19
NEEP 541 – Irradiation Creep Fall 2002 Jake Blanchard

NEEP 541 – Irradiation Creep Fall 2002 Jake Blanchard

Embed Size (px)

Citation preview

Page 1: NEEP 541 – Irradiation Creep Fall 2002 Jake Blanchard

NEEP 541 – Irradiation Creep

Fall 2002Jake Blanchard

Page 2: NEEP 541 – Irradiation Creep Fall 2002 Jake Blanchard

Outline Creep

Page 3: NEEP 541 – Irradiation Creep Fall 2002 Jake Blanchard

Effect of Irradiation on Thermal Creep

Solid lines=irradiated

Dashed lines=unirradiated

Page 4: NEEP 541 – Irradiation Creep Fall 2002 Jake Blanchard

Irradiation Creep Irradiation-enhanced

creep=augmentation of thermal creep

Irradiation-induced creep=development of creep under conditions under which thermal creep is absent

Page 5: NEEP 541 – Irradiation Creep Fall 2002 Jake Blanchard

Two Phenomena Dislocation climb=dislocations

absorb or emit point defects Dislocation glide=dislocation

motion by pure slip

climb

glide

Page 6: NEEP 541 – Irradiation Creep Fall 2002 Jake Blanchard

4 Mechanisms SIPN=stress-induced preferential

nucleation SIPA=stress-induced preferential

absorption PAG=preferential absorption glide Cascade-induced creep

Page 7: NEEP 541 – Irradiation Creep Fall 2002 Jake Blanchard

Notes Creep is anisotropic and volume

conservative Therefore, irradiation creep

requires preferential dislocation motion

Either loops are nucleated in preferential directions or they grow in preferential directions

Page 8: NEEP 541 – Irradiation Creep Fall 2002 Jake Blanchard

SIPN Assumes loops are preferentially nucleated on

planes perpendicular to the stress Loops grow by defect absorption Growth is independent of stress, so strain

should continue if stress is removed Hence model is applicable only to transients

S

kT

nb

dt

d

d

dc

3

9

2

Page 9: NEEP 541 – Irradiation Creep Fall 2002 Jake Blanchard

SIPN

S

kT

nb

dt

d

d

dc

3

9

2

# of interstitials in critical loop

Loop density

Swelling rate

Total dislocation

density

Page 10: NEEP 541 – Irradiation Creep Fall 2002 Jake Blanchard

SIPA Defects absorbed preferentially

by dislocations of particular orientations

Mechanism relies on interaction between defects and elastic stress fields around dislocations

Gdt

d c

Page 11: NEEP 541 – Irradiation Creep Fall 2002 Jake Blanchard

PAG Dislocations climb preferentially due

to defect bias

ELf

CDzCDzb

v

vf

vvviiDi

Net

climb velocit

y

Page 12: NEEP 541 – Irradiation Creep Fall 2002 Jake Blanchard

Correlations Typically:

64

n

A

SDBnc

th

cirr

Page 13: NEEP 541 – Irradiation Creep Fall 2002 Jake Blanchard

Dependence on Swelling Rate

Page 14: NEEP 541 – Irradiation Creep Fall 2002 Jake Blanchard

Interstitials vs. Vacancies

Vacancies (Em=1.63

eV)Interstitials

Em=0.09 eV

Page 15: NEEP 541 – Irradiation Creep Fall 2002 Jake Blanchard

316 SS

Accelerated thermal creep

Page 16: NEEP 541 – Irradiation Creep Fall 2002 Jake Blanchard

Irradiation Creep at Low T

20% CW 316 Stainless

Page 17: NEEP 541 – Irradiation Creep Fall 2002 Jake Blanchard

“Disappearing Creep”

Page 18: NEEP 541 – Irradiation Creep Fall 2002 Jake Blanchard

Why does creep disapear? Without swelling, dislocation and loop

microstructures become progressively more anisotropic (important to SIPA)

When voids begin to form, interstitials feed this microstructure faster than if voids weren’t present

Hence, irradiation creep accelerates as swelling begins

As swelling increases, microstructure becomes more isotropic (so SIPA stops)

Page 19: NEEP 541 – Irradiation Creep Fall 2002 Jake Blanchard

Effect of Irradiation on Rupture Life – austenitic steel

Larson-MillerT[C+log(tR)]=constan

t