8
An information series from the national authority on concrete masonry technology NCMA TEK 14-23 1 DESIGN OF CONCRETE MASONRY INFILL TEK 14-23 Structural (2012) INTRODUCTION Masonry infill refers to masonry used to fill the opening in a structural frame, known as the bounding frame. The bound- ing frame of steel or reinforced concrete is comprised of the columns and upper and lower beams or slabs that surround the masonry infill and provide structural support. When properly designed, masonry infills provide an additional strong, ductile system for resisting lateral loads, in-plane and out-of-plane. Concrete masonry infills can be designed and detailed to be part of the lateral force-resisting system (participating infills) or they can be designed and detailed to be structurally isolated from the lateral force-resisting system and resist only out-of-plane loads (non-participating infills). Participating infills form a composite structural system with the bounding frame, increasing the strength and stiffness of the wall system and its resistance to earthquake and wind loads. Non-participating infills are detailed with structural gaps between the infill and the bounding frame to prevent the unin- tended transfer of in-plane loads from the frame into the infill. Such gaps are later sealed for other code requirements such as weather protection, air infiltration, energy conservations, etc. Construction of concrete masonry infilled frames is rela- tively simple. First, the bounding frame is constructed of either reinforced concrete or structural steel, then the masonry infill is constructed in the portal space. This construction sequence allows the roof or floor to be constructed prior to the masonry being laid, allowing for rapid construction of subsequent stories or application of roofing material. The 2011 edition of Building Code Requirements for Ma- sonry Structures (MSJC Code, ref. 1) includes a new mandatory language Appendix B for the design of masonry infills that can be either unreinforced or reinforced. Appendix B provides a straightforward method for the design and analysis of both participating and non-participating infills. Requirements were developed based on experimental research as well as field performance. Related TEK: Keywords: building codes, connectors, masonry infill, structural design MASONRY INFILL LOAD RESPONSE Several stages of in-plane loading response occur with a participating masonry infill system. Initially, the system acts as a monolithic cantilever wall whereby slight stress concentra- tions occur at the four corners, while the middle of the panel develops an approximately pure shear stress state. As loading continues, separation occurs at the interface of the masonry and the frame members at the off-diagonal corners. Once a gap is formed, the stresses at the tensile corners are relieved while those near the compressive corners are increased. As loading continues, further separation between the ma- sonry panel and the frame occurs, resulting in contact only near the loaded corners of the frame. This results in the composite system behaving as a braced frame, which leads to the concept of replacing the masonry infill with an equivalent diagonal strut, as shown in Figure 1. These conditions are addressed in the masonry standard. Figure 1—Concrete Masonry Infill as a Diagonal Strut

NCMA TEK 14-23 Design of Concrete Masonry Infillncma-br.org/pdfs/68/TEK 14-23r1.pdf · wall system and its resistance to earthquake and wind loads. ... In the event of infill failure

  • Upload
    hahanh

  • View
    217

  • Download
    1

Embed Size (px)

Citation preview

A n i n f o r m a t i o n s e r i e s f r o m t h e n a t i o n a l a u t h o r i t y o n c o n c r e t e m a s o n r y t e c h n o l o g y

NCMA TEK 14-23 1

DESIGN OF CONCRETE MASONRY INFILL

TEK 14-23Structural (2012)

INTRODUCTION

Masonryinfillreferstomasonryusedtofilltheopeninginastructuralframe,knownastheboundingframe.Thebound-ingframeofsteelorreinforcedconcreteiscomprisedofthecolumnsandupperandlowerbeamsorslabsthatsurroundthemasonryinfillandprovidestructuralsupport.Whenproperlydesigned,masonryinfillsprovideanadditionalstrong,ductilesystemforresistinglateralloads,in-planeandout-of-plane. Concretemasonry infills can be designed and detailedtobepartofthelateralforce-resistingsystem(participatinginfills)ortheycanbedesignedanddetailedtobestructurallyisolatedfromthelateralforce-resistingsystemandresistonlyout-of-planeloads(non-participatinginfills). Participatinginfillsformacompositestructuralsystemwiththeboundingframe,increasingthestrengthandstiffnessofthewallsystemanditsresistancetoearthquakeandwindloads. Non-participatinginfillsaredetailedwithstructuralgapsbetweentheinfillandtheboundingframetopreventtheunin-tendedtransferofin-planeloadsfromtheframeintotheinfill.Suchgapsarelatersealedforothercoderequirementssuchasweatherprotection,airinfiltration,energyconservations,etc. Constructionofconcretemasonryinfilledframesisrela-tivelysimple.First,theboundingframeisconstructedofeitherreinforcedconcreteorstructuralsteel,thenthemasonryinfillisconstructedintheportalspace.Thisconstructionsequenceallowstherooforfloortobeconstructedpriortothemasonrybeinglaid,allowingforrapidconstructionofsubsequentstoriesorapplicationofroofingmaterial. The2011editionofBuilding Code Requirements for Ma-sonry Structures(MSJCCode,ref.1)includesanewmandatorylanguageAppendixBforthedesignofmasonryinfillsthatcanbeeitherunreinforcedorreinforced.AppendixBprovidesastraightforwardmethod for thedesignandanalysisofbothparticipatingandnon-participatinginfills.Requirementsweredeveloped based on experimental research aswell as fieldperformance.

Related TEK: Keywords: buildingcodes,connectors,masonryinfill,structuraldesign

MASONRY INFILL LOAD RESPONSE

Severalstagesofin-planeloadingresponseoccurwithaparticipatingmasonryinfillsystem.Initially,thesystemactsasamonolithiccantileverwallwherebyslightstressconcentra-tionsoccuratthefourcorners,whilethemiddleofthepaneldevelopsanapproximatelypureshearstressstate.Asloadingcontinues,separationoccursattheinterfaceofthemasonryandtheframemembersat theoff-diagonalcorners.Onceagapisformed,thestressesatthetensilecornersarerelievedwhilethosenearthecompressivecornersareincreased. Asloadingcontinues,furtherseparationbetweenthema-sonrypanelandtheframeoccurs,resultingincontactonlyneartheloadedcornersoftheframe.Thisresultsinthecompositesystembehavingasabracedframe,whichleadstotheconceptof replacing themasonry infillwithanequivalentdiagonalstrut,asshowninFigure1.Theseconditionsareaddressedinthemasonrystandard.

Figure 1—Concrete Masonry Infill as a Diagonal Strut

2 NCMA TEK 14-23

Participatingmasonryinfillsresistout-of-planeloadsbyanarchingmechanism.Asout-of-planeloadsincreasebeyondtheelasticlimit,flexuralcrackingoccursinthemasonrypanel.Thiscracking(similartothatwhichoccursinreinforcedmasonry)allowsforarchingactiontoresisttheappliedloads,providedtheinfillisconstructedtighttotheboundingframeandtheinfillisnottooslender.

IN-PLANE SHEAR FOR PARTICIPATING INFILLS

Forparticipatinginfills,themasonryiseithermortaredtighttotheboundingframesothattheinfillreceiveslateralloadsimmediatelyastheframedisplaces,orthemasonryisbuiltwithagapsuchthattheboundingframedeflectsslightlybeforeitbearsupontheinfill.Ifagapexistsbetweentheinfillandtheframe,theinfillisconsideredparticipatingifthegapislessthan3/8in.(9.5mm)andthecalculateddisplacements,accordingtoMSJCCodeSectionB3.1.2.1.However,thein-fillcanstillbedesignedasaparticipatinginfill,providedthecalculatedstrengthandstiffnessarereducedbyhalf. Themaximumheight-to-thicknessratio(h/t)ofthepar-ticipatinginfillislimitedto30inordertomaintainstability.Themaximum thicknessallowed isone-eighthof the infillheight. TheMSJCCoderequiresparticipatinginfillstofullyin-filltheboundingframeandhavenoopenings—partialinfillsorinfillswithopeningsmaynotbeconsideredaspartofthelateralforceresistingsystembecausestructureswithpartialinfillshavetypicallynotperformedwellduringseismicevents.Thepartialinfillattractsadditionalloadtothecolumnduetoitsincreasedstiffness;typically,thisresultsinshearfailureofthecolumn. Thein-planedesignisbasedonabracedframemodel,withthemasonryinfillservingasanequivalentstrut.ThewidthofthestrutisdeterminedfromEquation1(seeFigure1).

inf

0.3cosstrut strut

w = Eqn.1

where:

inf

inf

4sin 2

4m net strut

strutbc bc

E tE I h

= Eqn.2

Thetermλstrut,developedbyStaffordSmithandCarter(ref.2)inthelate60s,isthecharacteristicstiffnessparameterfortheinfillandprovidesameasureoftherelativestiffnessof the frameand the infill.Design forces in theequivalentstrut are then calculated based on elastic shortening of thecompression-onlystrutwithinthebracedframe.TheareaofthestrutusedforthatanalysisisdeterminedbymultiplyingthestrutwidthfromEquation1bythespecifiedthicknessoftheinfill. The infill capacity can be limited by shear cracking,compressionfailure,andflexuralcracking.Shearcrackingcanbecharacterizedbycrackingalongthemortarjoints(whichincludes stepped and horizontal cracks) and by diagonaltensile cracking.Thecompression failuremodeconsistsof

eithercrushingofthemasonryintheloadeddiagonalcornersorfailureoftheequivalentdiagonalstrut.Thediagonalstrutisdevelopedwithinthepanelasaresultofdiagonaltensilecracking.Flexuralcrackingfailureisrarebecauseseparationatthemasonry-frameinterfaceusuallyoccursfirst;then,thelateralforceisresistedbythediagonalstrut. Asdiscussedabove,thenominalshearcapacityisdeterminedastheleastof:thecapacityinfillcornercrushing;thehorizon-talcomponentoftheforceintheequivalentstrutatarackingdisplacementof1in.(25mm);or,thesmallestnominalshearstrengthfromMSJCCodeSection3.2.4,calculatedalongabedjoint.Thedisplacementlimitwasfoundtobeabetterpredictorofinfillperformancethanadriftlimit. Generally, the infill strength is reached at lower dis-placementsforstiffboundingcolumns,whilemoreflexiblecolumns result in the strengthbeing controlled at the 1-in.(25-mm)displacementlimit.WhileMSJCCodeSection3.2isforunreinforcedmasonry,useofequationsfromthatsec-tiondoesnotnecessarilyimplythattheinfillmaterialmustbeunreinforced.TheequationsusedinMSJCCodeSection3.2aremoreclearlyrelatedtofailurealongabedjointandarethereforemoreappropriatethanequationsfromMSJCCodeSection3.3forreinforcedmasonry. Theequationsusedinthecodearetheresultofcomparingnumerousanalyticalmethodstoexperimentalresults.Theyarestrengthbased.Theexperimentalresultsusedforcomparisonwere a mixture of steel and reinforced concrete boundingframeswithclayandconcretemasonry.Whilesomemethodspresentedbyvariousresearchersarequitecomplex,thecodeequationsarerelativelysimple.

OUT-OF-PLANE FLEXURE FOR PARTICIPATING INFILLS

Theout-of-planedesignofparticipatinginfillsisbasedonarchingoftheinfillwithintheframe.Asout-of-planeforcesareappliedtothesurfaceoftheinfill,atwo-wayarchdevelops,provided that the infill is constructed tight to theboundingframe.Thecodeequationmodelsthistwo-wayarchingaction. Aspreviouslymentioned,themaximumthicknessallowedforcalculationfortheout-of-planecapacityisone-eighthoftheinfillheight.Gapsbetweentheboundingframeoneitherthesidesor topof the infill reduce thearchingmechanismtoaone-wayarchandareconsideredbythecodeequations.Boundingframemembersthathavedifferentcrosssectionalpropertiesareaccountedforbyaveragingtheirpropertiesforuseinthecodeequations.

NON-PARTICIPATING INFILLS

Becausenon-participatinginfillssupportonlyout-of-planeloads,theymustbedetailedtopreventin-planeloadtransferinto the infill. For this reason, MSJC Code Section B.2.1requirestheseinfillstohaveisolationjointsatthesidesandthetopoftheinfill.Theseisolationjointsmustbeatleast3/8 in.(9.5mm)andsizedtoaccommodatetheexpecteddesigndisplacements of the bounding frame, including inelasticdeformationduetoaseismicevent,topreventtheinfillfromreceivingin-planeloadings.Theisolationjointsmaycontain

NCMA TEK 14-23 3

fillermaterialaslongasthecompressibilityofthematerialistakenintoconsiderationwhensizingthejoint. Mechanicalconnectorsandthedesignoftheinfillitselfensurethatnon-participatinginfillssupportout-of-planeloads.Connectorsarenotallowed to transmit in-plane loads.Themasonryinfillmaybedesignedtospanvertically,horizontally,orboth.Themasonrydesignofthenon-participatinginfilliscarriedoutbasedontheapplicableMSJCCodesectionsforreinforcedorunreinforcedmasonry(Section3.2forunrein-forcedinfillandSection3.3forreinforcedinfillusingstrengthdesignmethods).Notethatthereareseismicconditionswhichmayrequiretheuseofreinforcedmasonry. Becausetheysupportonlyout-of-planeloads,non-partici-patinginfillscanbeconstructedwithfullpanels,partialheightpanels,orpanelswithopenings.Thecorrespondingeffectsontheboundingframemustbeincludedinthedesign.

BOUNDING FRAME FOR PARTICIPATING INFILLS

TheMSJCCodeprovidesguidanceonthedesignloadsappliedtotheboundingframemembers;however,theactualmemberdesignisgovernedbytheappropriatematerialcodeandisbeyondthescopeoftheMSJCCode. Thepresenceofinfillwithintheboundingframeplaceslocalized forces at the intersection of the framemembers.MSJCCodeSectionB.3.5helpsthedesignerdeterminetheappropriateaugmentedloadsfordesigningtheboundingframemembers.Framemembers inbaysadjacent toaninfill,butnotincontactwiththeinfill,shouldbedesignedfornolessthantheforces(shear,moment,andaxial)fromtheequivalentstrutframeanalysis.Intheeventofinfillfailure,theloadingrequirementonadjacentframemembersensuresadequacyintheframedesign,thuspreventingprogressivecollapse. Theshearandmomentappliedtotheboundingcolumnmustbeat least the results from theequivalent strut frameanalysismultipliedbyafactorof1.1.Theaxialloadsarenottobelessthantheresultsofthatanalysis.Additionally,thehorizontalcomponentof theforcein theequivalentstrut isaddedtothedesignshearfortheboundingcolumn. Similarly,theshearandmomentappliedtotheboundingbeamorslabmustbeatleasttheresultsfromtheequivalentstrutframeanalysismultipliedbyafactorof1.1,andtheaxialloadsarenottobelessthantheresultsofthatanalysis.Theverticalcomponentoftheforceintheequivalentstrutisaddedtothedesignshearfortheboundingbeamorslab. Theboundingframedesignshouldalsotakeintoconsider-ationthevolumetricchangesinthemasonryinfillmaterialthatmayoccurovertimeduetonormaltemperatureandmoisturevariations.Shrinkageofconcretemasonryinfillmaterialmayopengapsbetweentheinfillandtheboundingframethatneedto be addressed.Guidance for these volumetric changes isprovidedinMSJCCodeSection1.7.5.

CONNECTORS

Mechanicalconnectorsbetweentheboundingframeandthe infill provide out-of-plane support of the masonry, forboth participating and non-participating infills. Connectorsarerequiredonlyforthedirectionofspan(i.e.,atthetopand

bottomoftheinfillforinfillspanningvertically,forexample).The connectors must be designed to support the expectedout-of-planeloadsandmaynotbespacedmorethan4ft(1.2m)apartalongtheperimeteroftheinfill.Figure2showsanexampleofamechanicalconnectorcomposedofclipanglesweldedtothebottomflangeofthesteelbeam. Connectors for both participating and non-participatinginfills are not permitted to transfer in-plane loads from theboundingframetotheinfill.Forparticipatinginfills,in-planeloadsareassumedtoberesistedbyadiagonalcompressionstrut(seeFigure1),whichdoesnotrelyuponmechanicalconnectorstotransferin-planeload.Research(ref.3)hasshownthatwhenconnectorstransmitin-planeloadstheycreateregionsoflocal-izedstressandcancauseprematuredamagetotheinfill.Thisdamagethenreducestheinfill'sout-of-planecapacitybecausearchingactionisinhibited.

EXAMPLE 1: DESIGN OF PARTICIPATING MASONRY INFILL WALL FOR IN-PLANE LOADS

ConsiderthesimplestructureofFigure3.Theeastandwestsidewallsareconcretemasonryinfillslaidinrunningbond,whilethenorthandsouthwallsarestore-frontstypicalofconveniencestores.Steelframessupportallgravityloadsandthelateralloadintheeast-westdirection.Theboundingcolumns areW10x45s orientedwith the strong axis in theeast-westdirection.TheboundingbeamsabovethemasonryinfillareW10x39s.Themasonryinfillresiststhelateralloadinthenorth-southdirection. Usenominal8-in.(203-mm)concretemasonryunits,f'm = 1,500psi(10.34MPa),andTypeSPCLmortar.Assumehol-lowunitswithface-shellbeddingonly.Thetotalwallheightmeasures16ft-10in.(5.1m)totheroofwiththeinfillbeing16

Figure 2—Example of Mechanical Infill Connector

Clipanglesat4ft(1.2m)o.c.,weldedtothetopofthebottomflangeofbeam,butnotattachedtomasonry

4 NCMA TEK 14-23

ft(4.9m).Thebuildingisloadedwithawindloadof24lb/ft2 calculatedperASCE7-10(ref.6)inthenorth-southdirection.Theroofactsasaone-waysystem,transmittinggravityloadstothenorthandsouthroofbeams.InfillandboundingbeampropertiesaresummarizedinTables1and2. MSJCCodeSectionB.3.4.3requiresVn inftobethesmall-estofthefollowing:• (6.0in.)tnet inf f'm• the calculated horizontal component of the force in theequivalentstrutatahorizontalrackingdisplacementof1.0in.(25mm)

• Vn /1.5,whereVnisthesmallestnominalshearstrengthfromMSJCCodeSection3.2.4,calculatedalongabedjoint.

MSJC Code Section 3.2.4 requires the nominal shearstrengthnotexceedtheleastofthefollowing:• 3.8An mf ′

• 300An

• 56An+0.45Nvforrunningbondmasonrynotfullygroutedandformasonrynotlaidinrunningbond,constructedofopenendunits,andfullygrouted

• 90An+0.45Nvforrunningbondmasonryfullygrouted• 23Anformasonrynotlaidinrunningbond,constructedof

otherthanopenendunits,andfullygrouted

Asaresultofthewindloading,thereactiontransmittedtotheroofdiaphragmis:Reaction= 1/2(24lb/ft2)(16.83ft) = 202lb/ft(2.95kN/m)

TotalroofreactionactingononesideoftheroofisReaction= (202lb/ft)(30ft) = 6,060lb(27.0kN)

Figure 3—Convenience Store Layout for Design Examples 1 & 2

Infilled Wall Elevation

Plan View of Store

16ft(4.9m)

10in.(254mm)

W10x39

W10x45

8in.(203mm)Concretemasonryunits

30ft(9.14m)

30ft(9.14m)

Masonryinfill

W10x45column(typ.)

Storefront

PlanView

Storefront

NCMA TEK 14-23 5

Thisreactionisdividedevenlybetweenthetwomasonryinfills,sotheshearperinfillis3,030lb(13.5kN).

Usingtheconservativeloadingcaseof0.9D+1.0W, Vu=1.0Vunfactored=1.0(3,030lb)=3,030lb(13.5kN) To be conservative, the axial load to themasonry infill istakenaszero.

To ensurepractical conditions for stability, the ratioof thenominalverticaldimensiontothenominalthicknessislimitedto30forparticipatinginfills.Theratioforthisinfillis:h/t =192in./8in.=24<30Theratioislessthan30andtheinfillisthereforeacceptableasaparticipatinginfill.

ThewidthoftheequivalentstrutiscalculatedbyEquation1(MSJCCodeEquationB-1):

inf0.3cosstrut strut

w =

where λstrutisgivenbyEquation2(CodeEquationB-2).

Theangleoftheequivalentdiagonalstrut,θstrut,istheangleoftheinfilldiagonalwithrespecttothehorizontal.θstrut=tan-1(hinf / linf)=tan-1(192in./360in.)=28.1o

UsingEquation2,thecharacteristicstiffnessparameter,λstrut,forthisinfillisthen:  

   

     

=0.0392in.-1

Theresultingstrutwidthisthen:

inf 1

0.3 8.7 in.0.0392in. cos (28.1 )

w −= =×

Thestiffnessoftheequivalentbracedframeisdeterminedbyasimplebracedframeanalysiswherethestiffnessisbasedontheelasticshorteningofthediagonalstrut.Thestrutareaistakenasthewidthofthestrutmultipliedbythenetthicknessoftheinfill.

Thestiffnessis:2 2

inf inf inf3

cosstiffness = m net mAE w t E ld d

=

wheredisthediagonallengthoftheinfill,34ft(10.3m)inthiscase.

2

3

in.8.7 in. 2.5in. 1,350,000psi 30ft 12ftstiffness =

in.34ft 12ft

× × × ×

×

=56,030lb/in.(818kN/m)

Thenominalshearcapacity,Vn,isthentheleastof:• (6.0in.)tnet inf f'm=(6.0in.)(2.5in.)(1,500psi)=22,500lb• (56,030lb/in.)(1in.)=56,030lb• (3.8 mf ′ An)/1.5=[3.8 1,500 psi (30ftx30in.2/ft)]/1.5 =88,304lb• (300An)/1.5=[300(30ftx30in.2/ft)]/1.5=180,000lb• (56An+0.45Nv)/1.5=[56(30ftx30in.2/ft)+0.45x0]/1.5 =33,600lb

Vn=22,500lb(100kN)

Table 2—Bounding Frame Properties for In-Plane LoadsProperty: Value: NotesModulusofelasticityofboundingbeams,Ebb 29,000,000psi

(200,000MPa)Modulusofelasticityofboundingcolumns,Ebc 29,000,000psi

(200,000MPa)Momentofinertiaofboundingbeamsforbendingintheplaneoftheinfill,Ibb

209in.4 (8.7x10-5m4)

Boundingbeamstrongaxis

Momentofinertiaofboundingcolumnsforbendingintheplaneoftheinfill,Ibc

53.4in.4 (2.2x10-5m4)

Boundingcolumnweakaxis

Table 1—Infill PropertiesProperty: Value: NotesVerticaldimensionofinfill,hinf 192in.(4,877mm)Planlengthofinfill,linf 360in.(9,144mm)Specifiedthicknessofinfill,tinf 7.625in.(194mm)Netthicknessofinfill,tnet inf 2.5in.(64mm) Faceshellthicknessx2Specifiedcompressivestrengthofmasonry,f'm 1,500psi(10.34MPa)Modulusofelasticityofmasonryincompression,Em 1,350,000psi(9,300MPa)

6 NCMA TEK 14-23

Thedesignshearcapacityis:ϕVn =0.6x22,500lb=13,500lb(60kN) Thedesignshearcapacityfarexceedsthefactoreddesignshearof3,030lb(13.5kN),sotheinfillissatisfactoryforshear.

Additionally,theprovisionsofMSJCCodeSectionB.3.5re-quirethatthedesignerconsidertheeffectsoftheinfillontheboundingframe.Toensureadequacyoftheframemembersandconnections,theshearandmomentresultsoftheequiva-lentstrutframeanalysisaremultipliedbyafactorof1.1.Thecolumndesignsmustincludethehorizontalcomponentoftheequivalentstrutforce,whilethebeamdesignsmustincludetheverticalcomponentoftheequivalentstrutforce.Theaxialforcesfromtheequivalentstrutframeanalysismustalsobeconsideredinboththecolumnandbeamdesigns.

EXAMPLE 2: DESIGN OF PARTICIPATING MASONRY INFILL WALL FOR OUT-OF-PLANE LOADS

Designtheinfillfromthepreviousexampleforanout-of-planewindloadWof24lb/ft2(1.2kPa)perASCE7-10actingontheeastwall,usingTypeSPCLmortar,andunitswithanominal thicknessof8 in.(203mm).Assumehollowunitswithface-shellbeddingonlyandthattheinfillisconstructedtighttotheboundingframesuchthattherearenogapsatthetoporsidesoftheinfill.SeeTable3forframeproperties. MSJCCodeSectionB.3.6providestheequationsforthenominalout-of-planeflexuralcapacity.MSJCCodeEquationB-5requiresthattheflexuralcapacityoftheinfillbe:

0.75 2

inf inf 2.5 2.5inf inf

105 arch archn mq f t

l h

′= +

where:

0.252inf

inf

1 35arch bc bcE I hh

= <

0.252inf

inf

1 35arch bb bbE I ll

= <

αarch=0ifasidegapispresent, βarch=0ifatopgapispresent,and tinf < 1/8 hinf.

Usingtheconservativeloadingcaseof0.9D+1.0W,thedesignwindloadpressureis: q = 1.0W=1.0x24psf=24psf(1.15kPa) tinf = 7.625in.<(1/8)(192in.),OK

0.252

infinf

1arch bc bcE I h

h=

4 2 0.251 (29,000,000psi 248in. (192in.) )192in.

= × ×

= 21lb0.25(31N0.25)<35

0.252inf

inf

1arch bb bbE I l

l=

4 2 0.251 (29,000,000psi 45in. (360in.) )360in.

= × ×

= 10lb0.25(15N0.25)<35  

 

      =41.4psf(2.0kPa)

ThedesignflexuralcapacityisϕVn=0.6x41.4psf=24.8psf(1.2kPa) Thedesignflexuralcapacityexceedsthefactoreddesignwindloadpressureof24lb/ft2(1.2kPa),sotheinfillissatisfactoryforout-of-planeloading

NOTATIONSAn = netcross-sectionalareaofamember,in.2(mm2)D = deadload,psf(Pa)d = diagonallengthoftheinfill,in.(mm)Ebb = modulusofelasticityofboundingbeams,psi(MPa)Ebc = modulusofelasticityofboundingcolumns,psi

(MPa)Em = modulusofelasticityofmasonryincompression,

psi(MPa)f'm = specified compressive strength ofmasonry, psi

(MPa)h = effectiveheightoftheinfill,in.(mm)hinf = verticaldimensionofinfill,in.(mm)Ibb = momentofinertiaofboundingbeamforbending

intheplaneoftheinfill,in.4(mm4)Ibc = momentofinertiaofboundingcolumnforbending

intheplaneoftheinfill,in.4(mm4)linf = planlengthofinfill,in.(mm)Nv = compressiveforceactingnormaltoshearsurface,

lb(N)qn inf = nominalout-of-planeflexuralcapacityofinfillper

Table 3—Bounding Frame Properties for Out-of Plane LoadsProperty: Value: NotesMomentof inertiaofboundingbeamsforbending in theplaneof theinfill,Ibb

45in.4(1.9x10-5m4) Beamweakaxis

Momentofinertiaofboundingcolumnsforbendingintheplaneoftheinfill,Ibc

248in.4(1.0x10-4m) Columnstrongaxis

AllotherdesignparametersarethesameasusedinExample1.

NCMA TEK 14-23 7

unitarea,psf(Pa)t = nominalthicknessofinfill,in.(mm)tinf = specifiedthicknessofinfill,in.(mm)tnet inf = netthicknessofinfill,in.(mm)Vn = nominalshearstrength,lb(N)Vn inf = nominalhorizontalin-planeshearstrengthofinfill,

lb(N)Vu = factoredshearforce,lb(N)Vunfactored = unfactoredshearforce,lb(N)

W = outofplanewindload,psf(Pa)winf = widthofequivalentstrut,in.(mm)αarch = horizontalarchingparameterforinfill,lb0.25(N0.25)βarch = verticalarchingparameterforinfill,lb0.25(N0.25)λstrut = characteristic stiffness parameter for infill, in.-1

(mm-1)θstrut = angleofinfilldiagonalwithrespecttothehori-

zontal,degreesϕ = strengthreductionfactor

8 NCMA TEK 14-23

NCMA and the companies disseminating this technical information disclaim any and all responsibility and liability for the accuracy and the application of the information contained in this publication.

NATIONAL CONCRETE MASONRY ASSOCIATION13750SunriseValleyDrive,Herndon,Virginia20171

www.ncma.org

ToorderacompleteTEKManualorTEKIndex,contactNCMAPublications(703)713-1900

REFERENCES1. Building Code Requirements for Masonry Structures,TMS402-11/ACI530-11/ASCE5-11.ReportedbytheMasonryStandards

JointCommittee,2011.2. Stafford-Smith,B.andCarter,C.(1969)"AMethodfortheAnalysisofInfilledFrames."Proceedings of the Institution of Civil

Engineers,44,31-48.3. Dawe,J.L.,andSeah,C.K.(1989a)."BehaviorofMasonryInfilledSteelFrames."Canadian Journal of Civil Engineering,

Ottowa,16,865-876.4. Tucker,CharlesJ."InfillingtheFrameWithMasonry."Structure,May2012.5. Tucker,CharlesJ."ChangingMasonryStandards:MasonryInfills."Structure,Feb.2012.6. Minimum Design Loads for Buildings and Other Structures,ASCESEI7-10.AmericanSocietyofCivilEngineersStructural

EngineeringInstitute,2010.