver WHM Structural Engineers 65 Jieying Wang FPInnovations21 Bruno Di Lenardo NRC Construction - CCMC 66 Joe Chen Timber Products Inspection, Inc.22 Caleb Goertz University of British Columbia / NEWBuildS 67 Johannes Schneider University of British Columbia / NEWBuildS23 Cameron McCartney National Research Council Canada 68 Jones, Robert Natural Resource Canada24 Carla Dickof Fast + Epp 69 Joseph Su National Research Council Canada 25 Cecilia Cheung Pioneer Engineering Consultants Ltd. 70 Julie Frappier Nordic EWP26 Chelsea Olson Halsall Associates 71 Justin Seguin Brookfield Residential27 Christian Dagenais FPInnovations 72 Kelly Anderson City of Vancouver 28 Chun Ni FPInnovations 73 Ken Chow Pioneer Engineering Consultants Ltd.29 Ciprian Pirvu FPInnovations 74 Ken Lau Ainsworth Engineered Canada 30 Colin Chornohus Structurlam Products Ltd. 75 Kenneth Koo FPInnovations31 Conroy Lum FPInnovations 76 Kevin Below Douglas Consultants32 Coralie AVEZ UBC Faculty of Forestry 77 Kevin Cheung Western Wood Products Association33 Dave Cleverley Intelligent Wood Systems Ltd, Scotland 78 Leah Bradford-Smart Still Creek Engineering Ltd.34 Dave Gardner Structurlam Products Ltd. 79 Lillian Mah Mnemosyne Architecture 35 David Lyall Simpson Strong-Tie Canada 80 Lydell Wiebe McMaster University36 Denisa Ionescu BC Housing 81 Lynn Embury-Williams WoodWorks BC 37 Dustin Willms Fast + Epp 82 Ma Siyao University of British Columbia / NEWBuildS38 Ebenezer Ussher University of New Brunswick / NEWBuildS 83 Maik Gehloff Gehloff Consulting Inc.39 Edmond Lim LimTek Solutions Inc. 84 Maria Stefanescu Boise Building Proucts40 Enrique Gonzalez Barillas University of British Columbia 85 Marjan Popovski FPInnovations41 Eric Karsh Equilibrium Consulting 86 Mark Clark Momentive42 Florencio Bautista WHM Structural Engineers 87 Mark Robertson Halsall Associates43 George De Ridder Associated Engineering BC 88 Mark Roozbahani City of Vancouver44 George Hadjisophocleous Carleton University / NEWBuildS 89 Masoud Sadeghi Sheikhtabaghi University of New Brunswick / NEWBuildS45 Glen Webb Decision Point North Consulting 90 Matiyas Bezabeh University of British Columbia / NEWBuildS

researchersdesignersproducersRegulators

Page 1 Page 6

Page 7: NEWBuildS WORKSHOP 2014 - newbuildscanada.canewbuildscanada.ca/.../01/NEWBuildS-Workshop-2014... · 5 Alex Cheng University of British Columbia 50 Hans-Erik Blomgren Arup, USA

NEWBuildS Workshop 2014

Name: Affiliation Name: Affiliation

91 Meho Karalic K1-Engineering Ltd. 136 Stefan Winter Technische Universität München (TUM) 92 Meng Gong University of New Brunswick / NEWBuildS 137 Stephen Tolnai Structurlam Products Ltd.93 Mengyuan Chen University of Toronto / NEWBuildS 138 Stephen Yang Western University / NEWBuildS94 Michael Fairhurst University of British Columbia / NEWBuildS 139 Steven Kuan Forestry Innovation Investment (BC FII)95 Michael Fox University of Waterloo / NEWBuildS 140 Sukh Johal Wood WORKS! BC 96 Michael Kascak Structurlam Products Ltd. 141 Susan Gagnon Coast Forest Products Association97 Michael O'Reardon ICC - ES, Alabama 142 Susana Chui Pioneer Engineering Consultants Ltd.98 Michael Tait McMaster University 143 Sylvain Ménard University of Quebec, Chicoutimi99 Michael vander Laan City of North Vancouver 144 Takahiro Tsuchimoto Research Engineer, Japan

100 Mohammed Nadeem Adi University of Alberta / NEWBuildS 145 Tanzia Sharmin University of Alberta / NEWBuildS101 Moniruzzaman, P.K.M. University of British Columbia / NEWBuildS 146 Ted Szabo Alberta Innovates Bio Solutions102 Morgane Kerouedan Visiting scholar, France 147 Teresa Lowe Mnemosyne Architecture (MA)103 Murray Hodgson University of British Columbia / NEWBuildS 148 Thomas Tannert University of British Columbia / NEWBuildS104 Nichole Wapple Halsall Associates 149 Tianyi Wu University of British Columbia 105 Nick Nagy Certiwood 150 Tim Ryce City of North Vancouver106 Oliver Lang LWPAC 151 Tobias Fast University of British Columbia107 Oscar Faoro Wood WORKS! BC 152 Torsten Ball Halsall Associates108 Phil Vacca LP Corporation 153 Trevor Trainor University of Waterloo / NEWBuildS109 Ping Cheng ICC-ES, California 154 Trisha Wilbur Western University / NEWBuildS110 Randy Minaker City of Port Coquitlam 155 TzuHsien Shih University of British Columbia / NEWBuildS111 Randy Pratt Adera Capital Corp 156 Uzzwal Kumar Deb Nath Concordia University / NEWBuildS112 Ravinder Hans Halsall Associates 157 Victoria Janssens WHM Structural Engineers113 Riasat Azim University of British Columbia / NEWBuildS 158 Vincent Chiu Concordia University / NEWBuildS114 Richard Lau Pioneer Consultants 159 Wael El-Dakhakhni McMaster University115 Rick Munn Mitsui Homes Canada 160 Werner Hofstätter 116 Robert Drew Perkins+Will 161 Will Preeper Mitsui Homes Canada 117 Robert Gerard Arup, USA 162 Xiao Li Carleton University / NEWBuildS118 Robert Malczyk Equilibrium Consulting Inc 163 Xiaoyue Zhang University of British Columbia / NEWBuildS119 Robert Therrien NSERC / NEWBuildS 164 Xin Nie (Jason) University of British Columbia 120 Rod McPhee Canadian Wood Council 165 Ying Hei Chui University of New Brunswick / NEWBuildS121 Rod Rempel Mitsui Homes Canada 166 Yuan Li University of British Columbia / NEWBuildS122 Roger Little Louisiana Pacific Corporation 167 Zhibin Ling University of British Columbia 123 Ron McDougall Structurlam Products Ltd. 168 Zhiyong Chen University of New Brunswick / NEWBuildS124 Ryan Gohlich Carleton University / NEWBuildS 169 Andre Morf Structurlam Products Ltd.125 Sabrina D'Ambra Concordia University / NEWBuildS 170 Jiannan Li FPInnovations126 Sai Ganesh Pai University of British Columbia / NEWBuildS 171 Michael Meszaros City of Vancouver 127 Samuel V Glass USDA Forest Service 172 Todd Beyreuther Washington State University128 Sasana Chui Pioneer Engineering Consultsnts Ltd. 173 Yurong Shen FPInnovations129 Saul Antonio Hernandez Maldonado University of New Brunswick / NEWBuildS 174 Harold Orr Harold Orr and Sons Engineers130 Sean Chew Thomas Leung Structural Engineering Inc 175 John Orr Harold Orr and Sons Engineers131 Shawn Hagan City of Port Coquitlam 176 Harold Orr - other Harold Orr and Sons Engineers132 Shawn Kennedy University of Laval / NEWBuildS 177 Jermyn Wong Associated Engineering133 Shayan Amiri Concordia University / NEWBuildS 178 Md. Shahnewaz University of British Columbia134 Sigi Stiemer University of British Columbia / NEWBuildS 179 Chunping Dai FPInnovations135 Solomon Tesfamariam University of British Columbia / NEWBuildS 180 Mireille Beaulieu University of Sherbrooke

researchersdesignersproducersRegulators

Page 2 Page 7

Page 8: NEWBuildS WORKSHOP 2014 - newbuildscanada.canewbuildscanada.ca/.../01/NEWBuildS-Workshop-2014... · 5 Alex Cheng University of British Columbia 50 Hans-Erik Blomgren Arup, USA

SURVEY: Workshop 2014

www.NEWBuildSCanada.ca 

 

How did we do?  NEWBuildS  appreciates  your  views  on  the  event  and  presentations  and wishes  to  use  your feedback  to  improve  future activities.   Please  let us know what you  think by completing  this 

                                         Thank you!  form and return to NEWBuildS. 

Please rate the following: 1 Poor

2 3 4 5 Excellent

Tall Wood Building Design Project Presentations by NEWBuildS researchers

� � � �

Tall Wood Building Design Project

Panel Discussion � � � �

Presentations by NEWBuildS researchers

Session 1: Structural � � � �

Presentations by NEWBuildS researchers Session 2: Connection Behaviour

� � � �

Presentations 1st International Keynote Speaker

� � � �

Presentations by NEWBuildS researchers – Session 3: Fire Performance

� � � �

Presentations by NEWBuildS researchers – Session 4: Acoustics & Vibration

� � � �

Presentations2nd International Keynote Speaker

� � � �

Presentations by NEWBuildS researchers – Session 4: Durability & Energy

� � � �

Information and/or research of value to your company/organization

� � � �

Overall, Event � � � �

Further comments:

1. Which project is of interest to you and your company?

2. Please provide ideas for future research, if any

Please provide name, company and email address:

Page 8

Page 9: NEWBuildS WORKSHOP 2014 - newbuildscanada.canewbuildscanada.ca/.../01/NEWBuildS-Workshop-2014... · 5 Alex Cheng University of British Columbia 50 Hans-Erik Blomgren Arup, USA

www.NEWBuildSCanada.ca

TALL  W

OOD  B

UILDIN

G  D

ESIG

N  

PROJECT  P

RESE

NTA

TION  

May  7,  201

4    Radisson

 Hotel  Vancouver  Airp

ort   Led  by  a  team  of  professional  experts,  consisAng  of  

Mr.   Robert   Drew,   Perkins   +   Wills;   Mr.   Eric   Karsh,  Equ i l ibr ium   Consu lAng   and   Mr.   Andrew  Harmsworth,   GHL   Consultants,   a   group   of  NEWBuildS   researchers   has   executed   the   analysis  and   design   of   a   20-­‐storey   wood-­‐hybrid   building  using   the   FPInnovaAons   ‘Technical   Guide   for   the  Design   and   ConstrucAon   of   Canadian   Tall   Wood  Buildings’  as  a  reference  document.      

Objec7ves  of  Workshop:      

Ø    To   present   analysis   and   design   results   on  architecture,   building   envelope,   lateral   and   gravity  load  resisAng  systems,  fire  risk  and  fire  protecAon.    

Ø     To  engage   in  a  panel  discussion  with  designers,  specifiers,   wood   products   producers,   researchers,  government  regulatory  bodies  and  associaAons.  

Par7cipants:    q   ConstrucAon:  builders,  architects,  engineers  q   Producers:  CLT,  SCL,  other  EWP    

q   University  and  government  researchers  

q   Provincial  and  federal  regulatory  bodies  q   Industry  associaAons  q   FPInnovaAons  researchers  

A]endance  is  complimentary,  but  rgistraAon  is  required.  Please  register  via  e-­‐mail  [email protected]  

   

       

 

           

   

May  7,  2014  

8:30  am  WELCOME  :      Ms.  Embury-­‐Williams  Chair  of  Board  of  Directors,  NEWBuildS  

8:40  am  OVERVIEW  OF  PROJECT  DR.  Y.  H.  CHUI    NEWBuildS  ScienAfic  Director,  UNB  

9:00  am  PRESENTATION:  ARCHITECTURAL  DR.  MOHAMED  NADIM  ADI    University  of  Alberta  

9:20  am  PRESENTATION:  BUILDING  ENVELOPE  Ms.  Sabrina  D'Ambra  (presented  by  Dr.  Hua  Ge)  Concordia  University  

9:40  am  PRESENTATION:  LATERAL  LOAD  RESISTANCE  DR.  ZHIYONG  CHEN  University  of  New  Brunswick    

10:00  am      PRESENTATION:  GRAVITY  LOAD  RESISTANCE  DR.  ZHIYONG  CHEN      UNB  

10:20  am  PRESENTATION:  FIRE  RISK  MODELING  MR.  XIAO  LI  Carleton  University  

10:40  am  PRESENTATION:  FIRE  RESISTANCE  DESIGN  MR.  ALEJANDRO  MEDINA  Carleton  University    

11:00  am  

PANEL  DISCUSSION:  Mr.  Robert  Drew,  Perkins  +  Wills  Mr.  Eric  Karsh,  Equilibrium  ConsulAng    Mr.  Andrew  Harmsworth,  GHL  Consultants  

12:00  Noon   Lunch  

Page 9

Page 10: NEWBuildS WORKSHOP 2014 - newbuildscanada.canewbuildscanada.ca/.../01/NEWBuildS-Workshop-2014... · 5 Alex Cheng University of British Columbia 50 Hans-Erik Blomgren Arup, USA

2014NEWBuildSWorkshop:TALLWOODBUILDINGDESIGNPROJECTPRESENTATION

Title:Theuseofwoodasamainbuildingelementintallbuildings.

Presenter:Dr.MohamadNadimAdi

Backgroundandobjectives

Todesigna tallbuildingmadeofwoodthatwouldbeappealing tobuyers, contractorsanddevelopersalike. This buildingwould be used as an example tomodify the Canadian building code for tallwoodbuildings.

Designmethod/approach

The traditional design approachwasused,wewanted tohave adistinct building that contractors anddeveloperswouldnoshyfromduetooverlycomplicatedordemandingdesign.Throughseveraldesigniterations and various discussionswith different building groups (structural, Fire safety, and buildingenvelope)wewereabletoprovideadesignthatwasvisuallycompellingwhileatthesametimecomplywithbuildingregulationsandsafetystandardsinCanada.

Summary:

ThepurposeofthisprojectwastodesignthefirsttallwoodbuildinginCanada.Throughconsultingwithexperts in the fields of architecture, civil, building envelop, and fire safety wemanaged to produce abuildingthatcomplieswiththeBCbuildingstandardswhileatthesametimesettinganexampleofhowawood based towerwould look like for future projects in Canada. The project is a 20 story residentialtowerwithwoodenstructuralelements.Itdemonstratesthatwoodcanbeusedsafelyandefficientlyasabuildingcomponentintallbuildings.

Expectedkeyoutputandpotentialimpactofresearch

The main output of this chapter was the design of the tower itself. The appearance of the building(materials, wood ratio, window ratio, and interior) was a direct result of continuous consultationsbetweenthedifferentbuildinggroupstoprovidetheplanselevationsand3DmodelsofthefirsttallwoodbuildinginCanada.

Page 10

Page 11: NEWBuildS WORKSHOP 2014 - newbuildscanada.canewbuildscanada.ca/.../01/NEWBuildS-Workshop-2014... · 5 Alex Cheng University of British Columbia 50 Hans-Erik Blomgren Arup, USA

2014NEWBuildSWorkshop:TALLWOODBUILDINGDESIGNPROJECTPRESENTATION

Title:BuildingEnvelopeforaTallWoodBuilding

Presenter:SabrinaD’Ambra/HuaGe

Backgroundandobjectives

Aproperlydesignedandconstructedbuildingenvelopeisextremelyimportantforthesuccess(i.e.durability)oftallwoodbuildings.Theirstructuralwoodenelementsmustbeprotectedfromtheenvironmentalconditions,especiallysustainedmoistureandtemperaturethatmaycausemoisturedamagesanddurabilityissues.Thispresentationdiscussesthebuildingenvelopedesignofaconceptual20storytallwoodbuildingsituatedinNorthVancouver,arainylocation.

Designmethod/approach

Soundbuildingscienceprinciplesandbestpracticesareappliedindesigningthebuildingenvelopesystemsforthe20‐storytallwoodbuildings.Theselectionofmaterials,buildingenvelopecomponentsandsystemsiscarefullyconsideredtoensurelong‐termdurabilityinadditiontomeetinghigherenergyefficiency,fire,structural,architectural,andmaintenancerequirements.

Summary:

Thewallassemblychoseniswood‐framewithsplitinsulationwithaneffectiveR‐valuemeetingtherequirementsbyNEBC2011.Non‐combustiblefibercementboardischosenasthemaincladdingmaterialwith15%engineeredwoodcladding.ACLTroofassemblyisdesigned.Chapter6ofthe“TechnicalguidefordesigningtallwoodbuildingsinCanada”isusedasthemainreferencefordesigningtheconnectiondetails.

Expectedkeyoutputandpotentialimpactofresearch

Theoutputofthisdesignexerciseisthebuildingenvelopeassemblies/connectiondetails,theirperformanceevaluation,andexperiencegainedbyworkingwithotherHQPsandprofessionalsindesigningatallwoodbuilding.

Page 11

Page 12: NEWBuildS WORKSHOP 2014 - newbuildscanada.canewbuildscanada.ca/.../01/NEWBuildS-Workshop-2014... · 5 Alex Cheng University of British Columbia 50 Hans-Erik Blomgren Arup, USA

2014NEWBuildSWorkshop:TALLWOODBUILDINGDESIGNPROJECTPRESENTATION

Title:Lateralloadresistingsystemforthetallwoodbuilding

Presenter:ZhiyongChen,YingH.Chui,EricKarsh

Backgroundandobjectives

Woodasastructuralmaterialcandatebacktomorethan5000years.Italsohasbeenusedtobuildhigh‐rise building, e.g. YingxianWood Pagoda (1056 AD, 67.31m) and Horyu‐ji Temple (603 AD, 32.25m).However,woodstructuresintheworldareusuallybuilttoamaximumof6storeysduetorestrictionbybuildingcode.Therefore,thereisstillalargepotentialfortallwoodstructurestobebuilt.

Recently,high‐riseandlargespacebuildingsarepreferredbythecustomers.Thisposesbigchallengestodesigners and as a result will bring a break‐through to the timber structures from the structuralperspective.Inthispresentation,thestructuraldesignprinciplesandnumericalsimulationmethodsforthedemonstrationtallwoodbuildingtoresistlateralloadaredemonstrated.

Designmethod/approach

Inconceptualdesign,shearwallwithacoresystemwaschosenasthe lateral loadresistingsystemforthistallwoodbuilding;theverticaljointswereassumedtoyieldfirst,andtheultimatelimitstateofthebuilding isdefinedas the failureof theshearconnectorsandhold‐downs.Thestructuraldesignof thisbuilding was conducted in accordance with NBCC. Since equations to predict the behavior of the tallwoodbuildingunderlateralloadareunavailable,aseriesofcomprehensivefiniteelementanalyseswasperformed.Thestructuralperformanceofthebuilding,e.g.seismicresponseandwindinduced‐responsewasinvestigatedusingnumericalsimulationaswell.

Summary:

Theshearwallpluscoresystembuiltwithmassivepanelsandtheconnectionsystem,includingverticaljoints,shearconnectorsandhold‐downsaresuitableforthe20‐storeyhigh‐risetallwoodbuildingwithsufficient stiffness, strength and ductility. The 2D finite element modeling approach using connectorelementsisappropriatetoinvestigatethebehaviorofthestructuralaswellastheconnectionsystem,intermsof fundamentalnaturalperiod,wind‐inducedresponse, seismicresponseand failurepath,of thehigh‐risewoodbuilding.

Expectedkeyoutputandpotentialimpactofresearch

(1) An efficient structural design method of tall wood building was established. (2) An appropriatenumerical simulation approach for tallwood buildingwas developed based on finite element analysissoftware,ABAQUS.(3)Aninnovativestructuralsystemfortallwoodbuildingwascreatedusingmassivetimberpanelsandhighperformanceconnections.

Page 12

Page 13: NEWBuildS WORKSHOP 2014 - newbuildscanada.canewbuildscanada.ca/.../01/NEWBuildS-Workshop-2014... · 5 Alex Cheng University of British Columbia 50 Hans-Erik Blomgren Arup, USA

2014NEWBuildSWorkshop:TALLWOODBUILDINGDESIGNPROJECTPRESENTATION

Title:Gravityloadresistingsystemforthetallwoodbuilding

Presenter:ZhiyongChen,MinghaoLi,YingH.Chui,EricKarsh

Backgroundandobjectives

High‐rise and large space tall wood buildings are required to resist large gravity load and generallypossessdiaphragmwithlargespan.Inthispresentation,thestructuraldesignprinciplesandnumericalsimulationapproachesforthedemonstrationtallwoodbuildingtoresistgravityloadaredemonstratedwithfocusesonaddressingtheverticaldeformationandlarge‐spandiaphragmoftallwoodbuildings.

Designmethod/approach

Toavoidthelargeverticaldeformationinducedbywoodassembliesundercompressionperpendiculartograin, continuous vertical assemblies (columns and walls) were used, and as a result, the beams atspecific level were divided by columns or / and walls. In an attempt to tackle the dimensional andvibrationproblemsoflarge‐spandiaphragm,CLTroofandHBV(wood‐concrete‐composite)–VarioFloorsystem were adopted for the diaphragm system. The HBV – Vario Floor system possesses greatstructuralperformance,intermsofstiffness,strengthandvibration,andgoodacousticperformance.

Summary:

Thegravityloadresistingsystemincludingcontinuousverticalelementsandcompositedfloorissuitablefor the 20‐sotrey high‐rise tall wood building to address the vertical deformation and large‐spandiaphragmoftallwoodbuildings.The3Dfiniteelementmodelingapproachisappropriatetoinvestigatethebehaviorofthegravityloadresistingsystemundergravityload.

Expectedkeyoutputandpotentialimpactofresearch:

(1) Agravityloadresistingsystemwasdevelopedfortallwoodbuildingtodealwithissuesofverticalcompression deformation and large span of diaphragm. (2) An appropriate 3‐D numerical simulationapproachfortallwoodbuildingwascreatedtoinvestigatethestructuralperformanceundergratifyloadtaking long‐termcreepeffectundersustained loadsandshrinkage intoaccount. (3)Someconstructionmethods topartiallycompensate fordifferential shorteningbetweenadjacentverticalelementswillbedeveloped.

Page 13

Page 14: NEWBuildS WORKSHOP 2014 - newbuildscanada.canewbuildscanada.ca/.../01/NEWBuildS-Workshop-2014... · 5 Alex Cheng University of British Columbia 50 Hans-Erik Blomgren Arup, USA

2014NEWBuildSWorkshop:TALLWOODBUILDINGDESIGNPROJECTPRESENTATION

Title:Fireriskcomparisonofthedemostrationbuildingwithacomparablenon‐combustiblebuilding

Presenter:XiaoLi

Backgroundandobjectives

Buildingwithwoodiscosteffective,aestheticallypleasing,andenvironmentallyresponsible.However,inmanycountriesbuildingcodesimposeheightandarealimitationsforwoodconstructionsmainlyduetofiresafetyconcerns.AfireriskassessmentofthedemonstrationbuildingusingaquantitativefireriskassessmentcomputermodelCUriskwasperformed.Theobjectiveofthisworkistocomparethefireriskoftheproposedcombustiblebuildingwiththefireriskofacomparablenon‐combustiblebuilding.

Designmethod/approach

Oneofthemajorconcernsthathinderstheadvancementandpopularityofwood‐basedhigh‐risebuildingsisthecombustibilityofwood,andthustheyarecategorizedascombustibleconstruction.Withperformance‐basedbuildingcodescombustibleconstructionsmaybeacceptedifthespecifiedperformancerequirementscanbeachievedusingcombustibleconstructionmaterials.CUriskisaquantitativefireriskassessmenttoolandisadoptedtoassessthefireriskofthedemonstrationbuilding,andthencompareitwithacomparablenon‐combustiblebuildingwhichsatisfiescoderequirements.

Summary:

Possiblefirescenariosaresimulatedonallresidentialfloors,andresultsshowedthatfireriskofthedemonstrationbuildingiscloseto(orslightlyhigherthan)thefireriskofthenon‐combustiblebuilding.Evacuationsimulationresultsshowedthatoccupantscanevacuateoutofthebuildingwithinareasonabletimeframeandoccupantevacuationtimesinthedemonstrationbuildingareshorterthanacomparablenon‐combustiblebuilding.Highreliabilitysprinklerscanpreventthefireinitsinfancy,thuscanavoidfasterfiregrowthinthecombustiblecompartmentespeciallyinthecaseofwoodpanelexposure.Inaddition,well‐designedfiredetectorandalarmsystemsshouldbeadoptedinthebuilding.Firesinextremescenariosmaycausesignificantliferisksandfirelossesthoughtheiroccurrenceprobabilitiesareverylow.However,precautionarymeasuresshouldbetakeninadvancetopreventthosefiresfromoccurringandmitigatethelossesincasetheyhappen.

Expectedkeyoutputandpotentialimpactofresearch

Aperformancebasedfiresafetydesignapproachforcombustiblehigh‐risebuildingcouldbedevelopedthroughthisproject.ThequantitativefireriskassessmentmodelCUriskcanbeusedasantooltoevaluatethefireriskofaproposedbuilding.

Page 14

Page 15: NEWBuildS WORKSHOP 2014 - newbuildscanada.canewbuildscanada.ca/.../01/NEWBuildS-Workshop-2014... · 5 Alex Cheng University of British Columbia 50 Hans-Erik Blomgren Arup, USA

2014NEWBuildSWorkshop:TALLWOODBUILDINGDESIGNPROJECTPRESENTATION

Title:FireResistanceofStructuralElementsandFireSafetyDuringConstruction

Presenter:AlejandroMedina

Backgroundandobjectives

Currently,thenationalbuildingcodeofCanadalimitsthenumberofstoreysandfloorareaofcombustibleconstruction.Theobjectiveofthisprojectwastodesigna20storeywoodbuildingthatmeetsorexceedsthefireperformanceofanon‐combustiblebuilding.ThestructuralelementsofthisbuildingwouldbefabricatedoutofwoodsuchasglulambeamsandcolumnsaswellasLaminatedStrandLumber(LSL)panels.Ensuringthattheseassembliesmeeta2hourfireresistanceratingisessentialinorderforthistallcombustiblebuildingtobedeemedsafe.

Designmethod/approach

ThesizingfortheglulammembersandLSLpanelswasfirstdeterminedbythestructuralgroup.Thefireresistanceofthesememberswasanalysedusingthereducedcrosssectionmethodinwhichonlytheunaffectedcrosssectionalareaofthememberisconsiderinstrengthcalculations.Dependingonexposuretime,thenumberofexposedsides,load,length/heightandotherparameters,thefireresistancecanbedetermined.ConstantcommunicationwaskeptbetweentheStructuralgroupandFiregroupforcaseswhereupsizingwouldbenecessarytomeetfireresistancerequirements.

Partofthestudywastoresearchthepossibilityofusingwoodcladdingontheexteriorfaçade.Afterperformingsomeresearch,itwasdeemedunsafetouse100%combustiblecladdingduetohighriskoffirespread.Acombinationofcombustibleandnon‐combustiblecladdinglimitingtheuseofwoodto30%wasrecommended.

Summary:

Thestructuralmemberssuchasbeam,columns,andwallandfloorpanelsofthetallwoodbuildingwereanalysedandtheyachieveda2hourfireresistancerating.Theexteriorfaçadewasdesignedtocontainsomecombustiblematerialwithouttheincrementalriskofflamespread.Followingrecentfirestobuildingunderconstruction,aFireSafetyPlanhasbeenputinplacetoreducethelikelihoodofafireoccurringduringbuildingconstruction.

Expectedkeyoutputandpotentialimpactofresearch

Thisresearchprojectdemonstratedthattallwoodbuildingscanbeassafeascomparablenon‐combustiblebuildings.Theresultsofthisprojectmaybeusedbycodecommitteeswhenrevisitingcurrentlimitationsoncombustible.

Page 15

Page 16: NEWBuildS WORKSHOP 2014 - newbuildscanada.canewbuildscanada.ca/.../01/NEWBuildS-Workshop-2014... · 5 Alex Cheng University of British Columbia 50 Hans-Erik Blomgren Arup, USA

www.NEWBuildSCanada.ca

NEWBUILDS W

ORKSHOP2014 

May 7

&8, 2014   Radisson Hotel V

ancouver Airport

TOPIC: NEWBuildS researchers will present researchprojects related to use of wood‐based products in mid‐riseand non‐residential construction. Projects address a range ofbuilding performance issues, including structural, fire,durability, energy and serviceability.

WHO: This workshop will bring together researchers from13 Canadian Universities and key collaborators includingFPInnovations and NRC, and other stakeholders such asgovernment officials, practicing professionals, producersand builders.

WORKSHOP PROGRAM

Day 1: May 7th

1:00 pm     Welcome & Updates: Dr. Y. H. Chui / Mr. Kenneth Koo

1:20 pm     Session 1 ‐ Structural 

3:30 pm     Session 2 ‐ Connection Behaviour

5:10 pm     Day 1 adjourned 

Day 2: May 8th

8:30 am     1st International Keynote Speaker : Dr. Stefan Winter, Technical University of Munich

High‐rise timber buildings in Europe ‐ Projects, challenges, solutions and future development

9:30 am     Session 3 ‐ Fire Performance

11:10 am   Session 4 ‐ Acoustics & Vibration 

12:10 pm   Lunch

1:15 pm     2nd International Keynote Speaker : Dr. Sam Glass, U.S. Forest Products LaboratoryBuilding Envelope Performance of Wood‐based Building Systems: Research Perspectives from US

2:10 pm     Session 5 ‐ Durability & Energy

4:30 pm     Day 2 adjourned 

May 7, 2014   (afternoon)

1:00 pm  WELCOME & UPDATESDr. Y. H. Chui, UNBMr. Kenneth Koo, FPInnovations

Session  1: Structural Moderator: Prof. Frank Lam

Str 1      1:20  pm 

Stability of CLT Wall Panels Subjected to In‐plane Gravity Loading 

PK M Moniruzzaman /Prof Frank Lam, UBC

Str 2      1:40 pm 

Force Transfer Around Openings in Walls Subjected to In‐plane Loading 

Sai Ganesh Pai / Prof Terje Haukaas , UBC

Str 3        2:00 pm 

Innovative Post‐tensioned CLT Walls Ma Siyao / Prof Frank Lam, UBC

Str 4      2:20 pm 

Nonlinear Dynamic Analyses of FFTT Timber‐steel‐hybrid system 

Michael Fairhurst & XiaoyueZhang / Prof Thomas Tannert, UBC

Str 5    2:40 pm 

a)    Practical Height Limits for Tall Timber Buildings

Trish Wilbur / Prof. Mike Bartlett & Hanping Hong, Western University

b)    Capacity surface of hybrid timber buildings under uni and bi‐directional seismic excitations

S.C. (Steve) Yang /Prof. Hanping Hong & Mike Bartlett, Western University

3:10 pm Break 

Session 2: Connection Behaviour  Moderator: Prof. Siegfried F. Stiemer

CB 1       3:20 pm

Localized Rolling Shear Reinforcement of CLT Systems 

TzuHsien Shih / Prof Frank Lam, UBC

CB 2       3:40 pm

Continuity Connections for CLT Plates in Hybrid Superstructures 

Masoud Sadegh / Prof  Ian Smith, UNB

CB 3      4:00 pm

Connections in CLT Building Systems Shawn Kennedy / Prof  Alex Salenikovich, ULaval

CB 4      4:20 pm

Development of an Innovative Hybrid Timber‐Steel Moment‐Resisting Frame for Seismic‐Resistant Heavy Timber Structures

Ryan Gohlich / Prof Dr. Jeff Erochko , CarletonUniversity

CB 5       4:40 pm

Development of  Novel Connection Systems for CLT Infilled Steel Moment Resisting Frames 

Johannes Schneider /Prof Siegfried Stiemer & Prof Solomon Tesfamariam, UBC

5:00 pm Day 1 Adjournment

5:15 pm  Reception:  Network researchers only

Attendance is complimentary, but registration is required. Please register via e‐mail [email protected]

1 Page 16

Page 17: NEWBuildS WORKSHOP 2014 - newbuildscanada.canewbuildscanada.ca/.../01/NEWBuildS-Workshop-2014... · 5 Alex Cheng University of British Columbia 50 Hans-Erik Blomgren Arup, USA

www.NEWBuildSCanada.ca

NEWBUILDS W

ORKSHOP2014 

May 7

&8, 2014   Radisson Hotel V

ancouver Airport

May 8, 2014   (afternoon)

1:15 pm 

2nd International Keynote Speaker:

BUILDING ENVELOPE PERFORMANCE OF WOOD‐BASED BUILDING SYSTEMS: RESEARCH PERSPECTIVE FROM THE US

Dr. Sam GlassU.S. Forest Products Laboratory

Session 5: Durability & Energy                                Moderator: Dr. Jieying Wang

D & E 1 2:10 pm

Characterizing Wind‐driven Rain Load on Mid‐rise Buildings 

Uzzwal Kumar Deb Nath &  Vincent Chiu / Prof  Hua Ge, Concordia University

D & E 2 2:40 pm

Developing Durable Building Envelope Assemblies for CLT Construction 

Sabrina D'Ambra / Prof  Hua Ge, Concordia Univerrsity 

D & E 33:00 pm 

Developing Durable Wood‐frame Building Envelope Systems for Net‐zero Energy Ready Buildings 

Michael Fox  & Trevor Trainor /  Prof John Straube, UWaterloo & Hua Ge, Concordia University

D & E 4      3:20 pm

Energy Efficiency of Mid‐rise Building 

Tanzia Sharmin /  Prof Mohamed Al‐Hussein  & Mustafa Gul, University of Alberta

3:40 pm  Wrap‐Up & Adjournment

Attendance is complimentary, but registration is required. Please register via e‐mail [email protected]

May 8, 2014   (morning)

8:30 am WELCOMEMs. Lynn Embury‐Williams, Chairperson, Board of Directors

8:35 am

1st International Keynote Speaker:

HIGH‐RISE TIMBER BUILDINGS IN EUROPE – PROJECTS, CHALLENGES, SOLUTIONS AND FUTURE DEVELOPMENT

Dr. Stefan WinterTechnical University of Munich

Session 3: Fire Performance : Moderator: Prof. George Hadjisophocleous

FP 1       9:35 am

Fire Risk Analysis Xiao Li & Ping Rao / Prof  George Hadjisophocleous, Carleton University

FP 2       9:55 am

Rationalization of Life Safety ‐ Code Requirements for Mid‐rise Buildings 

Alpin Kahveci / Prof Ehab Zalok & George Hadjisophocleus, Carleton University

10:15 am  Break 

FP 3      10:30 am

Fire Behaviour of Cross Laminated Timber Panels 

Alejandro Medina / Prof George Hadjisophocleous, Carleton University

FP 4     10:50 am

Fire Performance of Timber Connections Aaron Akotuah Ohene /Prof George Hadjisophocleous, Carleton University

Session 4: Acoustics & Vibration                     Moderator: Mr. Christian Dagenais 

A & V 1     11:10 am

Innovative Ways to Make CLT Panels Sound Absorptive 

Banda Logawa / Prof Murray Hodgson, UBC 

A & V 2     11:30 am

Technique for Simultaneous Measurement of Elastic Constants of CLT Panel 

Jianhui Zhou / Prof Ying‐Hei Chui, UNB

A & V 3      11:50 pm

Vibrational Performance of CLT Floor Saul Hernandez / Prof Ying‐Hei Chui, UNB

12:10 pm Lunch 

2 Page 17

Page 18: NEWBuildS WORKSHOP 2014 - newbuildscanada.canewbuildscanada.ca/.../01/NEWBuildS-Workshop-2014... · 5 Alex Cheng University of British Columbia 50 Hans-Erik Blomgren Arup, USA

2014NEWBuildSWorkshopPresentationSummary

ProjectCode:T1–9–C3 ProjectTitle: Stability of CLT Wall Panels SubjectedtoIn‐planeGravityLoading

Session#:1 Presenter:PKMMoniruzzaman

Backgroundandobjectives

AfterflourishinginEuropeoverthepastcoupleofdecades,crosslaminatedtimber(CLT)isattractinginterestsfromNorthAmericanbuildingdesignersduetoitsattributesintermsofdesignflexibility,structuralintegrity,economicaspect,environmentalperformanceandsustainability.CLTiscomposedofcross‐wiselayersofdimensionlumber.Theyaretypicallyfacelaminatedwithapprovedadhesives.Comparedtoconventionalwoodconstruction,CLTasaplateelementhasreasonablestrengthpropertiesinbothdirectionsin‐plane.Thus,thisproductissuitableformassiveconstructiontechniquesespeciallyfortallerwoodstructures.Thepossibilityofusingthisproductwithhighaspectratiosaswallandcolumnelementsrequiresparticularattentiontothestudytheirstructuralstability.InthepresentstudythestabilitybehaviorofCLTisconsideredforastripofCLTpanelhavinganintermediatelengthunderacompressiveaxialload.

Researchmethod/approach

InordertoreceiveinformationaboutthestabilitybehaviourofCLTwallpanels,stripesofCLTpanelsasintermediatelengthmembersweretested.Then,thestabilitybehaviorwasstudiedbasedonreliabilityanalysis.ThebucklingloadofaCLTintermediatecolumnisaffectedbyalistofrandomvariables,suchas,compressivestrengthandmodulusofelasticityoflumber,endfixation,theinitiallateraloutofplumbofcolumn,andtheloadeccentricity.Inthisstudy,therelationbetweentheresponseparameterandtherandomfactorsweredeterminedbyusingresponsesurfacemethod.TheoptimizationoftheperformancefunctionwasperformedbyANOVA.Then,firstorderreliabilityanalysiswasadoptedtodeterminetheprobabilityofbucklingfailureofaCLTcolumnunderarandomload.

Summaryofresultsto‐date

ThestudyindicatedthatthecapacityofanintermediateCLTcolumnissignificantlyunderestimatedinthecodespecification.Thiscanmainlyattributedtoignoringthecontributionofthematerialperpendiculartoloaddirection.

Expectedkeyoutputandpotentialimpactofresearch

ThescopeofthepresentstudyistoexaminethestabilitybehaviorofCLTwallpanelsbasedonreliabilityanalysis.Giventhematerial’sorthotropicbehaviorandgeometricirregularitiesanumericalmodelwillbedeveloped.Thedevelopedmodelscanbeusedinaparametricstudyconsideringdifferentloadingprotocols.Thus,thenumericalmodelcancutdowntheexperimentcostandtimeinadegree.Inaddition,themoreappropriatevaluesforthestabilityassociatedparametersinthecodewillbeproposedtomodify.

Page 18

Page 19: NEWBuildS WORKSHOP 2014 - newbuildscanada.canewbuildscanada.ca/.../01/NEWBuildS-Workshop-2014... · 5 Alex Cheng University of British Columbia 50 Hans-Erik Blomgren Arup, USA

2014NEWBuildSWorkshopPresentationSummary

ProjectCode:T1‐8‐C3 ProjectTitle: ForceTransferAroundOpeningsinCLTShearWallsSession#:1 Presenter:SaiGaneshSPai

Backgroundandobjectives

Thepresenceofanopeninginashearwallleadstostressconcentrationatthecornersoftheopening.Thisinturnleadstothedevelopmentoftransferforce.Thedesignparadigmofforcetransferaroundopeningsconsiderstheseforcesexplicitlyinthedesignofshearwalls.ThisprojecttriestoassesstheapplicabilityoftheexistinganalyticalmodelsfordeterminingtransferforcetoCLTshearwalls.Also,inthisproject,numericalmodelshavebeendevelopedtoprovideinsightintothestressredistributiontosuggestsuitablereinforcementsolutions.

Researchmethod/approach

Firstly,theprojectfocusesonreviewingtheexistinganalyticalmodelsandtheirapplicabilitytoCLTshearwalls.Subsequently,detailedfiniteelementmodelsweredevelopedtostudythestressredistributionandtransferforcedevelopment.Differentnumericalmodelsweredevelopedtoaccountforstressdistributionindifferentconstructiontypes.Thepracticeofjoiningpanelstogetherasacoupledwalltoformtheopeningisamorecommonapproach.Forthisconstructiontype,thefiniteelementmodelwascalibratedtoexperimentaldatafromliterature.ApushoveranalysiswasperformedtostudytheperformanceoftheCLTshearwall.Theanalysissoughttohighlightthenecessityoftie‐rodsasreinforcementatthecornersoftheopening.Also,aparametricstudywasconductedtounderstandtheeffectoftie‐rodcrosssectiononthetransferforceandtheshearwallresponse.

Summaryofresultsto‐date

Thereviewofanalyticalmodelshighlightedthevarianceindesigntransferforceobtainedfromthedifferentmodels.Thismotivatedthedevelopmentoffiniteelementmodels.ForaCLTshearwallwithacut‐outopening,itwasfoundthatthegluedsurfaceadjacenttotheopeningexperiencedincreasedtorsionandshearstress.Ontheotherhand,inacoupledpanelconstruction,tensileandcompressiveforcesdevelopatthecornersoftheopening.Thefiniteelementmodelcalibratedtoexperimentaldatahighlightedthenecessityoftierodsasreinforcementtominimizetheeffectofopeningonshearwallperformance.Aparametricstudyofthismodelshowedthatincreasingthecross‐sectionofthetie‐roddoesnotsignificantlyaffecttheshearwallresponse.Thisfollowsfromtheexistingunderstandingthattheshearwallresponseismainlygovernedbythewalltofloorconnection.Thetie‐rodsmainlyholdthewalltogether.

Expectedkeyoutputandpotentialimpactofresearch

Thereviewoftheanalyticalmodelshighlightstheneedforbettermodelstodeterminethetransferforce.Thefiniteelementmodelsdevelopedhereingoalongwayinachievingthisgoal.Theprojectrevealedtheimpactofconstructiontypeonstressredistributionleadingtodifferentreinforcementrequirements.Also,thefiniteelementmodelscanbeusedinfuturetosimulatethebehaviourofCLTshearwallstocarryoutperformance‐baseddesign.Theparametricstudycarriedoutprovidesinsightintothedesignaspectsofthetie‐rodsandtheirimpactonshearwallbehaviour.

Page 19

Page 20: NEWBuildS WORKSHOP 2014 - newbuildscanada.canewbuildscanada.ca/.../01/NEWBuildS-Workshop-2014... · 5 Alex Cheng University of British Columbia 50 Hans-Erik Blomgren Arup, USA

2014NEWBuildSWorkshopPresentationSummary

ProjectCode:T1‐10‐T4 ProjectTitle: InnovativePost‐tensionedCLTWallsSession#: Presenter:SiyaoMa

Backgroundandobjectives

Theresearchoriginallyaimedtostudytheself‐centeringabilityofCLTwallsbyusingpost‐tensionedtendons. The idea came from the research about the post‐tensioned timber framed system fromUniversity of Canterbury in New Zealand. In the study, they applied a self‐centering system to thebeam‐columnconnection,whichconsistsofun‐bondedpost‐tensionedtendonsandlongitudinalmildsteel bars as energy dissipative device. The post‐tensioning provided a desirable re‐centeringcharacteristic and the dissipation devices allowed adequate energy absorption by the system asshownintestingprogram.Astable“flag‐shaped”hystereticloopwasobservedwithnegligibleresidualdisplacement, confirming the self‐centering characteristics of the system. The equivalent yieldingpointcorrespondedtotheactualyieldingofthedissipationdevices.Whilethetotalmomentcapacityof the system increased with the increasing drift levels due to the elongation of the tendons, nodegradationofstiffnessandnostructuraldamagewereobserved.Theexcellentresultinspiredustoconsiderself‐centeringconceptsinCLTwallapplications.

UponconsiderationoftherelativelyrigidrockingCLTwallsystemunderseismicexcitation,theymayhaveanatural tendency toself‐centerwithout requiringpost‐tensioned tendonsprovidedadequateenergy dissipation is available to control the rockingmotion. Under seismic loads, CLTwall panelsbehavealmostlikerigidbodiesandthereversecyclicbehaviorofCLTwallpanelsisnotdegradedbythepresenceofaxialloads.Infactthesewallswithaxialloadsareexpectedtohaveincreasedinitialstiffness and shear capacity.Thevertical compressionofwalls generatedbypermanent loads (wallweightplusanyadditionaldead load),semi‐permanent loads(live loads)andtransient loads(loadsassociatedwith seismicexcitation)maybeable to resist lateral loadsand toachieve self‐centering.ThisbehaviourisexpectedwhentheaspectratiooftheCLTwallsisreasonableandthedisplacementofCLTwalls isrelativelysmallwithoutexceedingthestability limitof thesystem.So it iscritical toadopteffectiveenergydissipationdevicestocontrolthedisplacements.Consideringthesimplicityandlowcostoffrictiondampers,theresearchistodesignafrictiondamperforCLTwallsandtocontrolmovementandself‐centeringcharacteristicofthefrictiondampedCLTwallsystems.

Theobjectivesoftheresearchareasfollows:

1. AninnovativefrictiondamperforCLTwallswillbedesignedanditseffectivenesswillbestudied;

2. Developafundamentalunderstandingoftheself‐centeringabilityoffrictiondampedCLTwalls;

3. DevelopadatabasetostudythebehavioroffrictiondampedCLTwalls;4. DevelopverifiedcomputermodelstopredicttheperformanceoffrictiondampedCLTwalls;5. DevelopreliabilitybaseddesigncodeprovisionstoaddressfrictiondampedCLTwallsystems.

Page 20

Page 21: NEWBuildS WORKSHOP 2014 - newbuildscanada.canewbuildscanada.ca/.../01/NEWBuildS-Workshop-2014... · 5 Alex Cheng University of British Columbia 50 Hans-Erik Blomgren Arup, USA

2014NEWBuildSWorkshopPresentationSummary

Researchmethod/approach

Designaneffective,innovativeandlowcostfrictiondamperforCLTwalls,whichmakeitpossibleforCLTwallstoresistlateralloadsandtodissipateenergywithlessstructuraldeformationunderseismicloads;

1. Designandperformexperimentstostudythebehaviorofthefrictiondamper,whichwillhelpto refine the friction damper device and to provide necessary parameters for numericalanalysis;

2. Performnumericalanalysistostudytheseismicperformanceoftheself‐centeringCLTwalls.Inordertoshowtheinfluenceofdifferentformsofverticalcompressionsasinfluencedbytheoutofplanebendingstiffnessofthediaphragm,twomodelswillbeconstructed.BothofthemwillhavetwoconnectedCLTwallsequippedwiththefrictiondampers.Foronemodel,verticalcompressionforcewillbeloadedonthetopsurfacesofthetwowallsseparately.Andfortheother,acontinuousverticalloadwillbetransferredtothetopsurfacesofthewallthroughafloordiaphragm.

Summaryofresultsto‐date

1. Theprogramhasadelaystart‐upandthestudenthasbeeninvolvedincourseworkcomponentofherstudy.

2. Designaninnovativefrictiondamper;(May31,2014)3. Manufacturethefrictiondamper.Designandperformanmechanicalpropertyexperimentof

thefrictiondamper;(June1‐Sep30,2014)4. PerformthenumericalanalysisofthefrictiondampedCLTwallsystems;(Oct1‐Dec31,2014)5. Thesis;(Jan1‐April10,2015)

Expectedkeyoutputandpotentialimpactofresearch

1. TheinnovativefrictiondampernotonlywillbeeffectivetotheCLTwalls,butalsoprobablycanbeusedtodissipateearthquakeenergyforotherstructures.Themechanicalpropertyexperimentofthefrictiondamperwillprovideausefuldatabaseofthefriction.

2. Thenumericalanalysiswillverifytheself‐centeringcharacteristicofthefrictiondampedCLTwallsystems.Andthecomparisonofhystereticloopsofthetwomodels(describedintheresearchmethod)willindicatethebetterwayoftransferringverticalloadstoCLTwallstoachievetheself‐centeringability.

Page 21

Page 22: NEWBuildS WORKSHOP 2014 - newbuildscanada.canewbuildscanada.ca/.../01/NEWBuildS-Workshop-2014... · 5 Alex Cheng University of British Columbia 50 Hans-Erik Blomgren Arup, USA

2014NEWBuildSWorkshopPresentationSummary

ProjectCode:T2‐14‐C4 ProjectTitle:NonlinearDynamicAnalysesofFFTTTimber‐steel‐hybridsystem

Session#:Str4 Presenter:MichaelFairhurstandXiaoyueZhang

Backgroundandobjectives:

Aninnovativetimberandsteelhybridsystemcalled“FFTT”,consistsofmass‐timberpanelsplacedinverticalpositionalongtheheightofthebuilding,withsteelbeamspartiallyembeddedintothefaceofthewallpanelsthatrunhorizontallyateverystorey.Thetransferoflateralandgravityforcesoccursthroughthebearingofthesteelbeamsonthesolidwoodpanels.Thesebeamsalsoactastheductileweaklinksofthesystemforseismicdesign,thusprovidinga“Strong‐ColumnWeak‐Beam”failuremechanism.Animportantsteptowardstheapplicationofhybridtimbersystemsisobtainingproofthattheirconnectionsfacilitatethedesiredductilefailuremode.Forthispurpose,theFFTTconceptwillbeinvestigatedsystematicallywiththegoalsto:

1. Determinetheparametersinfluencingtheglobalbehaviourofthesystem;

2. Investigatetheinteractionbetweenmass‐timberpanelsandsteelbeams;

3. Developadesignapproachthattriggersthedesiredductilefailuremechanisminthesystem.

Researchmethod/approach

Tosolvethesechallenges,thecompletechainofinformationrelatedtothesystemglobalbehaviour,hybridconnectiondesign,anchoragedetailsandductilityisnecessary;startingatthemateriallevel,continuingontothecomponentlevel,tolatertransferringtheacquiredknowledgetothestructuralsystemlevel.Experimentalandnumericalinvestigationswerecombined.

First,7‐plyCLTpanelsweretestedincombinationwithwideflangeI‐sectionsandhollowrectangulartubesections.Thebeamswereembeddedintopre‐cutslotsinthepanelandheldinplaceusingtwolagbolts.Then,thecomponentwasmodelledtoallowoptimizingtheembedmentgeometry.

Inasecondstep,numericalmodelsweredevelopedtoinvestigatethedynamicresponseoftheFFTTsystemunderwindandearthquakeloading.Themodelsutilizeelementsandmaterialscalibratedtotestresultsofthevariouscomponentsofthesystemtocaptureboththeelasticandinelasticresponseofthebuildings,andaresubjectedtoanextensiverangeoflateralloadingconditions.

Summaryofresultsto‐date

Theexperimentaltestsdemonstratedthatwhenusinganappropriatesteelsection,thedesiredstrong‐columnweak‐beamfailuremechanismwasinitiatedandexcessivewoodcrushingwasavoided.Subsequentnumericalmodellingallowedforcomponentoptimization.

PreliminaryresultsfromthedynamicanalysesindicatethattheFFTTcanmeetheperformancerequiredunderdesignseismicloading.Inter‐storydriftswerelowerthanrequiredandlocalplasticdeformationswerewithinareasonablerangeforlifesafetyperformanceasrequiredbytheNBCC.

Expectedkeyoutputandpotentialimpactofresearch

ThepurposeoftheresearchistogaininsightintothedynamicresponseoftheproposedFFTTsystemandtohelpdeveloppracticaldesignguidance.

Page 22

Page 23: NEWBuildS WORKSHOP 2014 - newbuildscanada.canewbuildscanada.ca/.../01/NEWBuildS-Workshop-2014... · 5 Alex Cheng University of British Columbia 50 Hans-Erik Blomgren Arup, USA

2014NEWBuildSWorkshopPresentationSummary

ProjectCode:T2‐2‐C4 ProjectTitle: PracticalHeightLimitsforTallTimberBuildingsSession#:Str5a Presenter:PatriciaWilbur,S.C.(Steven)Yang,MichaelBartlett,

HanpingHong

Backgroundandobjectives

Itiswellknownthatthedynamicresponseofastructureisdependentonitsdynamicproperties(Holmes,2007).Researchshowsthatmasstimberbuildingsperformquitewellunderseismicloads,duetotheirlowseismicweightandhighflexibility(Ceccottietal.,2010;Popovskietal.,2012).Thesesamepropertiesmayresultinastructurebeingsensitivetoexcessivewindvibrations.TheNationalBuildingCodeofCanada(NBCC)statesthatforregularstructuresmeetingcertainaspectratios,dynamicanalysisunderwindloadingisnotrequiredforstructuresunder120minheightunlesstheirdynamicpropertiesmakethemsusceptibletovibrations(NRCCanada,2010).However,preliminaryresearchindicatesthatdynamicanalysismaybeneededformasstimberstructuresexceeding44minheight(Chapmanetal.,2012;Utne,2012).Therefore,usingexistingNBCCDesignCriteriaformasstimberbuildingsmayresultinastructurethatexceedsserviceabilitylimitstates.

Thisresearchstudyaimstoinvestigatethepracticalheightlimitsoftalltimberstructuresunderwindloads,andidentifypotentialnicheareasforincreasingtheuseoftimberintheconstructionindustry,withspecificobjectivesasfollows:

‐ Identifystructuralconfigurationsconducivetomasstimberconstruction‐ Investigatepracticalheightlimitsoftalltimberstructuressubjectedtowindloads‐ Investigatelateraldeformationbehaviouroftimberstructures‐ Investigatehybridtimber‐concreteoptionsformitigatingexcessivedynamicresponse‐ Developdesigncriteriaformasstimberandhybridtimber‐concretestructures

Researchmethod/approach

Thisstudyfocusesonincorporatingmasstimberproductsintowell‐establishedstructuralformsandanalyzingthefundamentalchangesthiscausesinglobalstructuralbehaviour.Numericalmodelswillbeusedtoinvestigatethebehaviourofmasstimberandhybridtimber‐concretestructures.Orthotropicmaterialpropertiesformasstimberproductswillbeobtainedfromexistingliterature(Melekietal.,2010,Ashtari,2012).Comparisonsbetweenmasstimberandhybridtimber‐reinforcedconcretestructureswillbeperformedtoidentifydesignissuesformasstimberstructures.Dynamicanalysiswillbeperformedtodetermineheightlimitsatwhichstaticanalysisnolongeraccuratelycapturesthestructure’sresponse.

Summaryofresultstodate

‐ Numericalmodelsoftwostructuralforms,eachutilizingtwocoreoptions(timberandreinforcedconcrete)

‐ Capacitycurves(ULS/SLS)formasstimberstructures‐ Characterizationofglobalstructuralresponse

Page 23

Page 24: NEWBuildS WORKSHOP 2014 - newbuildscanada.canewbuildscanada.ca/.../01/NEWBuildS-Workshop-2014... · 5 Alex Cheng University of British Columbia 50 Hans-Erik Blomgren Arup, USA

2014NEWBuildSWorkshopPresentationSummary

ProjectCode:T2‐2‐C4 ProjectTitle: PracticalHeightLimitsforTallTimberBuildingsSession#:STR5a Presenter:PatriciaWilbur,S.C.(Steven)Yang,MichaelBartlett,

HanpingHong

Expectedkeyoutputandpotentialimpactofresearch

‐ Detailedwindloadanalysis‐ Determinationofsuitablestructuralformsfortimberandhybridtimber‐concreteconstruction‐ Designguidelinesformasstimberandhybridtimber‐concreteconstruction‐ NBCCStaticdesigncriteriaformasstimberconstruction

References

Holmes,J.D.(2007).WindLoadingofStructures.CRCPress.

Ashtari,S.(2012).In‐planeStiffnessofCross‐laminatedTimberFloors,UniversityofBritishColumbia.M.A.Sc.Thesis.

Ceccotti,A.,Sandhaas,C.,&Yasumura,M.(2010).SeismicBehaviourofMultistoryCross‐laminatedTimberBuildings.InInternationalConventionofSocietyofWoodScienceandTechnology.Geneva,Switzerland.  

Chapman,J.B.,Reynolds,T.,&Harris,R.(2012).A30levelcrosslaminatedtimberbuildingsystemandanalysisoftheEurocodedynamicwindloads.InProceedingsofthe12thWorldConferenceonTimberEngineering.Auckland,NewZealand.2012July16‐19.

Meleki,H.,I.SmithandA.Asiz(2012).Moistureinduceddeformationsinglulammembers‐experimentsand3‐dfiniteelementmodel.InProceedingsofthe12thWorldConferenceonTimberEngineering.Auckland,NewZealand.2012July16‐19.

Popovski,M.,&Karacabeyli,E.(2012).SeismicBehaviourofCross‐LaminatedTimberStructures.InProceedingsofthe12thWorldConferenceonTimberEngineering.Auckland,NewZealand.2012July16‐19.

Utne,I.(2012).NumericalModelsforDynamicPropertiesofa14StoreyTimberBuilding.NorwegianUniversityofScienceandTechnology.M.Sc.Thesis.

Page 24

Page 25: NEWBuildS WORKSHOP 2014 - newbuildscanada.canewbuildscanada.ca/.../01/NEWBuildS-Workshop-2014... · 5 Alex Cheng University of British Columbia 50 Hans-Erik Blomgren Arup, USA

2014NEWBuildSWorkshopPresentationSummary

ProjectCode:T2‐2‐C4 ProjectTitle: Capacitysurfaceofhybridtimber buildingsunderuniandbi‐directionalseismicexcitations

Session#:Str5b Presenter:S.C. (Steven) Yang,PatriciaWilbur,HanpingHong,MichaelBartlett

Backgroundandobjectives

Becauseofthepotentialenvironmentalbenefitsofwoodandtheadvancesinwoodtechnologyandmanufacturing,thefeasibilityofapplyingthecompositetimbermaterialforconstructingmid‐riseandtallbuildingsisunderextensiveinvestigation.Oneoftheissuesthatneedtobeaddressedfortheuseofcompositetimbermaterialsintallbuildingconstructionisrelatedtothesafetyandeconomicsofsuchconstructionunderseismicloading,whichisinvestigatedinthisstudy.Fortheinvestigation,designedbuildingsof10storiesheightindifferenthybridmaterialsystemsareconsidered;nonlinearstaticandincrementaldynamicanalysesofthebuildingsunderseismicexcitationsarecarriedout.

Thetwomainobjectivesofthisstudyare:

Toprovideaninsightintothebalancebetweenconnectioncapacityandcapacityofthestructuralmembersandperformanceoftimber‐basedbuildings.

Tocharacterizetherecord‐to‐recordvariabilityofthestructuralresponsesandevaluatetheductilecapacityoftalltimberbuildingsbasedonnonlinearstaticpushoverandincrementaldynamicanalysisunderseismicexcitations.

Researchmethod/approach

Thedesigned10storesbuildings(P.C.Wilbur.,2014),whicharelocatedatVancouverB.C.,areconstructedintofiniteelementmodelsthroughANSYS,withthedetailedconsiderationofmaterialnonlinearity,especiallythewoodmaterialanisotropyandconnectionmoment‐rotationbehavior.Nonlinearstaticpushover(NSP)andincrementaldynamicanalysis(IDA)areusedtoinvestigatethenonlinearbehaviorofthebuildings.Thegroundmotionrecordsareselectedbasedonthedeaggregationofseismichazard(HongH.P.andGodaK.,2006)forVancouvertocarryouttime‐historyanalysis.TheseismicexcitationsarescaledinIDAproceduretoobtainthecapacitycurvesofthebuildingsunderuni‐andbi‐directionalseismicexcitations.

Summaryofresultsto‐date

Thecapacitycurvesofdifferenthybridsystembuildings,definedbytheforce‐deformationrelationship,wereobtainedthroughNSPandIDAproceduresateachconsidereddirection.Accordingly,the3‐Dplotsdefiningthecapacitysurfacesofthebuildingshavebeenconstructedtoestimatethefailuremodesofthebuildings,andcomparedwiththoseobtainedforbuildingsofequalfootprintandheightbutdesignedusingreinforcedconcreteandstructuralsteel.Thecomparisonshowsthattimber‐basedstructureswithductileconnectionshaveaductilebehavior.Besides,thedifferentnonlinearbehaviorsofthebuildingsinstaticanddynamicanalyseswereinvestigated.Itshowsthatthecapacityandductilityofconnectionshasaninfluenceonthecapacitycurvesofthebuildings.

Page 25

Page 26: NEWBuildS WORKSHOP 2014 - newbuildscanada.canewbuildscanada.ca/.../01/NEWBuildS-Workshop-2014... · 5 Alex Cheng University of British Columbia 50 Hans-Erik Blomgren Arup, USA

2014NEWBuildSWorkshopPresentationSummary

Figure

Expectedkeyoutputandpotentialimpactofresearch

Thestructuralanalysisresultswouldbeusedinfurtherstudy:

Todevelopprobabilisticmodelforthecapacitycurveunderseismicexcitations. Toestimateannualfailureprobabilityofbuildingsbyusingthecapacitycurveandthesite

specificseismichazard. Toelaboratepossibledesigncodeimplementation.

Reference

[1]. P.C.Wilbur.(2014).“PracticalHeightLimitsforTallTimberBuildings.”CivilandEnvironmentalDepartment,UniversityofWesternOntario,London,ON

[2]. ANSYSMultiphysics.Release14.5.(2013).ANSYSInc.,Canonsburg,PA[3]. Hong,H.P.andGoda,K.(2006).“Acomparisonofseismic‐hazardandriskdeaggregation.”

BulletinoftheSeismologicalSocietyofAmerica,96(6),pp.2021‐2039.

a).Finiteelementmodel b).Acapacitysurfaceofdesignedtimber‐basedbuilding

Page 26

Page 27: NEWBuildS WORKSHOP 2014 - newbuildscanada.canewbuildscanada.ca/.../01/NEWBuildS-Workshop-2014... · 5 Alex Cheng University of British Columbia 50 Hans-Erik Blomgren Arup, USA

2014NEWBuildSWorkshopPresentationSummary

ProjectCode:T1–3–C1 ProjectTitle: LocalizedRollingShearReinforcementofCLTSystemsSession#:2 Presenter:Tzu‐Hsien(Wallace)Shih

Backgroundandobjectives

Woodisanorthotropicmaterial.Ithashighmechanicalpropertiesalongthelongitudinaldirectioncomparedtothoseintheothertwoorthogonaldirections.Oneoftheweakeststrengthpropertiesofwoodistherollingshearstrength.Itisthelateralshearstrengthonthelongitudinal‐radialplane.Intheoutofplanebendingapplicationsofavalueaddedcross‐laminatedtimber(CLT)product,rollingshearstrengthcangoverntheirdesigns.Asaresult,improvingtherollingshearcapacityofCLTwillbeakeytoenhancetheperformanceofCLT

Researchmethod/approach

Todevelopthefundamentalunderstandingontheimprovementoftherollingshearcapacity,CLTproductshouldbetestedexperimentally.InCLTfloorsystems,sinceconcentratedshearforcescanoccuraroundthecolumnsandsupports,highercompressivestressandrollingshearfailurealsohappenedaroundthesezones.Asareinforcementtechnique,woodendowelswillbeusedandembeddedonthecornersofCLTpanels,perpendicularlytolayers.Dowelsmayincreasetheresistanceofrollingshearstress.Size,numbersandconfigurationofthedowelswillbeconsidered.Testswillbedesignedtoresistuniaxialloadfirst.Furthermore,finiteelementmethodwillbeusedtosimulateandconductnumericalanalysisinordertocomparewiththeexperimentalresults.

Summaryofresultsto‐date

Experimentdesignisunderprocessnow.TheexperimentisplannedtostartinJune.Duetothefirstyearofcoursestraining,resultsarelimited.

Expectedkeyoutputandpotentialimpactofresearch

Woodendowelswillprovidemoreresistancetothefibersagainstrollingshearstress.Thecharacteristicofdowelswhicharemadealonggraindirectionmayalsoprovidereinforcementagainstperpendiculartograincompressionfailuretoresistcompressionforcesfromthecolumns.Finally,woodendowelsarelow‐costfasteners.Thatmeanswithlittleextracost,theefficiencyoftheuseoftimberstructureswillberaised.

Page 27

Page 28: NEWBuildS WORKSHOP 2014 - newbuildscanada.canewbuildscanada.ca/.../01/NEWBuildS-Workshop-2014... · 5 Alex Cheng University of British Columbia 50 Hans-Erik Blomgren Arup, USA

2014NEWBuildSWorkshopPresentationSummary

ProjectCode:T2‐1‐C4 ProjectTitle: ContinuityConnectionsforCLTPlatesinHybridSuperstructuresSession#:CB2 Presenter:MasoudSadeghi

Backgroundandobjectives

CrossLaminatedTimber(CLT)panelsareverydesirablestructuralmaterialsandwithhighstrengthand stiffness, they have emerged as possible high‐rise structural area elements. Unfortunatelyhowever,goodasCLTmightbe,itcannotbeusedeffectivelywithoutaffordableandeffectivewaysoffasteningpieces together topossess thestrengthrequiredtosustain the loads involved.ThegoaloftheresearchistodevelopCLTplate‐to‐platejointingmethodsthatenablecreationofcontinuousslabsystems.SuchmethodsaretermedContinuityConnectionsthatcantransferthree‐dimensionalthrust,shearandmoment forcesassociatedwithULSandSLSperformancesofslabs. Although focus isonfloorslabsthatalsofunctionasdiaphragms,thejointingtechniquesenvisagedwouldalsobesuitablewithorwithoutmodificationforslabsingeneral(e.g.highperformanceshear‐walls).

Researchmethod/approach

ToevaluatetheinfluenceoftheconnectionsonthevibrationalserviceabilityperformanceoftheCLTflooring systems, a series of ambient vibration experiments have been carried out on the flooringsystemsmade from 2 CLT panels and then focuswas on the ability of the common types of joints(Half‐lappedandSingle‐splinejoints)tocarrytheloads.IntendistoimprovethebehaviourofthesejointsandconsequentlyCLTdiaphragmsfunctionasasubstituteforreinforcedconcretediaphragmsinhigh‐riseandhybridstructures.Theresearchmayleadtoaninnovativetypeofconnection.

Summaryofresultsto‐date

Sofar,anumberofvibrationalandlateralsheartestshavebeencarriedout.Resultsofvibrationtestsshow that panel‐to‐panel joints greatly affect the response characteristics ofmulti‐panel CLT floorsystems.Resultsofedge‐to‐edgein‐planeshearconnectiontestsinCLTslabsshowedthathalf‐lappedconnectionsperformedbetterthansplineconfigurationsintermsofStrength,stiffnessandductility.Placing washers in under heads of self‐tapping screws can significantly increase the capacities ofeither half‐lapped or single‐spline shear joints in CLT slabs. It also should be noted that someinadequacies exist in contemporary European Yield Model type methods for calculating designcapacitiesofself‐tappingscrewjointsinCLT.

Expectedkeyoutputandpotentialimpactofresearch

Results indicate thatwith somemethods it is possible to enhance the stiffness and strength of thementionedjoints.However,italsoneedstobeacknowledgesthatsuchconnectionshavebeenfoundto performpoorly in terms of out‐of‐plane behaviour of CLT slabs. This indicates need to considerfunctionality of connection methods from broad perspectives associated with performance ofsuperstructure systems, and not to simply focus on an isolated question like the in‐plane shearstrengthorstiffnessofconnections.

Page 28

Page 29: NEWBuildS WORKSHOP 2014 - newbuildscanada.canewbuildscanada.ca/.../01/NEWBuildS-Workshop-2014... · 5 Alex Cheng University of British Columbia 50 Hans-Erik Blomgren Arup, USA

2014NEWBuildSWorkshopPresentationSummary

ProjectCode:CB3 Project Title: Withdrawal Resistance and Embedment Strength ofFastenersinTimberandCLTPanels

Session#:2 Presenter:ShawnKennedy

Backgroundandobjectives

CSAO86StandardforEngineeringDesigninWoodpresentsdifferentdesignequationsforwithdrawalresistanceofwoodscrewsandlagscrewsintimberconnections.Thedowelembedmentstrengthoffastenersinsawntimberandglued‐laminatedtimberiscalculatedusingrelativedensityofwoodandthe fastener diameter. No design equations are presented in the CSA O86 for calculation of thewithdrawal resistance and the embedment strength in cross‐laminated timber (CLT) products.Therefore,thepresentresearchprojectisfocussedonthreemainobjectives:

1. Develop a design equation forwithdrawal resistance for threaded fasteners in sawn timberandglued‐laminatedtimber;

2. Evaluatevariousmodelsofdowelembedmentequationsforsawntimberandglued‐laminatedtimberanddeterminetheiraccuracy,and;

3. Developequations fordowelembedmentstrengthandwithdrawalresistanceof fasteners inCLT.

Researchmethod/approach

Research project included approximately 3000 tests on various species of sawn timber, glued‐laminated timber and CLT produced in Canada. Fasteners under study were lag screws and self‐drillingscrews.WithdrawaltestswereperformedinaccordancewiththeEuropeanstandardEN1382andtheembedmenttestswererealisedaccordingtoASTMD5764half‐holetestmethod.

Summaryofresultsto‐date

Thefollowingresultsandconclusionsarepresented.

1. The CSA O86 design equation for wood screws is chosen to determine the withdrawalresistanceofallthreadedfasteners.

2. Noneof theexistingdesignequationswere foundaccurate topredict thedowelembedmentstrength in sawn timber and glued‐laminated timber. Analysis of results indicated that thediameter greater than 6mm is not significantly related to the embedment strength. A newdesignequation,takingintoaccountthewoodrelativedensityonly,isproposed.

3. TheCSAO86woodscrewequationwasalsochosenforcalculationofwithdrawalresistanceofthreaded fasteners in CLT. Dowel embedment strength of fasteners in CLT can be obtainedwithtwoapproaches.FirstapproachispresentedintheUSeditionoftheCLTHandbook,whilethesecondapproachisappliedintheEuropeanstandard.

Expectedkeyoutputandpotentialimpactofresearch

AllresultsarebeingproposedtotheCSAO86TechnicalCommitteeforpotentialadoptioninthenexteditionofthedesignstandard.

Page 29

Page 30: NEWBuildS WORKSHOP 2014 - newbuildscanada.canewbuildscanada.ca/.../01/NEWBuildS-Workshop-2014... · 5 Alex Cheng University of British Columbia 50 Hans-Erik Blomgren Arup, USA

2014NEWBuildSWorkshopPresentationSummary

ProjectCode:T2‐15‐C5 ProjectTitle:DevelopmentofInnovativeHybridTimber‐SteelMoment‐ResistingFrameforSeismic‐ResistantHeavyTimberStructures

Session#:2 Presenter:RyanGohlich

Backgroundandobjectives

The goal of this project is to improve the seismic performance of heavy timber structures in highseismicareasbytakingadvantageofboththelightweightoftimberandthehighductilityofsteel.Thiswill be achieved through the development of an innovative hybrid timber‐steel moment‐resistingconnection that will act as a localizedmoment yielding hinge at the beam‐column interfaces. Sincewood is inherently brittle, it is not known for high seismic performance. With this connection, allseismicdamageandenergydissipationwillbeaccommodatedbythesteel,while the timbersectionswillbecapacitydesignedtoremainundamagedintheeventofanearthquake.Withtheimplementationofthisnewconnectionitwillbepossibletodesignmulti‐storeytimberstructureswithanachievableductilitycomparabletothatoftypicalsteelstructures.

Researchmethod/approach

A six‐storey prototype building located in Victoria, BC will be designed using response spectrumanalysis, assuming that all seismic energy will be dissipated by the steel moment connection. Aniterativeprocesswillbeundertakentochoosesectionsizesforthedesignofthewoodmembersandtoobtainanappropriateorderofmagnitudefortheloadsthattheproposedconnectionwillresist.

Innovativeconceptsforthedesignofthisreplaceablesteelmomentconnectionwillbedevelopedandevaluated with assistance from FPInnovation. This will involve the design of reliable high‐strengthconnections between the steel yielding link and the timber beam and column. Thiswill be themostchallenging aspectsof the research since the steel‐timber connections shoulddevelopnearly the fullmomentcapacityofthewoodmemberstobeefficient,andmustbedesignedtoavoiddamageintheseconnectionswhenthesteelyields.

Prototypesofafirststoreyconnectionwillbeconstructedandtestedinthelaboratorytoevaluatetheperformance of the system. Once the experimental behaviour of the timber‐steel connection is wellunderstood,a samplebuildingmodelwillbeconstructedusing thedevelopedhybridmoment frame.Thebehaviourofthisstructurewillbecomparedtothatofanequivalentsteelbuilding.

Summaryofresultsto‐date

Existing research in the area of steel links and hybrid timber‐steel moment connections has beenreviewedandprototypebuildingdesignisunderwaytoobtainrealisticdesignloads.

Expectedkeyoutputandpotentialimpactofresearch

Thekeyoutputof thisresearchwillbethedesignofan innovativehigh‐ductilitymomentconnectionthatwillimprovetheseismicperformanceofmid‐riseheavytimberstructures.Inaddition,thedynamicbehaviour of a structure using the proposed connection will be evaluated. The use of these newconnectionswillincreaseeaseofrepairandinitialerection,aswellasreducethecostofrehabilitationofthesestructuresafteraseismicevent.

Page 30

Page 31: NEWBuildS WORKSHOP 2014 - newbuildscanada.canewbuildscanada.ca/.../01/NEWBuildS-Workshop-2014... · 5 Alex Cheng University of British Columbia 50 Hans-Erik Blomgren Arup, USA

2014NEWBuildSWorkshopPresentationSummary

ProjectCode:T2–3–C4 ProjectTitle: DevelopmentofNovelConnectionSystemsforCLTInfilledSteelMomentResistingFrames

Session#: Presenter:JohannesSchneider

Backgroundandobjectives

WoodframebuildingsareallowedtobebuiltuptosixstoriesaccordingtothepresentBCbuildingcode.Combiningsteelandwoodinastructuralbuildingsystempresentsaveryefficientconstructionconcept.Firstattemptstocombinethosematerialsinabuildingshowedgreatperformanceinseismicevents.Theadvantageofatimbersteelhybridstructurecanbefoundinacceleratederectiontimeaswellaslessbuildingweight,whichresultsinlighterstructuralelements.

Researchmethod/approach

Toconnectasteelmomentresistingframewithacrosslaminatedtimber(CLT)wallshowthebiggestchallenge.Inordertoprovideenoughstiffnesstothesystem,butatthesametimebehaveductileunderwindloadsandinearthquakes,theconnectingelementbetweensteelframeandinfillwallhasbeenidentifiedasakeyelement.Themainchallengeistofindaconnectingsystemwhichwillbeoptimizedfortheapplicationinawood‐steelhybridstructure.

Summaryofresultsto‐date

Anumberofdifferentconnectorshavebeentestedwithdifferentloadingprotocols.Monotonicandcyclictestshavebeencompletedtoobtainamaximumrangeofdata.Byanalyzingthecommonlyavailablebrackettypeconnections(whichareappliedwithCLTbuildings)abigpotentialforimprovingtheconnectingmethodforahybridtimbersteelstructurewasdiscovered.Anewapproachwasfoundinatube‐typeconnection.Ahollowtubeincombinationwitharodboltedtothesteelframeperformedverywellundermonotonicaswellasundercyclicloadingprotocols.Thetubeconnectionprovidesanumberofadvantages.Itcanbeinstalledveryfast;stiffnesscanbeadjustedinasimplemanner,inspectionsoftheconnectionafterseismiceventscanbedonevisually,andincaseoffailureaneasyreplacementcanbedoneveryquicklyastheconnectionisdesignedthatonlythesteelpartfailsandtheCLTpaneldoesnotexperiencedamage.

Expectedkeyoutputandpotentialimpactofresearch

Thetestresultsof30tubeconnectionsofvariousdiameterswillbeanalyzedandcomparedwiththebrackettypeconnection.TheconnectiontestdatawillbeusedtomodeltheconnectionbehaviourwhichwillbeincorporatedinaFiniteElementmodeltoperformaparametricstudyonvariousfactors,suchasdiameter,tubewallthickness,androddiameter.Thefinalgoalistobeabletounderstandandmodelthisconnectionandbeabletoapplythatfortimber‐steelhybridsystems.

Page 31

Page 32: NEWBuildS WORKSHOP 2014 - newbuildscanada.canewbuildscanada.ca/.../01/NEWBuildS-Workshop-2014... · 5 Alex Cheng University of British Columbia 50 Hans-Erik Blomgren Arup, USA

 

  

1st International Keynote Speaker:   High‐rise timber buildings in Europe – projects, challenges, solutions and  future development 

 Dr. Stefan Winter, Technical University of Munich 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

'Holz 8' (= timber 8) in Mietraching, Germany   one of the highest timber buildings in Europe  

  

Owner: B&O design: Schankulla  Architects Munich.  

Engineering: bauart construction company, Munich.  Photo: Huber&Sohn, Bachmehring. 

Page 32

Page 33: NEWBuildS WORKSHOP 2014 - newbuildscanada.canewbuildscanada.ca/.../01/NEWBuildS-Workshop-2014... · 5 Alex Cheng University of British Columbia 50 Hans-Erik Blomgren Arup, USA

Technische Universität München Lehrstuhl für Holzbau und Baukonstruktion Univ.-Prof. Dr.-Ing. Stefan Winter

High-rise timber buildings in Europe – projects, challenges, solutions and future

development

Abstract

To start with a short explanation: Europe (in the sense of EU) is a sample of 27 member states, based on the European contracts responsible by themselves for all safety regulations, and therefore also for building regulations. In addition some of the member states are made up of more or less independent countries/regions, responsible by themselves for building regulations (e.g. in Austria or Germany). That’s the reason why we face so much different building regulations in Europe. And it is the reason for difficult and long lasting changes in regulations. But since the 90’s and especially since 2000 thinking starts to change, regulations changed and an increasing number of ‘nearly’ or high-rise multi-storey timber projects were realised, most of them not above eight storeys. In parts of Europe a real ‘hype’ started for new residentials and office projects in timber structure, partly supported by refurbishment and densification of housing and urban areas, e.g. in Zurich, Switzerland, and Munich, Germany. Projects in several European capitals will be demonstrated in the presentation.

But as up to now especially the ‘nearly’ high-rise buildings with more than 5 storeys are ‘outside’ of building regulations in some of the member states, exceptions in the area of fire regulations are necessary. To enable approvals and to avoid non-controllable cavity fires, massive timber (CLT, Glulam) or massive-timber/concrete hybrid constructions were chosen in many cases. Timber frame structures are also used but normally only in the range up to five storeys. As staircases are built in concrete, special investigations and structures are necessary to limit the vertical deformation of the timber structure, another argument for CLT. New projects will use also massive-timber staircase and elevator shaft – a first eight storey pilot project is presented.Facades are made out of mineral-wool based ETICs (based on technical approvals), ventilated claddings of all kind of materials and in some cases timber claddings are applied.

Experience demonstrates that the structural and fire design is a minor problem, but moisture safety requires more alertness. First damages in multi-storey hybrid buildings lift the finger to allocate attention to driving rain safety and quality control instruments.

Fire safety of the structures are given by fire resistance up to REI 90, even fire separating walls are tested and implemented. Most of the structures are using gypsum based claddings to improve fire resistance. But many architects and owners want to see even partly wooden surfaces to use the positive influence of timber to indoor climate, as well as haptic and optic quality. That gives another reason to use massive timber structures, sometimes also as composite structures, examples will be shown in presentation. In terms of fire safety problems mainly occur, when integrating HVAC, water and electrical installations. Missing approvals of fire shutters for timber structures or insufficient planning coordination causes mistakes and damages.

Challenges are in future the development of building regulations (including the ‘dream’ of an European Building Regulation), improvement of economic solutions, e.g. by increasing standardisation of details and prefabrication/industrialisation, further education of planners and builders not used to timber and ---- moisture safety concepts to provide long-term robustness!

KEYWORDS: high timber buildings, construction, fire safety, moisture risc, building regulations, further development

Page 33

Page 34: NEWBuildS WORKSHOP 2014 - newbuildscanada.canewbuildscanada.ca/.../01/NEWBuildS-Workshop-2014... · 5 Alex Cheng University of British Columbia 50 Hans-Erik Blomgren Arup, USA

2014NEWBuildSWorkshopPresentationSummary

ProjectCode:T3‐1‐C7 ProjectTitle: FireRiskAnalysisSession#:3 Presenter:XiaoLiandPingRao

Backgroundandobjectives

Performance‐based building fire safety design provides the possibility of awider use ofwood as abuildingmaterial.Butwoodisacombustiblematerial thusmoreattentionshouldbepaidtoensurethatthebuildingenvironmentissafe.AtCarletonUniversity,aquantitativefireriskanalysiscomputermodelCUrisk isbeingdeveloped toevaluate the fireperformanceofbuildings.Thisproject aims todevelopnewsubmodelor improveexistingsubmodelsso thatCUriskcanbeused toassess the firesafetyofmid‐risebuildingsunderdifferentconstructiontypes.

Researchmethod/approach

AseriesoffullyscaleexperimentaltestshavebeenconductedatCarletonUniversity.ThetestdataareusedtoimproveCUrisksubmodels.ThenCUriskisusedtocomparedifferencesamongbuildingsmadeofnoncombustibleandcombustiblematerials.Eventtreemethodisappliedtoconstructfirescenariostructuresforeachdesign.

Summaryofresultsto‐date

Basedonthefiretestresults,thecontributionoftimberstructuretotheroomfiredevelopmenthasbeen implemented into CUrisk. Amodule is added to the SmokeMovement submodel to take intoaccount the effect of combustible structure on the fire development. The fuel contribution of thetimberstructuretothefireisbasedonthecharringratesandcharringareaofthetimbermembers.NowCUriskisusedtoshowthecontributionofcombustiblestructureinvariousconstructiontypes,includingnoncombustible,light‐frametimber,protectedCLTandunprotectedCLTbuildings.CUriskisusedtoevaluatetheimpactsofbuildingareaandbuildingheightsonthefirerisks.Simulationresultsdemonstratethat increasingthebuildingheightto12‐storeydoesnot increaserisksandthereisnoincreaseinrisktolifeinalarge‐size6‐storeybuilding.

Expectedkeyoutputandpotentialimpactofresearch

TheCUriskmodelhastheabilitytoperformriskanalysisofvariousconstructiontypes,aswellastheimpactofbuildingsizeorbuildingareasonthefirerisk.ThestudydemonstratesthatCUriskcanbeused as an important tool to seek fire risk information of a proposed building, thus it can helpengineerstoevaluatebuildingfireperformanceanddesignbettersolutions.

Page 34

Page 35: NEWBuildS WORKSHOP 2014 - newbuildscanada.canewbuildscanada.ca/.../01/NEWBuildS-Workshop-2014... · 5 Alex Cheng University of British Columbia 50 Hans-Erik Blomgren Arup, USA

2014NEWBuildSWorkshopPresentationSummary

ProjectCode: ProjectTitle: FireBehaviourofCrossLaminatedTimberPanelsSession#:3 Presenter:AlejandroR.Medina

Backgroundandobjectives

Astheworld’sdesireforrenewableresourcescontinuestogrow,sodoestheresearcharoundthe globe involving wood products. The use of wood in building construction is greatly restrictedbecause of the material’s presumable low fire performance. The National Building Code of Canada(NBCC)currentlylimitsthenumberofstoreysandfloorareaofcombustiblebuildingconstruction.Myresearchstudyexamined3fullscaleroomfiresandmodifiedanumericalcomputermodeltodeterminethefireresistanceofCrossLaminatedTimberpanels.

Researchmethod/approach

During this studywe conducted3 full scalepartiallyprotectedCrossLaminateTimber (CLT)roomfiretests.Recenttestsbycolleagueshaveshownthatfullyprotectingtheinteriorroomsurfaceswithgypsumboardresultsincompletecontentburnoutwithoutwallorceilingfireinvolvement.OntheotherhandfullyunprotectedtestsproducedintensefireswithhighinvolvementofCLTwallandceilingpanels.

OurtestswereperformedonpartiallyprotectedCLTroomsinordertodeterminethemaximumpercentageofunprotectedsurfaceareathatwillresultinself‐extinguishmentaftertheroomcontentshavebeenconsumed.TemperatureofroomandpanelcrosssectionsaswellasHeatReleaseRate(HRR)wascollected.Thisdatawillbeusedtodeterminethepanels’charringrate,charringdepth,andoverallbehaviourofthefire.

A numerical 1‐dimensional heat transfer model has been created to determine the fireresistanceofCLT loadedwalland floorpanels.Thenumericalmodel takes intoconsiderationpanel’sheight,layerthickness,species,loadingcondition,firetypeandwhetherornotthepanelsareprotectedwithgypsumboards.ThistoolwillprovideengineersandscientistsaquickmethodtoevaluatethefireresistanceofCLTfloorsandwallstoaidtheminthedesignprocess.

Summaryofresultsto‐date

Eachofthethreetestsdifferedinthepercentageofunprotectedareaaswellasthenumberofwallsprotected.TheresultsshowthatCLTpanelscanbeusedsafelyinacompartmentaslongastheunprotectedinteriorsurfaceislimited.

Expectedkeyoutputandpotentialimpactofresearch

Ultimately,throughtheuseoftheoreticalaswellasexperimentaldata,thisstudywillprovideabetterunderstandingofCLTpanels’fireresistanceandaidonthefireresistancedesignofCrossLaminatedTimberpanels.

Page 35

Page 36: NEWBuildS WORKSHOP 2014 - newbuildscanada.canewbuildscanada.ca/.../01/NEWBuildS-Workshop-2014... · 5 Alex Cheng University of British Columbia 50 Hans-Erik Blomgren Arup, USA

2014NEWBuildSWorkshopPresentationSummary

ProjectCode:T3–4–C5 ProjectTitle: FirePerformanceofTimberConnectionsSession#:3 Presenter:Aaron AkotuahOhene

Backgroundandobjectives

Connections are critical areas in a building structure. They have to be designed to transfer loadsefficientlybetweenstructuralelements.Traditionaltimberconstructiontypicallyentailsconnectionsbetweentimberandsteelbuildingelementsandsuchaconnectionbehaviour innon‐fireconditionsareaddressedwellinstructuralbuildingcodes.Theperformanceofhybridsteel‐timberconnectionsin fire is evenmorecomplex sinceboth steel andwoodmaterialsbehavedifferently in response toelevated temperatures. Three types of connections; Concealed Shear tab, Exposed and Seatedconnectionsareinvestigatedinthisresearchwiththefollowingobjectives:

1.Todevelopafiniteelementmodelforsimulatingthefire‐resistancetestsofconnections

2.Todeterminetherelativefireresistanceofthedifferentconnectiontypes

3.Toexaminetheinfluenceofloadratioonthefireresistanceofallconnections

Researchmethod/approach

Experimentalworkofseveralfireresistancetestshadbeenalreadyconductedontheconnections.Afinite element model was then developed in this research to simulate the fire resistance tests.ABAQUS, a commercial finite elementprogramwas employed todo this. The fire andheat transferweremodelled appropriately as obtained from the test fire scenario (subjecting test assembly to astandard design fire)while the structural behaviourwasmodelled using appropriate stiffness andstrengthpropertiesoftheconnectionassembly.Thenumericalsimulationwasdoneasasequentiallycoupled thermal‐stress procedure where an applied load was maintained on the assembly andsubsequentlysubjectingittograduallyincreasingtemperaturesuntilultimatefailurewasreached.

Summaryofresultsto‐date

Connection Plate Bolt Diameter

(mm) Load ratio

(%)

Failure Time (mins)

Variation (%)

Test Model

Concealed 19.1 30 35 34.7 -0.86

100 15 13 -13.3

Exposed 19.1 60 25 27.7 +10.8

100 18 14.6 -18.9

Seated 12.7 60 34.5 35.5 +2.9

100 15 16.5 +10.0

Expectedkeyoutputandpotentialimpactofresearch

Therelativeperformanceofconnectionconfigurationsinfireconditionsdetermineshowconservativetheyare indesign for fire resistance.This canprovide simpleguidelines forbuildingdesignersandconstructors. Also,differentbolt sizes,numbers and configurations canbeperformedas a furtherparametric analysis in future models which can give rise to new recommendations for the fireresistanceofsuchconnections. Page 36

Page 37: NEWBuildS WORKSHOP 2014 - newbuildscanada.canewbuildscanada.ca/.../01/NEWBuildS-Workshop-2014... · 5 Alex Cheng University of British Columbia 50 Hans-Erik Blomgren Arup, USA

2014NEWBuildSWorkshopPresentationSummary

ProjectCode:T3‐7‐C2 ProjectTitle: InnovativeWaystoMakeCLTPanelsSoundAbsorptiveSession#:4 Presenter:BandaLogawa

Background and objectives  

With the growing interest in applications of cross‐laminated timber (CLT) as building materials, their 

acoustical properties have been the focus of much current research. While most of them are centered on 

sound‐transmission characteristics of CLT panels, there have been very few dedicated to analyze their 

sound‐absorption characteristics and how to optimize them. This project is aimed to investigate ways to 

improve the sound‐ absorption characteristics of the panels by integrating array of Helmholtz‐resonator 

(HR) absorbers into the panels and establish design guidelines for CLT‐HR absorber panels for various 

room‐acoustical applications. 

Research method/approach  

Existing theoretical models of HR absorbers with various neck shapes and dimensions are reviewed coded. 

Based on these models, prototype HR‐ CLT panels which satisfy sound performance targets and design 

criteria for various room‐acoustical applications will be manufactured and tested. The performance of 

these prototypes will then be compared to typical CLT panels currently installed in multiple buildings in BC 

as well as other commercial acoustic products. Three different measurement methods are considered to 

evaluate the sound absorption performance: impedance‐tube, spherical decoupling, and reverberation‐ 

room methods.  

Summary of results to‐date  

Several efforts have been done to measure and analyze sound absorption characteristics of exposed CLT 

surfaces in multiple buildings in British Columbia, investigate suitable methods and locations to measure 

both normal and random incidence sound absorption characteristics, studied the current manufacturing 

method of CLT panels, and create acoustic models of CLT‐HR absorber panels with various shapes and 

dimensions. Based on these results, prototype panels will be manufactured and tested in order to validate 

the theoretical models.  

Expected key output and potential impact of research  

Theoretical and experimental models, showing the relation between the dimensions of the HR absorbers, 

resulting absorption coefficient of the panels, and other relevant aspects of the panels (structural 

performance and airborne and flanking sound transmission) will be produced by the end of this project. 

Based on these models, design guidelines for CLT‐ HR absorber panels for various room‐acoustical 

applications will be established for future commercial consideration. 

Page 37

Page 38: NEWBuildS WORKSHOP 2014 - newbuildscanada.canewbuildscanada.ca/.../01/NEWBuildS-Workshop-2014... · 5 Alex Cheng University of British Columbia 50 Hans-Erik Blomgren Arup, USA

2014NEWBuildSWorkshopPresentationSummary

ProjectCode:T1‐4‐C1 ProjectTitle: DevelopmentofNon‐destructive(NDT)TechniqueforCLTGrading&QualityControl

Session#:4 Presenter: JianhuiZhou

Backgroundandobjectives

CLTpanelsaretypicallyusedasload‐carryingplateelementsinstructuralsystemssuchaswalls,floorsandroofs.Keycriticalcharacteristicssuchasin‐planeandout‐of‐planebendingstrength,shearstrengthandstiffnessmustbetakenintoaccountindesignsincetheyaffectnotjustsafetybutalsoserviceabilityperformancesuchasdeflectionandvibration.Therefore,accuratemeasurementofitselasticpropertiesisofgreatimportanceforpredictingthemechanicalbehaviorduringstructuraldesign.AswellonlinegradingofCLTpanelswillensurethateachpanelproducedmeetsthetargetdesignproperties.However,thestaticmethodsandcurrentNDTmethodshavesomelimitations.

Theobjectivesare, Toevaluatetheinfluenceofsupportconditiononthemeasurednaturalfrequencies,and

proposeasupportingsystemfortestingCLTpanel; Tocomparetheelasticpropertiesmeasuredusingtheproposedvibrationtesttechniqueand

thosemeasuredusingconventionalstaticmethods; Todevelopanalgorithmthatallowsidentificationofthethreecorrectnaturalfrequencies

frommeasuredspectrumsignals.

Researchmethod/approach

Theoreticalstudyonforwardproblemandinverseproblemofselectedboundarycondition Developmentofelasticconstantextractionalgorithmbyproposedvibration‐basedmethod

andstaticverification Identifythesensitivefrequenciesfromuptothreefrequencyspectra

Summaryofresultsto‐date

TheproposedelasticconstantsdeterminationmethodbymodaltestingunderSFSFiseffectivetomeasuretheelasticconstantsofCLTpanels.TheuseoftheSFSFboundaryconditionrenderstheprocessofidentifyingsensitivenaturalfrequencysimple.Withtheinitialpredictionofnaturalfrequencywithmodeorderandtheimaginarypartpatternofthefrequencyresponsefunction,thesensitivenaturalfrequenciescanbeefficientlyidentifiedfromthefrequencyresponsefunctions.TheExandEyvaluesdeterminedbytheproposedmethodagreewellwiththecorrespondingstaticvalues.Howeveritwasfoundthattheeffectsofsupportconditionsontheaccuracyofmeasuredelasticconstantsrequiresmoreinvestigation.TheGxyvaluemeasuredbytheproposedmethodisreasonablecomparedwithpublishedvalues,andwillneedtobecomparedwithvaluesmeasuredbystatictestmethodinfuturestudy.

Expectedkeyoutputandpotentialimpactofresearch

TheproposedmethodbedevelopedintoafastandreliableNDTmethodforCLTelasticconstantsmeasurementsandqualitycontrol.

Page 38

Page 39: NEWBuildS WORKSHOP 2014 - newbuildscanada.canewbuildscanada.ca/.../01/NEWBuildS-Workshop-2014... · 5 Alex Cheng University of British Columbia 50 Hans-Erik Blomgren Arup, USA

2014NEWBuildSWorkshopPresentationSummary

ProjectCode:T3–5–C2 ProjectTitle: VibrationalperformanceofCLTfloorSession#:4 Presenter:SaulHernandez

Backgroundandobjectives

Cross laminated timber (CLT) is a multilayer engineered wood product that can be produced in a wide range of thicknesses and lengths. European experience has shown that replacing heavy concrete floors with CLT slab is an efficient and cost effective application of CLT. When used in floor construction, proper design consideration must be applied in order to ensure satisfactory serviceability performance under human footstep impact.  

The objective  is  to examine  the  influence of end support conditions and panel‐to‐panel  joint on  the natural frequency,  static  deflection  and  damping  ratio  of  CLT  floor  systems. Ultimately the goal is to producerecommendationsoncalculationofnaturalfrequenciesofCLTfloorswithvarioussupportcharacteristics. 

Researchmethod/approach

To achieve the above objective,  it  is necessary to perform testing of CLT floors both  in the  laboratory, where support conditions can be carefully controlled and characterized, and in situ, to study the influence of ‘real life’ construction details.  

The methodology  is  presented  in  two  phases.  The  first  phase  consists  of  laboratory  tests  on  a  single‐span system. The second phase will consider a larger CLT floor structure in a double‐span configuration. End support conditions to be evaluated include support stiffness caused by various practical end support conditions such as load  from wall,  direct  fastening  using  screws  and  ledger.  The  present  activities  concentrate  on  laboratory experiments  to measure  the effect of  rotational  stiffness and  span on  the natural  frequency, damping, and static deflection of one‐way CLT panels.  In addition, vibration  tests will also  take place on CLT  floors  in CLT buildings under construction. The  results of  these  two phases of experimentation offer an understanding of how support conditions affect the natural frequency and damping of a CLT floor. Throughout the project, the impact modal testing approach will be used to measure the natural frequencies and damping of test floors. 

Summaryofresultsto‐date

Laboratory vibration tests of floor simply supported on two sides (SFSF) and four sides (SSSS): ‐ Natural frequencies identified. Leissa (1993) model gives accurate prediction of the first natural frequency of CLT  floors  supported on  two  sides  (SFSF). For  floors with  four  sides  supported and  small aspect  ratio (span to width), the SSSS model could provide reasonable predictions.  

In‐situ tests of two 12 meter double‐span CLT floors in a 3 storey CLT building: ‐ The  first natural  frequency was  identified  and predicted  accurately using  Leissa model  (assuming  single span of 6 meters). Further evidence is necessary to validate double‐span prediction models. 

Preliminary  results  are  promising  employing  vibration method  proposed  by  Sobue  and  Katoh  (1982)  to measure Ex, Ey and Gxy of CLT panels. 

Laboratory  end  support  condition  tests on  a  3‐layer CLT panel  supported on  two  sides;  applying  load on supported edge, direct fastening using wood screws, and with a ledger support. ‐ Applying  load  on  supported  edge  and  the  use  of  screws  cause  an  important  increase  on  the  natural frequency of the 3‐layer CLT panel supported on two opposite sides. Deflection, under a 1kN load at center, decreases as  the  load and  the number of wood  screws  increases.  Ledger  support has minimal effect on natural frequency and deflection. Damping ratio remains fairly consistent.  

Laboratory span tests;  ‐  A decrease in span causes an increase in natural frequency and a decrease in deflection under a 1kN center load. Damping ratio remains consistent. 

Expectedkeyoutputandpotentialimpactofresearch

This study will contribute to a fundamental understanding of the influence of support characteristics on natural frequencies  of  CLT,  such  as  support  stiffness  and  double‐span  system,  and  help  explain  the  discrepancies between predicted natural frequencies using various calculation methods and test values.  

Ultimately, it is expected that recommendations for calculation of natural frequencies and damping capacity of CLT floor systems for design use will be generated. 

Page 39

Page 40: NEWBuildS WORKSHOP 2014 - newbuildscanada.canewbuildscanada.ca/.../01/NEWBuildS-Workshop-2014... · 5 Alex Cheng University of British Columbia 50 Hans-Erik Blomgren Arup, USA

 

  

2nd International Keynote Speaker:   Building Envelope Performance of Wood‐Based Building Systems:  Research Perspective from the US 

Dr. Samuel Glass  U.S. Forest Products Laboratory, Madison, WI, USA 

 

 

Chamber for Analytic Research on Wall Assemblies  

exposed to Simulated weather (CARWASh) facility  

US Forest Products Laboratory 

Page 40

Page 41: NEWBuildS WORKSHOP 2014 - newbuildscanada.canewbuildscanada.ca/.../01/NEWBuildS-Workshop-2014... · 5 Alex Cheng University of British Columbia 50 Hans-Erik Blomgren Arup, USA

Building Envelope Performance of Wood-based Building Systems: Research Perspectives from the US

Sam Glass, US Forest Products Laboratory

Network for Engineered Wood-based Building Systems (NEWBuildS) Workshop 2014

Abstract

Building envelope design has key implications for the energy performance and durability of structures as well as for indoor air quality and occupant comfort. Wood-based structural systems offer a number of advantages for designing and constructing buildings that are energy efficient, environmentally responsible, attractive, comfortable, durable, and safe. One of the perceived disadvantages of wood-based construction, however, is vulnerability to moisture-induced damage. This presentation focuses on research aimed at improving building envelope moisture performance and durability.

In recent years energy efficiency requirements for buildings have undergone considerable changes in the United States. Trends related to building envelope requirements in the US will be highlighted. The presentation will discuss building envelope research needs from the perspectives of the US Forest Products Laboratory, the US Department of Energy’s Building America program, and the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE).

Several research projects on building envelope performance at the US Forest Products Laboratory will be highlighted. These include field studies of wood-frame test buildings near Seattle, Washington, in conjunction with APA–The Engineered Wood Association and Washington State University, and near Washington, DC, in conjunction with Home Innovation Research Labs. Also included is a project on moisture performance of cross-laminated timber wall assemblies.

Page 41

Page 42: NEWBuildS WORKSHOP 2014 - newbuildscanada.canewbuildscanada.ca/.../01/NEWBuildS-Workshop-2014... · 5 Alex Cheng University of British Columbia 50 Hans-Erik Blomgren Arup, USA

2014NEWBuildSWorkshopPresentationSummary

ProjectCode:T4‐2‐C10 Project Title : Characterizing Wind‐driven Rain Loadand theEffectiveness of Overhang on Reducing Wind‐driven Rain Wetting forMid‐riseBuildings

Session#:5 Presenter:UzzwalKumarDebNath &VincentChiu

BackgroundandobjectivesDrivingrainisoneofthemostimportantmoisturesourceaffectingbuildingfacades.Inordertoensurelong‐termdurabilityofhighlyenergyefficientandsustainablebuildings,itisimportanttoadvanceourknowledgeonthewind‐drivenrainloadanditsimpactonthebuildingenvelopeperformance.However,sofarthereisverylimiteddataontheamountofwind‐drivenrain.Theobjectivesofthisprojectare:

• ToquantifyWDRloadsondifferenttypesofbuildingsindifferentclimaticregions.• TodeterminetheeffectivenessofoverhangonthebuildingfacadeagainstWDR.• TodevelopamethodologytoquantifyWDRloadformid‐risebuildings.

Researchmethod/approach

• FieldmeasurementsofWDRonmid‐risebuildingsindifferentregions.• FieldmeasurementsofWDRonasix‐storybuildingfittedwithadjustableoverhangin

Vancouver.• AnalysisofHistoricalData(i.e.,WindDirection,WindSpeed,Rainfall)tocharacterizewindand

rainconditionsfordifferentclimaticregions.• Catchratiosandwallfactorsanalysesbasedonmeasureddatatoimprovetheexistingsemi‐

empiricalmodels.• CFDmodelingtogenerateaWDRdatabasetoprovidegeneraldesignguidelines.

Summaryofresultsto‐date

• Forallthreeregions(i.e.,Montreal,Fredericton&Vancouver),80%ofthetimetherainfallintensityislessthan2mm/hr.ForMontreal&Frederictonlessthan5%ofthetimeandforVancouverlessthan3%ofthetimetherainfallintensityexceeds4mm/hr.

• Forallthreeregions(i.e.,Montreal,Fredericton&Vancouver),thewindspeedtypicallyvariesintherangeof2m/sto8m/sandlessthan10%ofthetimewindspeedexceeds8m/s.Windspeedishigherduringrainhoursascomparedtoallhours.TheprevailingwinddirectioninMontreal,FrederictonandVancouveriswest,northandeastrespectively.

• Theamountofraindepositedonthebuildingsurfacevarieswithlocations.Thecornerandedgesreceivedthehighestamountofrain.

• Thecatchratiovarieswithrainevents,namelyrainfallintensity,windspeedandwinddirection;catchratiosincreasewiththeincreaseofwindspeedandhighercatchratioswhenapproachingwindisnormaltothefacade.

• ThewallindexcalculatedbytheISOstandardoverestimatesdrivingrainamount.Expectedkeyoutputandpotentialimpactofresearch

• ThisstudywillgenerateauniquesetofmeasurementstoquantifytheeffectivenessofoverhangandbettercharacterizetheWDRdistributiononmid‐risebuildingsfordifferentCanadianclimaticregions.

• Thisstudywillresultinanimprovedsemi‐empiricalmodeltoquantifyWDRloadonmid‐risebuildings.

• AvalidatedCFDmodeltogenerateaWDRdatabasewithdifferentbuildinggeometryandoverhangconfigurationstoprovideabetterquantificationofWDRloadonbuildingenvelopes.

Page 42

Page 43: NEWBuildS WORKSHOP 2014 - newbuildscanada.canewbuildscanada.ca/.../01/NEWBuildS-Workshop-2014... · 5 Alex Cheng University of British Columbia 50 Hans-Erik Blomgren Arup, USA

2014NEWBuildSWorkshopPresentationSummary

ProjectCode:T4‐5‐C10 ProjectTitle: Field test of hygrothermal performance of highly insulated wall assemblies

Session#: Presenter:SabrinaD’Ambra,LinWang,HuaGe

Backgroundandobjectives:

Cross‐laminated timber (CLT) panels have potential market in North America for building mid‐rise or even taller structures due to their good structural and fire safety performance, light weight, and prefabricated nature. To ensure long‐term durability when used in building enclosures, the hygrothermal performance of CLT wall assemblies needs to be evaluated in terms of wetting and drying potential. In the first phase of this project, a test wall consisting of sixteen 0.6 m by 0.6 m CLT panels made of five different wood species (or species groups) and four different wall assemblies was constructed. The CLT panels were initially wetted with the moisture content (MC) in the surface layers approaching or exceeding 30%, and monitored for MCs and temperatures at different depths over one year in a building envelope test facility located in Waterloo, Ontario. The drying behaviour of these panels was analysed and the measured MCs over time were compared to simulation results using a commercial hygrothermal program. The simulation results generally agree well with the field data at MCs below 26%. However, it was found that the hygrothermal simulation program tended to overestimate the MC in the centre of the panels by up to 5 to10%, and simulated MCs at locations deep into the CLT panels were not as responsive to changes in ambient conditions, as the measurements indicated for assemblies with high exterior permeance.  To be able to assess the long‐term hygrothermal performances of CLT constructions of various configurations in different climates, the hygrothermal model needs to be further improved. The objectives of the second‐phase of this project are: ‐ Further refine the WUFI model and investigate the discrepancy between simulations and 

measurements ‐ Sensitivity analysis of material properties, moisture loads, and climatic conditions ‐ Recommendations on the application of CLT construction in different climatic conditions and its use 

in combination with different materials 

Research method/approach:  

‐ Hygrothermal simulations using WUFI Pro  

‐ Sensitivity analysis: variation of material properties, variation of moisture loads, and climatic 

conditions 

‐ Comparison between simulations and measurements 

Summaryofresultsto‐date:

‐ Sensitivity analysis showed that the sorption isotherm has the most significant influence on the simulation results among the hygric properties investigated i.e. vapour permeability, sorption isotherm, liquid transport coefficients 

‐ The effect of solar radiation as a sensitivity variable was not significant for the assemblies tested  

Expectedkeyoutputandpotentialimpactofresearch

‐ Procedure using WUFI Pro to model the hygrothermal performance of CLT wall assemblies 

‐ Recommendations on durable CLT construction under different climatic conditions  

Page 43

Page 44: NEWBuildS WORKSHOP 2014 - newbuildscanada.canewbuildscanada.ca/.../01/NEWBuildS-Workshop-2014... · 5 Alex Cheng University of British Columbia 50 Hans-Erik Blomgren Arup, USA

2014NEWBuildSWorkshopPresentationSummary

Project Code : T4-7-C10 Project Title : Developing Durable Wood-frame Building Envelope Systems for Net-zero Energy Ready Buildings

Session #5 – (D&E 3) Presenter : Michael Fox

Background and objectives:

Addressing climate change requires greater energy efficiency in building codes, which means that future building envelopes will be increasingly air tight and containing higher levels of insulation. These changes may have unintended effects on the long-term durability of wood-based components if the drying potential of the assembly is reduced. Wetting can occur as a result of interstitial condensation via air leakage and high relative humidity or as a result of rain leakage.

Research method/approach:

To investigate the risks associated with reduced drying capacity, six high R value wall assemblies were installed at a field test facility under controlled indoor conditions and natural exposure to exterior environment. Three of the six wall assemblies were designed to study the hygrothermal performance of 38 x 140 mm framed walls fitted with three types of exterior insulation (polyisocyanurate, XPS and Roxul mineral wool). The remaining walls were designed to investigate deep cavities filled with dense-pack cellulose or closed cell spray foam insulation (ccSPF). The conventional 38 x 140 mm framed wall served as a performance reference.

The test panels were instrumented with temperature, relative humidity, moisture content and heat flux sensors to investigate the hygrothermal performance of each wall through its 600 mm on-centre cavity space. Indoor air was injected at a constant flow rate to the insulation cavity to simulate air leakage during the winter of 2013. The air injection test was followed by an exterior water leakage test to simulate rain infiltration during the summer of 2013. These data were used to assess the condensation risks and drying potential of each wall assembly.

Summary of results to-date:

The background moisture content (MC) data indicated that most walls had a uniform distribution of moisture with the exception of the cellulose insulated walls. The moisture distribution within these walls was complicated by the stratification of moisture within the wall cavity with higher sheathing and plate moisture contents in the upper portions of the walls – the stratification was more exaggerated in the north facing walls.

The air injection test illustrated that the warmer OSB sheathing of the exterior insulated walls was less susceptible to wetting, which resulted in fewer interstitial condensation hours than the deep-cavity or datum wall types. Conversely, the lower framing-plates were most at-risk of moisture damage in the deep-cavity cellulose insulated walls due in part to the prolonged drying times.

The south facing I-Joist (S2) wall showed some promise for the deep cavity cellulose approach as its OSB sheathing moisture performance was lower than that of the south datum wall. Model analysis suggested that the lower OSB MC-values within this wall arose from lower initial moisture content of the cellulose insulation. These results suggest that the initial moisture content of the cellulose was highly variable within and between each of the I Joist and Double Stud test walls.

Expected key output and potential impact of research

To generate knowledge of the hygrothermal performance of energy-efficient wood-frame envelope systems, help the construction industry meet the increasing requirements for building energy efficiency, improve design and construction quality, and to improve confidence in the construction industry in using innovative building envelope assemblies and materials.

Page 44

Page 45: NEWBuildS WORKSHOP 2014 - newbuildscanada.canewbuildscanada.ca/.../01/NEWBuildS-Workshop-2014... · 5 Alex Cheng University of British Columbia 50 Hans-Erik Blomgren Arup, USA

2014NEWBuildSWorkshopPresentationSummary

ProjectCode: ProjectTitle: EnergyEfficiencyofMid‐riseBuildingSession#:Session5:Durability&Energy

Presenter:TanziaSharmin

Backgroundandobjectives

Buildings are major consumers of energy throughout the world, exceeding both the heavy industrial manufacturing and transportation sectors in energy consumption. Optimizing energy consumption at the operational phase of a building’s life cycle can reduce its impact on the environment. According to the International Energy Agency (IEA), building sector is one of the most cost-effective sectors for reducing energy consumption. In cold-climate regions, heating load consumes a significant portion of total building energy, such that, by designing and constructing energy-efficient wall systems, this consumption can be reduced.

The goal of this research is to evaluate innovative energy-efficient wall systems which can potentially accommodate requirements for both hygrothermal and thermal resistance while providing required structural capability for mid-rise wood frame construction.

Researchmethod/approach

In order to ascertain the impact on building components of a whole range of real-time conditions buildings are exposed to, field measurements are necessary. For this purpose, a full-scale testing house is constructed using selected innovative wall systems in order to evaluate the long-term hygrothermal and thermal resistance performance of the selected exterior wall systems exposed to natural outdoor weather and controlled indoor conditions. Regarding the structural performance, laboratory testing on wall load-bearing capacity is conducted.

Summaryofresultsto‐date

The R-values calculated from the collected field measurement data show that all the tested wall systems achieve the minimum assembly R-value (RSI) for wood frame construction of R-15.6 (RSI 3.45), as recommended by ASHRAE-90.1 (2007).

Expectedkeyoutputandpotentialimpactofresearch

Ultimately, this research is expected to help identify which wall system performs with the optimal balance between thermal and structural criteria for energy-efficient mid-rise wood-frame construction.

Page 45