13
NASA TECHNICAL TRANSLATION NASA TT F-14,933 THE FIRST AERODYNAMIC THREE-PHASE ELECTRIC POWER PLANT IN BALAKLAWA W. R. Sectorov (6, 0 (NASA-TT-3-14933) THE FIXST AERODYNAMIC N73-24268 THHEE-PHBSE ELZCTBIC POWda PLANT I N BALAKLABA (Scientific Translation Service) 13 p HC $3.00 CSCL 100 Unclas 63/11 04717 I Translation of: "I1 primo impianto elettrico trifase aerodinamico a Balaklawa", LrElettro- tecni.ca, Vol. 21, No. 23-24, August 15-25, 1934, pp. 538-542 - --. Reproduced by NATIONAL TECHNICAL DNFORMATION SERVICE US Deperfmenl of Commerce Springfield, VA. 22151 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. 20546 JUNE 1973

NASA TECHNICAL TRANSLATION NASA TT F-14,933 · PDF fileThe utilization of wind energy has been considered in Russia /538 ... The power produced by an aerodynamic generator may vary

Embed Size (px)

Citation preview

Page 1: NASA TECHNICAL TRANSLATION NASA TT F-14,933 · PDF fileThe utilization of wind energy has been considered in Russia /538 ... The power produced by an aerodynamic generator may vary

NASA TECHNICAL TRANSLATION NASA TT F-14,933

THE FIRST AERODYNAMIC THREE-PHASE ELECTRIC

POWER PLANT IN BALAKLAWA

W. R. Sectorov

(6, 0 (NASA-TT-3-14933) THE F I X S T A E R O D Y N A M I C N73-24268 THHEE-PHBSE ELZCTBIC POWda PLANT I N B A L A K L A B A ( S c i e n t i f i c T r a n s l a t i o n S e r v i c e ) 13 p HC $3.00 C S C L 100 U n c l a s

63/11 0 4 7 1 7 I Translation of: "I1 primo impianto elettrico trifase aerodinamico a Balaklawa", LrElettro- tecni.ca, Vol. 21, No. 23-24, August 15-25,

1934, pp. 538-542

- --. Reproduced by

NATIONAL TECHNICAL DNFORMATION SERVICE

US Deperfmenl of Commerce Springfield, VA. 22151

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. 20546 JUNE 1973

Page 2: NASA TECHNICAL TRANSLATION NASA TT F-14,933 · PDF fileThe utilization of wind energy has been considered in Russia /538 ... The power produced by an aerodynamic generator may vary

THE FIRST AERODYNAMIC THREE-PHASE ELECTRIC

POWER PLANT I N BALAKLAWA

W . R . S e c t o r o v

* The u t i l i z a t i o n o f wind energy h a s been c o n s i d e r e d i n R u s s i a /538

as p a r t o f a c o n s t r u c t i o n program o f e l e c t r i c power p l a n t s . It

was d e c i d e d t h a t wind ene rgy c o u l d b e used e f f i c i e n t l y o n l y i n

power p l a n t s o f l a r g e c a p a c i t y , such as were n e v e r b u i l t p re -

v i o u s l y .

Small wind ene rgy power p l a n t s produce c o n t i n u o u s c u r r e n t

and r e q u i r e banks o f s t o r a g e b a t t e r i e s t o c o n t r o l t h e ene rgy o u t -

p u t ; t h e y a r e , t h e r e f o r e , economica l ly u n s a t i s f a c t o r y . It i s n o t

p o s s i b l e i n p r a c t i c e t o u s e c o n t i n u o u s c u r r e n t w i t h s t o r a g e b a t -

t e r i e s f o r l a r g e c a p a c i t y power p l a n t s i f e n e r g y h a s t o b e t r a n s -

p o r t e d a c o n s i d e r a b l e d i s t a n c e . A s e r i e s o f s t u d i e s was t h e r e -

f o r e u n d e r t a k e n t o examine t h e p o s s i b i l i t y o f wind ene rgy u t i l i -

z a t i o n w i t h n o v e l s y s t e m s . A s a r e s u l t , t h e f e a s i b i l i t y o f

b u i l d i n g t h r e e - p h a s e aerodynamic g e n e r a t i n g p l a n t s o f t h e capa-

c i t y o f t h o u s a n d s o f kW was c o n s i d e r e d . The ene rgy produced

would b e added t o h i g h v o l t a g e n e t w o r k s , and t h e aerodynamic

power p l a n t s would o p e r a t e i n p a r a l l e l w i t h o t h e r g e n e r a t i n g

p l a n t s and e s p e c i a l l y w i t h h y d r o e l e c t r i c g e n e r a t o r s w i t h s t o r a g e

r e s e r v o i r s which c o u l d b e used a s a backup f o r aerodynamic

g e n e r a t o r s f o r p e r i o d s o f low wind.

* Numbers i n t h e margin i n d i c a t e p a g i n a t i o n i n t h e o r i g i n a l

f o r e i g n t e x t .

Page 3: NASA TECHNICAL TRANSLATION NASA TT F-14,933 · PDF fileThe utilization of wind energy has been considered in Russia /538 ... The power produced by an aerodynamic generator may vary

The power produced by an aerodynamic generator may vary in

practice within short time spans, due to rapid and considerable

variations in wind speed. This, however, would not damage the

network if many wind-operated power plants were working in paral-

lel. The data obtained showed that wind does not vary simulta-

neously in various locations, and therefore the overall integral

rate of power available from many wind generators connected to

each other should be fairly constant.

Before building high-capacity power plants, it was believed

necessary to build some experimental plants .of medium capacity.

The mobile propeller of a large wind motor has to be fast,

and fitted with few blades to make the propeller itself as light

as possible. Due to the considerable peripheral speed of the

blades, their profile has to be of a design capable of minimizing

aerodynamic losses. The dimensions of the propeller, and, there-

fore, also of the supporting structure, are fairly large. Ac-

cording to local conditions, a power output of 3000 - 5000 kW requires propellers of 100 m diameter. The design has to achieve

maximum mechanical resistance with minimum consumption of

materials.

The wind generator should also be able to function auto-

matically to avoid high operational expenses. The first experi-

mental plant of this type was built and operated in Balaklawa in

Crimea (Figure 1). Its power capacity is of 100 kW, which makes

it the largest plant of this type, and the first to use three-

phase current.

Crimea is the most suitable location for aerodynamic gen-

erators due to its economic conditions and wind pattern. The

plants of this type planned for the Crimea will operate in

parallel with thermoelectric plants and with one hydroelectric

Page 4: NASA TECHNICAL TRANSLATION NASA TT F-14,933 · PDF fileThe utilization of wind energy has been considered in Russia /538 ... The power produced by an aerodynamic generator may vary

p l a n t wi th a s t o r a g e

capac i ty o f 30 m i l -

l i o n cubic meters .

The average annual wind v e l o c i t y a t t h e

l o c a t i o n where t h e

exper imental p l a n t

of Balaklawa was b u i l t is 5.7 m/sec.

The p l a n t i n c l u d e s a

wind p r o p e l l e r of 30 m diameter propor-

t i oned f o r 130 kW of F igu re 1. General view of t h e Bala-

power, and an asyn- klawa power p l a n t

chronous gene ra to r of

1000 kW. Figure 2 shows t h e diagram o f a v e r t i c a l s e c t i o n of

t h e main p a r t of t h e p l a n t .

The g e n e r a t o r , t h e gea r s connect ing i t w i t h t h e wind pro-

p e l l e r , and t he au tomat ic systems are l o c a t e d i n t h e machine room

a t t h e t o p o f a suppor t ing s t r u c t u r e 25 m h igh (F igure 3 ) . The e l e c t r i c power, produced at a 220 V vo l t age , i s t r a n s m i t t e d (Fig-

ure 4) from t h e g e n e r a t o r , through s l i d i n g c o n t a c t s and c a b l e s , t o t h e t r ans fo rmer cab in l o c a t e d f a i r l y c l o s e l y on t h e ground.

There it is t ransformed t o 6.3 kW and t i e d i n t o t h e t r ansmis s ion

l i n e t o a steam t u r b i n e p l a n t of much h i g h e r capac i ty l o c a t e d

12 km away.

The wind p r o p e l l e r , 30 m i n d iameter , has t h r e e se l f - regu-

l a t e d blades b u i l t of wood and me ta l , and l i n e d w i t h a t h i n s t e e l

s h e e t . It i s p r e s e n t l y planned t o r e p l a c e them wi th complete ly

m e t a l l i c ~ .. p r o p e l l e r s - .~ of welded cons t ruc t ion . The t r a n s v e r s e . -~ ~ sec- .~

t i o n of t h e b lade has an aerodynamic p r o f i l e s i m i l a r t o t h a t of

a i r p l a n e wings. -~ -. --

%

Page 5: NASA TECHNICAL TRANSLATION NASA TT F-14,933 · PDF fileThe utilization of wind energy has been considered in Russia /538 ... The power produced by an aerodynamic generator may vary

Figure 2 . General s e c t i o n o f t h e machine room: - a - p r o p e l l e r b l a d e ; b - a x i s ; c - c o n t r o l s p r i n g s ; d - c . o n t r o l l e r 1 .evers ; e - r o l l e r s ; f - f r o n t suppor t wi th sphere.^; g - gea.r crown; h - g e a r s ; i - gea r s ; k - g e n e r a t o r ; 2 - s p h e r i c a l p i v o t ; m - a x i s ; n - guide r o l l e r s ; 0 - s t a r t i n g dev i ce ; p - s l i d i n g c o n t a c t ; r - r e l a y p a n e l s ; s - d i r e c t i o n a l rudder ; t - S UP=

p o r t i n g s t r u c t u r e

Page 6: NASA TECHNICAL TRANSLATION NASA TT F-14,933 · PDF fileThe utilization of wind energy has been considered in Russia /538 ... The power produced by an aerodynamic generator may vary

Figure 3 . Machine room

Each p r o p e l l e r (Figure 5 ) is

11 m long, 2 m wide a t t h e base , and 1 m wide a t t h e t i p ; t h e maximum th ickness of t h e p r o p e l l e r i s 0.68 m.

Each blade may r o t a t e on two b a l l bear ings around a s h a f t b u i l t wi th s t e e l t ub ing 35 cm i n diameter . The t h r e e axes of t h e blades are

connected by a l i g h t s t e e l s t r u c - t u r e , and a r e jo in t ed a t t h e base

Figure 4. E l e c t r i c dia- gram :

1 - asynchronous gener- a t o r ; 2 - s l i d i n g con- t a c t r e s i s t a n c e s ; 3 - 100 kVA t ransformer , 200/6300 V; 4 - c i r c u i t b reaker i n o i l ; 5 - automatic c i r c u i t break- e r ; 6 - s l i d i n g con tac t ; 7 - i n s e r t i o n device; 8 - d i r e c t i o n b l - - ruddgr; -- I 9 - o r i e n t i n g engine

(1.1 kW)

t o a s t r o n g c a s t s t e e l r i n g 34 m i n diameter. The wind p r o p e l l e r rotates on t h i s r i n g , which i s sup- ported on i t s i n t e r n a l circumfeqence by r o l l e r s (held by t h e maid

, s t r u c t u r e ) and i n t h e f r o n t by a support wi th spheres .

Page 7: NASA TECHNICAL TRANSLATION NASA TT F-14,933 · PDF fileThe utilization of wind energy has been considered in Russia /538 ... The power produced by an aerodynamic generator may vary

This r i n g i s pro-

vided w i t h gea r s with

wooden t e e t h connected

through a gea r box t o

the genera tor . The

a x i s of r o t a t i o n of

t h e p r o p e l l e r , t h e

gea r s , and t h e gener-

a t o r i s i n c l i n e d 12'

from t h e h o r i z o n t a l .

The machine room

has a ske le ton of

r i v e t e d s t e e l beams Figurd 5. P rope l l e r b lade w i t h s t a b i - l i z e r dur ing assembly

r e s t i n g on a s p h e r i c a l . pivot a t t h e t o p of a l a r g e suppor t ing pylon. The machine room with t h e wind p r o p e l l e r may burn around t h i s s p h e r i c a l p i v o t , o r i e n t i n g i t s e l f always i n /540 t h e d i r e c t i o n of the wind. The h o r i z o n t a l f o r c e s a c t i n g upon t h e

machine room a r e d i r e c t e d t o an a x i s he ld by a bronze support and

by r o l l e r s placed on a ho r i zon t&l s t e e l r i n g l o c a t e d at t h e t o p

of t h e suppor t ing s t r u c t u r e . ~ h j e machine room i s 13 m long, and

c o n s i s t s of a s k e l e t o n of s tee1,beams covered w i t h wood, l i n e d by

t h i n steel . s h e e t s . The genera tdr (F igure 2 ) i s l o c a t e d on t h e

f i r s t f l o o r of t h e machine room; t h e s l i d i n g con tac t s and t h e

emergency hand Eommands a r e locrfted on t h e second f l o o r . I

I ! I The f r o n t p a r t of t h e machlne room, inc lud ing t h e blade-

c o n t r o l l i n g devices , r o t a t e s w i h d t h e wind p r o p e l l e r (F igure 6 ) .

I The r o t a t i o n speed i s contLbolled by mobile masses l o c a t e d I

i n s i d e - t h e -bfades. These massef develop a cent r9fugef Foi?c-e - - i

I which v a r i e s i n propor t ion t o tqe v e l o c i t y of r o t a t i o n ; through 1 ,

I ( - a system - o f -- connectors and - leve$s, .- t h e .- masses - - a c t -- on t h e

Page 8: NASA TECHNICAL TRANSLATION NASA TT F-14,933 · PDF fileThe utilization of wind energy has been considered in Russia /538 ... The power produced by an aerodynamic generator may vary

so-ca l led " s t a b i l i z e r s " w i th

i n g t h e a n g l e of inc idence of

l o c a t e d i n t h e f r o n t p a r t of

t i o n , t h e r e a r e some s p r i n g s

c e n t r i f u g a l f o r c e developed

by t h e masses of t h e con-

t r o l l e r . The s p r i n g s b r i n g

back t h e s t a b i l i z e r t o t h e

o r i g i n a l p o s i t i o n when t h e

r o t a t i o n v e l o c i t y dec reases .

The s t a b i l i z e r w i l l f u n c t i o n

c o r r e c t l y on ly i f t h e b l ades

a r e w e l l balanced around

t h e i r r a d i a l a x i s . This i s

achieved wi th two carbon

s t e e l weights connected t o

t h e f r o n t p a r t of t h e b l ade

which each b lade i s provided, vary-

: t h e b lades . These dev ices a r e

t h e machine room. I n t h e same loca-

whose t e n s i o n counterbalances t h e

E e ~ r o d u c e d from I

nea r i t s base . F igure 6 . I n t e r i o r o f t h e ro- t a t i n g f r o n t p a r t o f t h e machine

room The c o n t r o l l i n g dev ice

prov ides t h e p r o p e l l e r w i th

a cons t an t r o t a t i o n v e l o c i t y , even a t h igh wind speeds , The

s t a r t i n g o r s topp ing o f t h e wind engine i s c a r r i e d ou t by s e t -

t i n g the s t a b i l i z e r a t s u i t a b l e angles .

I The machine room i s connected t o an i n c l i n e d s t r u c t u r e which

I descends t o t h e ground. The s t r u c t u r e does n o t have any support - i n g purposes , bu t i s used t o c o n t r o l t h e o r i e n t a t i o n of t h e

machine room i n t h e d i r e c t i o n of t h e wind. This i n c l i n e d s t r u c -

t u r e i s jo ined n e a r t h e ground t o a r o t a t i n g p la t form (F igure 7 ) . A sma l l e l e c t r i c motor of 1.1 kU moves t h e p l a t fo rm on a c i r c u l a r

railand r e c e i v e s impulses from a d i r e c t i o n a l rudder l o c a t e d a t t h e t o p of t h e machilie room, s o t h a t i t keeps o r i e n t i n g t h e

machine room au toma t i ca l ly i n t h e d i r e c t i o n o f t h e wind. A

Page 9: NASA TECHNICAL TRANSLATION NASA TT F-14,933 · PDF fileThe utilization of wind energy has been considered in Russia /538 ... The power produced by an aerodynamic generator may vary

ladder was located along- s i de the connecting inc l ined s t ruc tu r e t o permit access t o t he machine room..-e_.- four l egs of the supporting s t r u c t u r e a r e immersed f o r 3 m i n foundations composed

of 15 m3 of broken stones. The t o t a l w e i & of t h i s

s y s t e m i s 50 metric tons. The heavies t p a r t is t h e r i n g of t h e wind propel ler w i t h t he blade f ~ a m e s , weighing as much as a ton. A 10-ton crane was used f o r t h e assembly of t he power p lan t (Figure 8 ) . The 220 V generator, a t 600 rmp, cos + = 0.84, i s provided with a

spec i a l support which re- ceives t he hor izon ta l com- ponent of t h e r o t o r weight; this i s required by the i n c l ined

I & Figure 7. Lower o r i en t i ng p l a t - form with con t ro l system

pos i t ion of the machine. The generat ing vol tage was chosen very low on purpose, f o r t he s a f e t $ of the personnel assigned t o t h e experimental p lant . + + I

I The overloading of t h e generator through va r i a t i ons i n the , r o t a t i o n ve loc i ty was avoided by i n s e r t i n g i n t h e r o t o r c i r c u i t , an add i t iona l r es i s t ance , dr iven by a small e l e c t r i c motor I

5 powered by a current transformer i n se r t ed i n t o t he main c i r c u i t I

of t h e generator. . - - - - - -

Page 10: NASA TECHNICAL TRANSLATION NASA TT F-14,933 · PDF fileThe utilization of wind energy has been considered in Russia /538 ... The power produced by an aerodynamic generator may vary

i n se r t ed i n p a r a l l e l . J&g

5 the wind d ies , the genera- t o r is automatically d i s - connected, but ro t a t i on continues with a lower speed, o r the Bystem stops u n t i l t h e wind starts again. The automatic p a r t of the system functions wi th 220 V

a l t e r n a t i n g current t o avoid use of s torage b a t t e r i e s , decreasing the p lan t costs .

The generator i s in - s e r t ed on the low voltage side. Due t o t h e f a c t t h a t t h e generator i s asynchron- Figure 8. During wsembly of /

t h e p-awer plant ous, only an approximate

I

coincidence of t h e ro ta- t i o n a l ve loci ty with a synchronous veloci ty i s required t o in- s e r t it i n p a r a l l e l i n t o t h e network. A mechanical device work- ing through cen t r i fuga l force , connected t o t h e ax i s of t h e machine, close/ the main. c i r c u i t breaker a t a s q i t a b l e time. , To protec t the generator, two watt-metric re lays 'and an overload r e l ay were inser ted . A block re lay s tops t h e cen t r i fuga l device a f t e r i n se r t i on of t h e generator. The regular funct ion of t h e automatic devices i s monitored i n t h e nearby command cabin on , t h e ground through s u i t a b l e s i gna l lights on t h e panel. I

1 A t p lant s tar t -up, t h e power developed by various wine I .

I speeds was measured, and reported as average values obtained J - . - --

Page 11: NASA TECHNICAL TRANSLATION NASA TT F-14,933 · PDF fileThe utilization of wind energy has been considered in Russia /538 ... The power produced by an aerodynamic generator may vary

o v e r 20 minu te p e r i o d s . The wind v e l o c i t y was measured w i t h a n

anemometer l o c a t e d a t t h e t o p o f a p o l e 25 m h i g h , 50 m away from

t h e power p l a n t . No r e a d i n g s were t a k e n when t h e wind d i r e . c t i o n

was such t h a t t h e p r e s e n c e o f t h e power p l a n t c o u l d have a l t e r e d

t h e anemometer v a l u e s .

The power p l a n t was f i r s t t e s t e d w i t h a p r o p e l l e r r o t a t i n g

a t 20 rpm. I

A f t e r some months

of o p e r a t i o n , t h e g e a r

box and t h e p r o p e l l e r

b l a d e s were r e b u i l t t o

w i t h s t a n d a 30 rpm

s p e e d . A t p r e s e n t , t h e

power p l a n t f u n c t i o n s

a t such a s p e e d . F i g u r e 9. Average power a v a i l a b ' l e d u r i n g an August day

The t e s t s show /542

t h a t a t a speed o f 30

rpm, t h e p r o p e l l e r

a c h i e v e s a power doub le

t h a t o b t a i n e d a t 20 rpm.

A power o f 100 kW ( a t

30 rpm) i s r e a c h e d when

t h e wind v e l o c i t y

r e a c h e s 11 m/sec.

The power deve loped

by t h e p l a n t f o r two

c h a r a c t e r i s t i c months,

August f o r t h e summer

and March f o r t h e w i n t e r ,

F i g u r e 1 0 . ~ i e r a ~ e power a v a i i a b l e d u r i n g a March d a y .

a r e ~ e ' ~ o r t e d i n F i g u r e s 9 and 1 0 .

Page 12: NASA TECHNICAL TRANSLATION NASA TT F-14,933 · PDF fileThe utilization of wind energy has been considered in Russia /538 ... The power produced by an aerodynamic generator may vary

Due t o t h e d i f f e r e n t m e t e o r o l o g i c a l c o n d i t i o n s i n t h e two

s e a s o n s , t h e energy produced i n t h e month o f August i s lower

t h a n t h e one produced i n March; t h e d a i l y cu rve showed a maximum1

around 3 p.m. I n g e n e r a l , t h e wind v e l o c i t y i n c r e a s e s immedi-

a t e l y a f t e r s u n r i s e , r e a c h e s a maximum v e l o c i t y i n t h e a f t e r n o o n ,

t h e n g r a d u a l l y de-

c r e a s e s toward

s u n s e t .

The v a l u e ob-

t a i n e d f o r t h e month

o f March i s c o n s i d -

e r a b l y h i g h e r ( a s i n

a l l w i n t e r months)

and shows lower v a r i -

a t i o n s between t h e F i g u r e 11. Energy p r o d u c t i o n r a t e i n a n a v e r a g e y e a r

d a i l y maximum and

minimum.

I n an a v e r a g e y e a r , t h e e x p e r i m e n t a l p l a n t c a n produce

approx ima te ly 2 0 0 , 0 0 0 kW/hr. The c u r v e showing t h e y e a r l y pro-

d u c t i o n of ene rgy i s r e p o r t e d i n F i g u r e 11. The v a l u e s o b t a i n e d

f o r t h e i n d i v i d u a l months a r e shown, w i t h a maximum between

December and March, and a minimum i n May and J u n e ; t h e c u r v e

o b t a i n e d r e s e m b l e s a s i n e wave.

The r e s u l t s o b t a i n e d i n t h e f i r s t two y e a r s o f o p e r a t i o n

of t h e e x p e r i m e n t a l power p l a n t , i n p a r a l l e l w i t h t h e e l e c t r i c

network o f t h e r e g i o n , have been v e r y f a v o r a b l e , and s u p p o r t t h e

c o n s t r u c t i o n o f e l e c t r o - a e r o d y n a m i c power p l a n t s o f much h i g h e r

c a p a c i t y .

t e d f o r N a t i o n a l A e r o n a u t i c s and Space A d m i n i s t r a t i o n under t No. NASw 2483, by SCITRAN, P . 0 . Box 5456, S a n t a B a r b a r a ,

C a l i f o r n i a , 93108

Page 13: NASA TECHNICAL TRANSLATION NASA TT F-14,933 · PDF fileThe utilization of wind energy has been considered in Russia /538 ... The power produced by an aerodynamic generator may vary

STANDARD T I T L E PAGE

-

3. Recipient's Catalog No.

5. Report Date

. June 1973 6. Performing Organization Code

8. Performing Orgonirot ion Report NO.

10. Work Uni t No.

11. Controct or Grant No.

NAsW 7481 13. Type of Report and Per iod Covered

- 1. Report No.

,NASA TT F-14931 2. Government Accession No.

Santa Barbara, California 93103

4. T i t l e and Subtitle

THE FIRST AERODYNAMIC THREE-PHASE ELEC- TRIC POWER PLANT IN BALAKLAWA

7. Author(s)

W. R. Sectorov

- 9 . Performing Organization Name and Address

. SCITRAN, P. 0 . Box 5456

Translation 12. Sponsoring Agency Name ond Address

National Aeronautics and Space Admini- stration, Washington, D.C. 20546

sponsoring Agency code

15. Supplementary Notes

Translation of: "11 primo impianto elettrico trifase aerodinamico a Balaklawa", LIElettrotecnica, Vol. 21, No. 23-24, August 15-25, 1934, pp. 538-542.

-. - .- .-

16. Abstract

The assembly and functional characteristics of an experi- mental 100 kW power plant built in Crimea are described. The operating data obtained during the first two years of operation are reported.

17. Key Words (selected by ~uthor (s ) )

P

18. Dist r ibut ion Statement

Unclassified - Unlimited

19. Security Classif . (o f th is report)

Unclassified

20. Security Classif . (of th i s page)

Unclassified

21. No. of Pages

12

22. "price'-.