84
在 NCTUns 平台上模擬 IEEE 802.16e Mobile WiMAX 網路 Simulating IEEE 802.16e Mobile WiMAX Networks Over the NCTUns Network Simulator 研 究 生:賴政凱 StudentCheng-Kai Lai 指導教授:王協源 AdvisorShie-Yuan Wang 國 立 交 通 大 學 資 訊 科 學 與 工 程 研 究 所 碩 士 論 文 A Thesis Submitted to Institute of Computer Science and Engineering College of Computer Science National Chiao Tung University in partial Fulfillment of the Requirements for the Degree of Master in Computer Science June 2008 Hsinchu, Taiwan, Republic of China 中華民國九十七年六月

在NCTUns平台上模擬IEEE 802.16e Mobile WiMAX網路

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

NCTUns IEEE 802.16e Mobile WiMAX
       
                    AdvisorShie-Yuan Wang 
     


A Thesis Submitted to Institute of Computer Science and Engineering
College of Computer Science National Chiao Tung University
in partial Fulfillment of the Requirements for the Degree of
Master in
Computer Science
June 2008
 
i.   
NCTUnsIEEE 802.16e Mobile WiMAX
Simulating IEEE 802.16e Mobile WiMAX Networks over the NCTUns Network Simulator



”” IntelNokia
2001 WiMAX 802.16802.16a802.16d
802.16e…2005 802.16e
MS (Mobile Station)
OFDMA
NCTUns IEEE 802.16e
BS (Base Station) MS IEEE 802.16e

OFDMA


ii.   
Simulating IEEE 802.16e Mobile WiMAX Networks over the NCTUns Network Simulator
StudentCheng-Kai Lai AdvisorShie-Yuan Wang
Institute of Computer Science and Engineering National Chiao Tung University
ABSTRACT
The IEEE 802.16 (WiMAX) standard, supported by several companies like Intel and Nokia, is one of the most popular technologies for broadband wireless accesses. It solves the last-mile problem with traditional wired networks and is expected to be the mainstream of the next-generation communication technology. The related specifications, such as 802.16, 802.16a, 802.16d, 802.16e, etc., are designed for WiMAX networks from 2001. Among these standards, the IEEE 802.16e provides mobility capabilities. It defines many kinds of MAC layer handover mechanisms so that the MSs (Mobile Stations) can retain connections when they perform roaming. Furthermore, at the physical layer, it uses the OFDMA technology to allow more flexible bandwidth allocation.
In this thesis, we develop the IEEE 802.16e protocol modules on NCTUns network simulator. In our design, we add BS (Base Station) and MS nodes, which can conveniently help users to construct IEEE 802.16e network topologies. In addition, our modules support hard handover services at the MAC layer and use the OFDMA technology at the physical layer. Based on our work, researchers can easily use simulations to perform their studies and save much experimental time.
Keywords: network simulator, IEEE 802.16e, BWA, WiMAX, hard handover, OFDMA.
iii.   


ABSTRACT ........................................................................................................................................ ii   ................................................................................................................................................ iii 
2.1.  ........................................................................................................................... 4 
2.2.  ............................................................................................................... 6 
2.2.1.  ............................................................................................... 6 
2.2.2.  ............................................................................................................... 7 
5.2.  .................................................................................................................62 
5.3.  .................................................................................................................68 
vi.   
2-1. IEEE 802.16 ....................................................................... 5 2-2. ....................................................................... 7 2-3. MAC PDU ..................................................................................... 8 2-4. Generic MAC Header ............................................................. 9 2-5. ............................................................................. 11 2-6. Network Entry .......................................................................... 15 2-7. ................................................................. 18 2-8. OFDMA ..................................................................... 20 2-9. ................................................... 21 2-10. OFDMA ....................................................................... 23 3-1. NCTUns ................................................................. 26 3-2. Nslobject class ............................................................................ 27 3-3. ........................................................................ 28 3-4. IEEE 802.16e .............................................. 28 3-5. BS MS .......................................................................... 29 3-6. MAC PDU IP ................................................................ 30 3-7. BS MS .......................................................................... 32 3-8. BS MS ............................................................... 37 3-9. .......................................................... 39 3-10. BS Round-Robin ............................................. 40 3-11. BS .................................................................... 41 4-1. UL-MAP IE DL-MAP IE ........................................ 45 4-2. UL-MAP IE DL-MAP IE class .................................................. 46 4-3. NbrBS NeighborBSs class ...................................................... 47 4-4. MS BS ...................................................................... 48 4-5. ............................................................................... 48 4-6. DLFP ................................................ 49 4-7. ................................................................. 50 5-1. ................................................................. 52 5-2. FEC UDP .................................................................... 54 5-3. .......................................................... 55 5-4. ping ............................................................. 56 5-5. ping (Host MS) ................................................ 56 5-6. ICMP (Host MS) .................................................... 57 5-7. ping (MS Host) ....................................................... 58
vii.   
5-8. ICMP (MS Host) .................................................... 59 5-9. ping (MS MS) ......................................................... 59 5-10. ICMP (MS MS) .................................................... 60 5-11. ............................................................... 61 5-12. ...................................................................... 62 5-13. QPSK 1/2 UDP ................................. 63 5-14. QPSK 3/4 UDP ................................. 64 5-15. 16QAM 1/2 UDP .............................. 64 5-16. 16QAM 3/4 UDP .............................. 65 5-17. 64QAM 1/2 UDP .............................. 65 5-18. 64QAM 2/3 UDP .............................. 66 5-19. 64QAM 3/4 UDP .............................. 66 5-20. FEC UDP () ......... 67
viii.   
2-3. (CID) ...........................................................................................11  2-4.  ......................................................................................12 
3-1. DL-PUSC  ............................................................................................38 
3-2. UL-PUSC  ............................................................................................38 
5-3. FEC UDP  ..................................................................53 
5-4. Mobile IP Agent  .................................................................................61 
5-5. BS MS  ...68 
5-6. BS greedy UDP MS  ...............................69 
5-7. BS MS  ...........................................70 
1.   
WiMAX (Worldwide Interoperability of Microwave Access
) (MAN)

WiMAX IEEE 802.16 IEEE 802.16 2001
12 10~66 GHz (Line
of SightLOS) 2003 1 IEEE 802.16a
2~11 GHz (Non Line of SightNLOS)
IEEE 802.16 2004 6 IEEE
802.16-2004 IEEE 802.16 IEEE 802.16a

2005 12 IEEE 802.16-2005 ( 802.16e Mobile
WiMAX)WiMAX IEEE 802.16-2004

(Physical Layer) PMP
Mesh SCSCaOFDM
OFDMA IEEE 802.16-2005 WiMAX
PMP OFDMA
(Cable Modem)
(DSL)



IEEE 802.16e
NCTUns
NCTUns

WiMAX IEEE 802.16e
IEEE 802.16
WiMAX


IEEE 802.16 2001
802.16 (2001)802.16c (2002)802.16a (2003)
802.16d (2004)802.16e (2005) 802.16f 802.16k
WiMAX
802.16d NCTUns
802.16e OFDMA 802.16e

IEEE Std 802.16 IEEE 802.16
10~66 GHz 1~3 (5 ) (Single
Carrier) 20~28 MHz 134 Mbps (
28 MHz ) IEEE Std 802.16 BS (Base Station)
SS (Subscribe Station)

IEEE Std 802.16a 802.16 2~11 GHz
4~6 (10 ) (Orthogonal Frequency Division
MultiplexingOFDM)
1.5~20 MHz70 Mbps (20 MHz)IEEE Std 802.16a
802.16 WiMAX
WiFi
IEEE Std 802.16d IEEE Std 802.16IEEE Std 802.16a IEEE Std 802.16c


IEEE Std 802.16e IEEE Std 802.16d SS
4.   
120
(Orthogonal Frequency Division Multiple Access
OFDMA) (Sub-channel)

OFDMA
2.1. IEEE 802.16 WiMAX
NS-2
Unix [9] NS-2
IEEE 802.16e OFDMA
WiBro
OFDMAQoS
OFDMA
IEEE 802.16d [10] IEEE 802.16e
OFDMA IEEE
802.16d
NS-2 Mobile WiMAX

NS-2 WiMAX
QualNet [12] OPNET Modeler [13]OPNET Modeler IEEE 802.16e [11]


OFDM WiMAX
NCTUns IEEE 802.16e Mobile WiMAX
OFDMA Mobile IP
Mobile WiMAX
IEEE 802.16 2-1.





(1) WirelessMAN-SC 10~66 GHz LOS

(2) WirelessMAN-SCa 2~11 GHz NLOS

(3) WirelessMAN-OFDM 2~11 GHz NLOS

(4) WirelessMAN-OFDMA 2~11 GHz NLOS
Mobile WiMAX

(1) SDUs (Service Data Units)
(2) SDUs PDUs (Packet Data Units)
(3) PDUs
(4) PDUs MAC
(5) PDUs
2-2.
(Asynchronous Transfer ModeATM) (Packet CS)
ATM ATM IEEE 802.16

IPv4IPv6IEEE Std 802.3/Ethernet IEEE Std 802.1Q


PDUs IEEE 802.16 (PMP Mode)
7.   
BS BS SS MS ( 802.16e
SS Mobile StationMS) BS
(Time Division DuplexingTDD) 802.16
BS
MS ( BS MS )BS
DL-MAP MS DL-MAP
PDUs CID (Connection ID) PDUs
PDUs ( MS BS ) MS
BS MS (OFDMA
) UL-MAP
payload CRC MAC header payload
CRC 2-3.
MAC Header Payload CRC (optional)
6 bytes variable 4 bytes
2,047 bytes
2-3. MAC PDU
IEEE 802.16e MAC header Generic MAC header MAC header without
payload Generic MAC header
2-4. 2-1.payload
(sub-header) Type Type
8.   
2-2.MAC header without payload
48 Type I Type II payload CRC
Type I
Type II Feedback Polling
2-4. Generic MAC Header
2-1. Generic MAC Header
9.   
2.2.2.2.
IEEE 802.16 PMP (Connection-oriented)
16 CID MS WiMAX
BS MS CIDs Basic CID Primary
Management CIDBasic CID Primary
Management CID Secondary
Management CID MS Managed MS BS
MS CID
BS Broadcast CIDMS BS
Initial Ranging CID
CID CID Transport CID
IEEE 802.16e CIDs 2.3.

10.   
8 2-5. IEEE 802.16d
47 MAC IEEE 802.16e 17
2-4.
IEEE 802.16e
WiMAX MS Network Entry
BS Network Entry MS
BS 2-6. MS Network Entry

MS DL-MAP DCD
MS BS MS

MS
BS MS MS BS
14.   
CDMA BS BS
(RNG-RSP) MS
(abort) (continue) MS
(success) BS
MS MS RNG-REQ BS BS
RNG-REQ RNG-RSP MS
Basic CID Primary Management CID CID

BS MS Basic CID SBC-REQ
SBC-RSP
BS MS REG-REQ REG-RSP
IP MS
Managed MS
BS MS DSA-REQ
DSA-RSP DSA-ACK MS Network Entry

15.   
16.   
BS MS RF OFDMA
MS MS
BS MS
CDMA BS
BS RNG-RSP
MS continue MS
success
BS MS BS


DCD/UCD MS

(2) MS BSServing BS ( MS BS)
MS BS MS MOB_SCN-REQ
Serving BS MS Serving BS
MOB_SCN-RSP MS MS
17.   
MSMS BS
MS MOB_SCN-REP Serving BS BS

MS BS (Serving BS) BS (Target BS)
(Break before Make)
MS Serving BS Target BS
(Make
before Break) Serving BS Target BS
IEEE 802.16e

(4)
(5)
BS MS Serving BS
MOB_MSHO-REQMOB_BSHO-REQMS
Target BS
MS
Serving BS MOB_HO-IND MS Target
BS MS Serving BS Resource_Retain_Time
MS


18.   
19.   
IEEE 802.16
SCSCaOFDMOFDMA SC 10~66 GHz LOS
2~11 GHz NLOS WiMAX
OFDM WiMAX OFDMA (TDD)
OFDMA
2.3.1.
(Guard Time)
(Inter-Carrier InterferenceICI)OFDMA TDMA
FDMA
2-8. OFDMA (subcarrier)
(sub-channel)IEEE 802.16e
OFDMA FFT-size 1285121,0242,048 Scalable
OFDMA FFT-size 10.94
kHz 2-5. WiMAX OFDM
[4]
User 1
User 2
User 4
User 3
Number of used data subcarriers 192 72 360 720 1,440
Number of pilot subcarriers 8 12 60 120 240
Number of null/guard band iers subcarr 56 44 92 184 368
Cyclic prefix or guard time T /T 1/32, 1/16, 1/8, 1/4
Oversampling rate F /BW
Depends on bandwidth: 7/6 for 256 OFDM, 8/7 for multiples
of 1.75 MHz, and 28/25 for multiples of 1.25 MHz, 1.5MHz, 2
MHz, or 2.75 MHz
Subcarrier frequency cing (kHz) spa 15.625 10.94
Useful symbol time µs 64 91.4
Guard symbol duration µs 8 11.4
OFDM symbol duration µs 72 102.9
Number of OFDM symbols in 5 ms frame 69 48.0
2-5. OFDM

64-QAM
QPSK
IEEE
802.16e OFDMA
Randomization PRBS (pseudo-random binary sequence)
FEC Encoding (Tail-biting convolution code)

1/22/33/4 FEC
2-6.
2-9.
2.3.3. Slot
OFDMA slot
(Permutation Zone)
PUSC (Partial Usage of Sub-channels) slot sub-channel
OFDMA symbols PUSC sub-channel
OFDMA symbols
BS MS MS
BS MS Burst OFDMA
2-10.[2]
(Frame Control HeaderFCH) DL frame prefix
1/2 QPSK DL-MAP
slots DL-MAP MS DL frame
prefix DL-MAP DL-MAP
burst sub-channel symbol
MS
BS burst
UL-MAPDCDUCD
DL
burst
23.   
24.   
BS MS
UL burst BS MS slots MS BS
UL-MAP UL burst MS
BS MS UL-MAP UL burst
MS

NCTUns

NCTUns

NCTUns
Host Interface
ARP FIFO 802.3 PHY Link
Host
Link
Link PHY 802.3
Host tunnel interface
kernel space kernel Switch Switch
Switch tunnel interface
26.   
NCTUns prototype NslObject
NslObject
Link
recv()Link put() get()
recv()send()
kernel space tunnel interface
kernel space interface send()
send()
NCTUns
802.16e BS (Base Station) 802.16e MS (Mobile
Station) 3-4.
28.   
802.16e MS
BS MS QoS
802.16e MS 802.16e
BSBSMS 3-5.
IEEE 802.16e
IPv4 IPv4
IPv4 802.16e
(PDU) PDU
IPv4
3-6. IP 802.16e
29.   
3.3.
NCTUns 802.16e BS Router
802.3 802.16e Interface
ARP FIFO 802.3 Phy Link
802.16e MS NCTUns
802.3 802.16e BS
802.3 Interface
MAC_80216e_PMPBS OFDMA_PMPBS CM Link MS
IEEE 802.16e MAC_80216e_PMPBS OFDMA_PMPBS

OFDMA_PMPBS
IP Ethernet ARP Ethernet
30.   
31.   

OFDMA_PMPBS
(Channel Model Module)
CM
3.3.2. 802.16e MS
802.16e BS
802.16e BS Interface MAC_80216e_PMPMS
OFDMA_PMPMS CM Link IEEE 802.16e
MAC_80216e_PMPMS OFDMA_PMPMS
802.16e MS MAC_80216e_PMPMS MS
OFDMA_PMPMS 802.16e BS ARP
FIFO MS BS
MAC_80216e_PMPMS
3-7. BS MS
3-7. BS MS
3.4. IEEE 802.16e


BS WiMAX BS DL-MAP
UL-MAP DCD UCD BS
MS WiMAX BS
32.   
33.   
BS DCD UCD MS
BS BS
MS MS MS
IP
IP

Basic Primary
IEEE 802.16e BS
MS Broadcast
Initial Ranging Broadcast BS
Broadcast MS Initial Ranging
MS BS MS
MS Initial Ranging

MS
BS MS QoS
BS MS QoS slot
MS IEEE 802.16e
QoS (UGSrtPSertPSnrtPSBE)
UGS (Unsolicited Grant Service)MS
BS
QoS
34.   


PRBS MS BS
BS
BS
IP
IP
PDU PDU
Cyclic Redundancy Check (CRC)

CRC

BS MS
BS BS IEEE 802.16e
BS MS BS
BS BS
BS BS BS
35.   
BS
BS

BS
MS MS
BS MOB_NBR-ADV BS
MS MS BS BS
IEEE 802.16e


MS IP WiMAX MS
BS IP
WiMAX Mobile IP MS Mobile IP
NCTUns BS Mobile
IP Agent Daemon MS Mobile Node Daemon WiMAX
Agent Daemon BS MS Mobile Node
Daemon Agent Daemon MS MS
BS MS BS Agent Daemon MS
BS Agent Daemon MS
Agent Daemon MS MS
BS BSMS BS ()
IP
IEEE 802.16e
BS MS BS MS

MS
BS MS
BS MS
BS MS
MS MS BS
MS
BS MS C++
MS Object BS MS Object MS
MS MS Object BS
BS MS
MS BS
MS Object Initial Ranging
MS ObjectBS
PDUBS
NCTUns kernel space
kernel BS

MS recv()
BS
BS BS

BS
DL-PUSC UL-PUSC 3-1.
3-2. DL-PUSC UL-PUSC IEEE 802.16e
37.   

38.   
BS
MS MS
slot
QoS UL-MAP IE MS
UL-MAP IE BS MS
BS UL-MAP IE
UL-MAP
3-9.
slots BS burst burst
DL-MAP DL-MAP slot
MS BS
Round-Robin 3-10.
NCTUns IEEE 802.16d
burst DL-MAP
39.   
IE DL-MAP IE MS DL-MAP IE

BS 3-11.
symbol symbol
symbol

MS BS
BS

MS MS BS
MS BS
BSRNG-RSPMS
BS MS
MS BS MS
MS MS
MS BS BS MS
41.   
42.   
MS

BS MS DL-MAP
BS MS


IEEE 802.16e OFDMA QPSK16QAM64QAM

Convolution Code 1/2
2/33/4 OFDMA Convolution Code Tail-Biting
(padding)
Tail-Biting [4]
Convolution OFDMA
slot
DLFP
NCTUns CM

43.   
slots DLFP BS
BS DL-MAP
BS DL-MAP slot DLFP
MS BS

IEEE 802.16e
MS DLFP DL-MAP
slotMS DL-MAP
MS DL-MAP
DL-MAP IE burst MS
DL-MAP
BS
44.   
Chapter 4. Implementation NCTUns IEEE 802.16e
IEEE 802.16e 802.16d
802.16d 802.16d [4]
IEEE 802.16e

4.1 IEEE 802.16e DL-MAP UL-MAP
DL-MAP IE UL-MAP IE
802.16e IE 802.16d IE
4-1.union IEDLMAP_IE_union
IE ULMAP_IE_union IE
OFDMA_DLMAP_IE OFDMA_ULMAP_IE IE
4-2. appendBitField() extractField()appendBitField()
extractField()

45.   
802.16e MS

BS MS BS 4-3
NbrBS BS NeighborBSs BS
BS MS NeighborBSs
MS BS NbrBS
PreambleIndex (Channel ID)CINR

46.   
(2) MS BS
MS BS BS MS
4-4.MS
BS MOB_SCN_RSP MS
0
MS
BS Interleaving Interval MS

47.   

Scan Duration = 2 (frames) Interleaving Interval = 1 (frames) Scan Iteration = 3 (times)
BS MOB_SCN_RSP

Start Frame = 0 Scan Duration = 2 Interleaving Interval = 1 Scan Iteration = 3
MS
(3)
BS BS
BS

4-5.
4.2 BS DL-MAP
slot DLFP DL-MAP
DLFP MS DL-MAP
DLFP 4-6. IEEE 802.16e
DLFP QPSK 1/2
Convolution Code DLFP slots
P re
am bl
DLFP DL-MAP
OFDMA slot
symbols DL-burst
DLFP DL-MAP burst
BS MS
CDMA CDMA
symbols
49.   
Chapter 5. Simulation Results IEEE 802.16e
Mobile IP MS
IEEE 802.16e
5-1.
5-1.


5-1. MS BS
Host BS 1400 bytes greedy UDP
Host MS 5-2.


QPSK 1/2
burst 7 slot 3 slot
UDP QPSK 1/2 slot 3 slot
slot
5-2. FEC
QPS 5ms K 1/2 BS 5.841 Mbps
6 623 5 747.6 / 5.841 /
5-3. FEC UDP
53.   

mac_header IEEE 802.16e mac_subheader
mac_subheader
0.973 0.974
5-2.
64QAM 1/2
Th ro
ug hp
ut (M
bp s)
[0] QPSK 1/2
[1] QPSK 3/4
[2] 16QAM 1/2
[3] 16QAM 3/4
[4] 64QAM 1/2
[5] 64QAM 2/3
[6] 64QAM 3/4
54.   
5-3. BS
MS Host BS ping ICMP
Host MSMS HostMS MS

10.000 Host ICMP-REQUEST MS
Host ICMP-REPLY TTL (Time-To-Live)
ping 1ms
ping 20.001
55.   
5-4. ping
64 bytes from 1.0.2.3: icmp_seq=1 ttl=63 time=5.98 ms 64 bytes from 1.0.2.3: icmp_seq=2 ttl=63 time=5.98 ms 64 bytes from 1.0.2.3: icmp_seq=3 ttl=63 time=5.98 ms 64 bytes from 1.0.2.3: icmp_seq=4 ttl=63 time=5.98 ms 64 bytes from 1.0.2.3: icmp_seq=5 ttl=63 time=5.98 ms 64 bytes from 1.0.2.3: icmp_seq=6 ttl=63 time=5.98 ms 64 bytes from 1.0.2.3: icmp_seq=7 ttl=63 time=5.98 ms 64 bytes from 1.0.2.3: icmp_seq=8 ttl=63 time=5.98 ms 64 bytes from 1.0.2.3: icmp_seq=9 ttl=63 time=5.98 ms --- 1.0.2.3 ping statistics --- 9 packets transmitted, 9 received, 0% packet loss, time 8000ms Rtt min/avg/max/mdev = 5.985/5.985/5.986/0.072 ms
64 bytes from 1.0.2.3: icmp_seq=1 ttl=63 time=9.98 ms 64 bytes from 1.0.2.3: icmp_seq=2 ttl=63 time=9.98 ms 64 bytes from 1.0.2.3: icmp_seq=3 ttl=63 time=9.98 ms 64 bytes from 1.0.2.3: icmp_seq=4 ttl=63 time=9.98 ms 64 bytes from 1.0.2.3: icmp_seq=5 ttl=63 time=9.98 ms 64 bytes from 1.0.2.3: icmp_seq=6 ttl=63 time=9.98 ms 64 bytes from 1.0.2.3: icmp_seq=7 ttl=63 time=9.98 ms 64 bytes from 1.0.2.3: icmp_seq=8 ttl=63 time=9.98 ms 64 bytes from 1.0.2.3: icmp_seq=9 ttl=63 time=9.98 ms --- 1.0.2.3 ping statistics --- 9 packets transmitted, 9 received, 0% packet loss, time 8000ms rtt min/avg/max/mdev = 9.985/9.985/9.986/0.081 ms
Ping program starts at
56.   
5-5. 50.004 60.005 ping
TTL 64 63 ICMP
BS RTT 50.004 5.98 ms
60.005 9.98 ms
BS 5 ms 50.004 ping
57.   
50.005 50.004 ICMP BS
60.005 ping Host ICMP-REQUEST
BS BS 60.005
BS 60.010
5-6.
MS ICMP MS
BS Host Host ICMP-REPLY
BS BS BS
5-8.
5-9. ping (MS MS)
59.   
(2) 5-10.
60.   
5-11. Router BS Host
MS BS (3) BS (5)MS BS (3) BS (4) BS
(5) MS BS 5-4.
BS Mobile IP MS MS
Care-of- address
MS
61.   
Host stg greedy UDP MS Host stcp
TCP MS
5-12.Host stg stcp
20 80 33
65 MS BS (3) BS (4)
BS (4) BS (5) TCP UDP
0 MS
BS


10 
15 
20 
25 
30 
Th ro ug hp
UDP
TCP

Transmit PowerBS 43 dBmMS 35 dBm
62.   
5-13.~5-19. FEC BS MS
X Y Throughput FEC
Convolution Code

5-16. 16QAM 3/4 1100
3.57 10 Convolution Code 94.3%
93.7% 1400
8.21 10 Convolution Code 47.7%
46.5%
WiMAX burst PDU
burst PDU
PDU burst PDU
PDU

BER 1.88E-04 5.77E-04 2.65E-03
Throughput with no error
(Mbps) 5.677 5.677 5.677
Rate of correctness
(%) 100 100 99.9
Th ro
ug hp
ut (M
bp s)
63.   
7.4
7.8
8.2
8.6
9
Th ro
ug hp
ut (M
bp s)
Simulation Time (sec)
QPSK 3/4 500 m 1100 m 1400 m 1700 m Distance (m) 500 1100 1400
BER 5.40E-05 8.64E-04 2.01E-03
Throughput with no error
(Mbps) 8.468 8.468 8.468
Rate of correctness
(%) 100 99.7 98.5
Distance (m) 500 1400 1700
BER 1.50E-04 5.52E-03 1.08E-02
Throughput with no error
(Mbps) 11.300 11.300 11.300
Rate of correctness
(%) 100 99.9 99.6
Th ro
ug hp
ut (M
bp s)
64.   
0
5
10
15
20
25
Th ro
ug hp
ut (M
bp s)
16QAM 3/4 500 m 1100 m 1400 m 1700 m
Distance (m) 500 1100 1400
BER 2.25E-04 3.57E-03 8.21E-03
Throughput with no error
(Mbps) 16.954 16.954 16.954
Rate of correctness
(%) 100 93.7 46.5
Distance (m) 800 1400 1700
BER 2.68E-03 1.81E-02 3.36E-02
Throughput with no error
(Mbps) 16.947 16.947 16.947
Rate of correctness
(%) 100 96.8 54.1
Th ro
ug hp
ut (M
bp s)
65.   
0
5
10
15
20
25
30
Th ro
ug hp
ut (M
bp s)
Distance (m) 800 1100 1400
BER 3.56E-03 1.06E-02 2.36E-02
Throughput with no error
(Mbps) 22.488 22.488 22.488
Rate of correctness
(%) 100 82.4 2.9
Distance (m) 500 800 1100
BER 7.75E-04 3.99E-03 1.19E-02
Throughput with no error
(Mbps) 25.420 25.420 25.420
Rate of correctness
(%) 100 91.5 8.9
Th ro
ug hp
ut (M
bp s)
66.   
FEC 5-20.
BS MS 600 FEC
5.2.

64QAM 3/4 1100

COST_231_Hata BS
MS MS

0
5
10
15
20
25
30
Th ro
ug hp
ut (M
bp s)
Distance (m)
QPSK12
QPSK34
16QAM12
16QAM34
64QAM12
64QAM23
64QAM34
67.   
Memory1GB RAM
802.16e BS 802.16e
MS MS BS
5-5.FEC
1.9 QPSK 1/2 FEC
FEC
21912 ~ 22168 KB
5-5. BS MS
68.   


QPSK 1/2 FEC UDP 511
13 FEC
64QAM 3/4 FEC 50
Simulation Time 40 seconds with coding
FEC Mode Time (sec)
5-6. BS greedy UDP MS
MS UDP
5-7. UDP
MS 2 BS MS
MS FEC
MS QPSK 1/2
FEC 511 MS 999
UDP QPSK 1/2
FEC UDP 999 UDP 1011
69.   
UDP
greedy UDP
BS MS
MS UDP

BS MS NCTUns
BS MS BS 254 MS
FEC 64QAM 3/4 MS
44 Kbps
9789 KbpsBSMS44 Kbps
222 MS NCTUns 254 MS

70.   
71.   
Chapter 6. Future Work NCTUns IEEE 802.16e
IEEE
802.16e


ARQ TCP TCP
ARQ



BS

73.   


BS MS

MS BS BS
Mobile IP MS BS
OFDMA



74.   
Reference ====================================================================
[1] IEEE Std 802.16-2004, “IEEE Standard for Local and Metropolitan Area Networks -
Part 16: Air Interface for Fixed Broadband Wireless Access Systems”, Oct. 2004.
[2] IEEE Std 802.16e, “IEEE Standard for Local and Metropolitan Area Networks - Part
16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems”, Feb.
2006.
[3] Slawomir and Pietrzyk, “OFDMA for Broadband Wireless Access”, Artech House,
May 2006.
[4] Jeffrey G. Andrews, Arunabha Ghosh and Rias Muhamed, “Fundamentals of WiMAX:
Understanding Broadband Wireless Networking”, Prentice Hall, Feb. 2007.
[5] Loutfi Nuaymi, “WiMAX: Technology for Broadband Wireless Access”, John Wiley,
Mar. 2007.
[6] Se-Ying Lin, “Simulating WiMAX PMP Networks over the NCTUns Network
Simulator”, Thesis of Master, June 2006.
[7] S.Y. Wang, C.L. Chou, C.H. Huang, C.C. Hwang, Z.M. Yang, C.C. Chiou, and C.C. Lin,
“The Design and Implementation of the NCTUns 1.0 Network Simulator”,
Computer Networks, Vol. 42, Issue 2, June 2003, pp.175-197.
[8] Bill Wilkie and Beth Cowie, “Viterbi Decoder Block Decoding - Trellis Termination
and Tail Biting”, XILINX, Feb. 2005.
[9] Taesoo Kwon, Howon Lee, Sik Choi, Juyeop Kim, and Dong-Ho Cho, “Design and
Implementation of a Simulator Based on a Cross-Layer Protocol between MAC
and PHY Layers in a WiBro Compatible IEEE 802.16e OFDMA System”, IEEE
Communications Magazine, 43 (12):136-146, Dec. 2005.
[10] S.M. Huang, Y.C. Sung, S.Y. Wang, and Y.B. Lin, “NCTUns Simulation Tool for
75.   
2007.
[11] J. Chen, et al. “The Design and Implementation of WiMAX Module for ns-2
Simulator”, WNS2 ’06, Oct. 2006.
[12] The QualNet software. available at http://www.scalable-networks.com/ .
[13] The OPNET modeler. available at http://www.opnet.com/ .