45
MWA LFD Epoch of Reionization Power Spectrum Observations Miguel F. Morales for the MWA LFD EOR power spectrum collaboration December 16, 2006 @ Melbourne University

MW A LFD Epoch of R eionization P ow er Spectr um Obser vations · 2007-09-18 · MW A !LFD Epoch of R eionization P ow er Spectr um Obser vations Miguel F . M orales for the MW A

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: MW A LFD Epoch of R eionization P ow er Spectr um Obser vations · 2007-09-18 · MW A !LFD Epoch of R eionization P ow er Spectr um Obser vations Miguel F . M orales for the MW A

MWA–LFD Epoch of Reionization

Power Spectrum Observations

Miguel F. Morales for the MWA–LFD EOR power spectrum collaboration

December 16, 2006 @ Melbourne University

Page 2: MW A LFD Epoch of R eionization P ow er Spectr um Obser vations · 2007-09-18 · MW A !LFD Epoch of R eionization P ow er Spectr um Obser vations Miguel F . M orales for the MW A

Overview

• EOR power spectrum signal

• Building an EOR machine: MWA–LFD

• Foreground subtraction

0 (now)~6CMBBigBang

EOR

redshift

Page 3: MW A LFD Epoch of R eionization P ow er Spectr um Obser vations · 2007-09-18 · MW A !LFD Epoch of R eionization P ow er Spectr um Obser vations Miguel F . M orales for the MW A

EOR power spectrum signal

0 (now)~6CMBBigBang

EOR

redshift

Page 4: MW A LFD Epoch of R eionization P ow er Spectr um Obser vations · 2007-09-18 · MW A !LFD Epoch of R eionization P ow er Spectr um Obser vations Miguel F . M orales for the MW A

H& during EOR

100

200

300

400

500

7

7.58

8.59

Mpc/h

z

sv_z8_zeta10_ME.fts_0

Oliver Zahn

Page 5: MW A LFD Epoch of R eionization P ow er Spectr um Obser vations · 2007-09-18 · MW A !LFD Epoch of R eionization P ow er Spectr um Obser vations Miguel F . M orales for the MW A

Statistical EOR detection

f

iy

ImageCube

ix

v

f

Visibilities

u

v

h

FourierRepresentation

u

FT SkyCoordinates

FTFrequency

Morales & Hewitt (2004)

Page 6: MW A LFD Epoch of R eionization P ow er Spectr um Obser vations · 2007-09-18 · MW A !LFD Epoch of R eionization P ow er Spectr um Obser vations Miguel F . M orales for the MW A

Spherical symmetry

v

u

h

Morales & Hewitt (2004)

Page 7: MW A LFD Epoch of R eionization P ow er Spectr um Obser vations · 2007-09-18 · MW A !LFD Epoch of R eionization P ow er Spectr um Obser vations Miguel F . M orales for the MW A

EOR power spectrum

k [Mpc-1 ]

(k3 P

/ 2π

2 )1/2 [M

pc-3

/2 J

y Hz

]

10-3 10-2 10-1 100 10110-1

100

101

102

103

Furlanetto, Zaldarriaga, Hernquist (2004a,b)Bowman, Morales & Hewitt (2005)

Page 8: MW A LFD Epoch of R eionization P ow er Spectr um Obser vations · 2007-09-18 · MW A !LFD Epoch of R eionization P ow er Spectr um Obser vations Miguel F . M orales for the MW A

EOR power spectrum

k [Mpc-1 ]

(k3 P

/ 2π

2 )1/2 [M

pc-3

/2 J

y Hz

]

10-3 10-2 10-1 100 10110-1

100

101

102

103

Furlanetto, Zaldarriaga, Hernquist (2004a,b)Bowman, Morales & Hewitt (2005)

Page 9: MW A LFD Epoch of R eionization P ow er Spectr um Obser vations · 2007-09-18 · MW A !LFD Epoch of R eionization P ow er Spectr um Obser vations Miguel F . M orales for the MW A

EOR power spectrum

k [Mpc-1 ]

(k3 P

/ 2π

2 )1/2 [M

pc-3

/2 J

y Hz

]

10-3 10-2 10-1 100 10110-1

100

101

102

103

Furlanetto, Zaldarriaga, Hernquist (2004a,b)Bowman, Morales & Hewitt (2005)

Page 10: MW A LFD Epoch of R eionization P ow er Spectr um Obser vations · 2007-09-18 · MW A !LFD Epoch of R eionization P ow er Spectr um Obser vations Miguel F . M orales for the MW A

EOR power spectrum

k [Mpc-1 ]

(k3 P

/ 2π

2 )1/2 [M

pc-3

/2 J

y Hz

]

10-3 10-2 10-1 100 10110-1

100

101

102

103

Furlanetto, Zaldarriaga, Hernquist (2004a,b)Bowman, Morales & Hewitt (2005)

Page 11: MW A LFD Epoch of R eionization P ow er Spectr um Obser vations · 2007-09-18 · MW A !LFD Epoch of R eionization P ow er Spectr um Obser vations Miguel F . M orales for the MW A

EOR power spectrum

k [Mpc-1 ]

(k3 P

/ 2π

2 )1/2 [M

pc-3

/2 J

y Hz

]

10-3 10-2 10-1 100 10110-1

100

101

102

103

Furlanetto, Zaldarriaga, Hernquist (2004a,b)Bowman, Morales & Hewitt (2005)

Kaplinghat (2005)

Page 12: MW A LFD Epoch of R eionization P ow er Spectr um Obser vations · 2007-09-18 · MW A !LFD Epoch of R eionization P ow er Spectr um Obser vations Miguel F . M orales for the MW A

Building an EOR machine: the MWA–LFD

Page 13: MW A LFD Epoch of R eionization P ow er Spectr um Obser vations · 2007-09-18 · MW A !LFD Epoch of R eionization P ow er Spectr um Obser vations Miguel F . M orales for the MW A

Challenges 1: Foregrounds• Faint point sources

• Smooth galactic emission

• Galactic radio recombination lines

• RFI

• Others!

Page 14: MW A LFD Epoch of R eionization P ow er Spectr um Obser vations · 2007-09-18 · MW A !LFD Epoch of R eionization P ow er Spectr um Obser vations Miguel F . M orales for the MW A

Challenges 2: Ionosphere & Polarization

325 MHz polarized flux, 6° x 6°,4’ beam, 5 K peaks (de Bruyn)

Lonsdale (2004)

Page 15: MW A LFD Epoch of R eionization P ow er Spectr um Obser vations · 2007-09-18 · MW A !LFD Epoch of R eionization P ow er Spectr um Obser vations Miguel F . M orales for the MW A

Step 1: increase sensitivity

Survey speed with compact antenna distribution

1

Table 1.

At|dA At|NAdA|At B |u| t

Power Spectrum S/N A2t A

3/2t (dA)!1/2 ! FOV B1/2 |u| n(|u|) t

Note. — This table lists the scaling relationships of the key equations. In order, the variables in each column are: total array areaholding the size of each antenna constant At|dA (adding antennas), total array area holding the number of antennas and distributionconstant At|NA

(increasing antenna size), the size of each antenna with the total array area held constant dA|At (dividing area into moresmall antennas), the total bandwidth B, the sensitivity as a function of wavenumber length |u|, and the total observing time t.

1

Table 1.

At|dA At|NAdA|At B |u| t

Power Spectrum S/N A2t A

3/2t (dA)!1/2 ! FOV B1/2 |u| n(|u|) t

Note. — This table lists the scaling relationships of the key equations. In order, the variables in each column are: total array areaholding the size of each antenna constant At|dA (adding antennas), total array area holding the number of antennas and distributionconstant At|NA

(increasing antenna size), the size of each antenna with the total array area held constant dA|At (dividing area into moresmall antennas), the total bandwidth B, the sensitivity as a function of wavenumber length |u|, and the total observing time t.

Morales (2005)

Page 16: MW A LFD Epoch of R eionization P ow er Spectr um Obser vations · 2007-09-18 · MW A !LFD Epoch of R eionization P ow er Spectr um Obser vations Miguel F . M orales for the MW A

Step 2: systematics

0

10

20

30

40

50

60

0

10

20

30

40

50

60

!0.5

0

0.5

1

1.5

2

2.5

010

2030

4050

60

010

2030

4050

60−0.5

0

0.5

1

1.5

2

2.5

What we know about fitting algorithms is goodness-of-fit surface quality ö robustness

• Excellent instantaneous point spread function

• Data-rich observations & computation

Page 17: MW A LFD Epoch of R eionization P ow er Spectr um Obser vations · 2007-09-18 · MW A !LFD Epoch of R eionization P ow er Spectr um Obser vations Miguel F . M orales for the MW A

Realtime software team

S. Doeleman, J. Kasper, D. Mitchell, M. Morales, R. Sault, R. Wayth

R. Cappallo, L. Greenhill, C. Lonsdale, M. Tegmark, M. Zaldarriaga

Core:

Page 18: MW A LFD Epoch of R eionization P ow er Spectr um Obser vations · 2007-09-18 · MW A !LFD Epoch of R eionization P ow er Spectr um Obser vations Miguel F . M orales for the MW A

Laying down the math

m(v) = B(v,u!)F(u!, !!)A(!!, !)I(!) + n(v)

Observation:

(Tegmark, Zaldarriaga, Morales)

Page 19: MW A LFD Epoch of R eionization P ow er Spectr um Obser vations · 2007-09-18 · MW A !LFD Epoch of R eionization P ow er Spectr um Obser vations Miguel F . M orales for the MW A

Laying down the math

m(v) = B(v,u!)F(u!, !!)A(!!, !)I(!) + n(v)

Observation:

true sky

(Tegmark, Zaldarriaga, Morales)

Page 20: MW A LFD Epoch of R eionization P ow er Spectr um Obser vations · 2007-09-18 · MW A !LFD Epoch of R eionization P ow er Spectr um Obser vations Miguel F . M orales for the MW A

Laying down the math

m(v) = B(v,u!)F(u!, !!)A(!!, !)I(!) + n(v)

Observation:

true skyionosphericdistortion

(Tegmark, Zaldarriaga, Morales)

Page 21: MW A LFD Epoch of R eionization P ow er Spectr um Obser vations · 2007-09-18 · MW A !LFD Epoch of R eionization P ow er Spectr um Obser vations Miguel F . M orales for the MW A

Laying down the math

m(v) = B(v,u!)F(u!, !!)A(!!, !)I(!) + n(v)

Observation:

true skyionosphericdistortion

Fouriertransform

(Tegmark, Zaldarriaga, Morales)

Page 22: MW A LFD Epoch of R eionization P ow er Spectr um Obser vations · 2007-09-18 · MW A !LFD Epoch of R eionization P ow er Spectr um Obser vations Miguel F . M orales for the MW A

Laying down the math

m(v) = B(v,u!)F(u!, !!)A(!!, !)I(!) + n(v)

Observation:

true skyionosphericdistortion

integration overFourier modes to

measured visibilities

Fouriertransform

(Tegmark, Zaldarriaga, Morales)

Page 23: MW A LFD Epoch of R eionization P ow er Spectr um Obser vations · 2007-09-18 · MW A !LFD Epoch of R eionization P ow er Spectr um Obser vations Miguel F . M orales for the MW A

Laying down the math

m(v) = B(v,u!)F(u!, !!)A(!!, !)I(!) + n(v)

Observation:

true skyionosphericdistortion

integration overFourier modes to

measured visibilities

Fouriertransform

noise

(Tegmark, Zaldarriaga, Morales)

Page 24: MW A LFD Epoch of R eionization P ow er Spectr um Obser vations · 2007-09-18 · MW A !LFD Epoch of R eionization P ow er Spectr um Obser vations Miguel F . M orales for the MW A

Data analysis

m(v) = B(v,u!)F(u!, !!)A(!!, !)I(!) + n(v)

Observation:

I(!) =!

OTN

!1O

"!1

AT (!, !")FT (!",u")BT (u",v)

# $% &

OT

N!1

m(v)

Data reduction, v1:

measure-ment

noise covariancematrix

inversion/deconvolution

integrationpoint

Page 25: MW A LFD Epoch of R eionization P ow er Spectr um Obser vations · 2007-09-18 · MW A !LFD Epoch of R eionization P ow er Spectr um Obser vations Miguel F . M orales for the MW A

Ionospheric correctionA(!!, !) = "D[!! ! ! ! "!(!, t)]

A(u!,u) =

!d2!ei(u"u

!)·!+iu·"!(!,t)

A(u!,u) !

!d2!!ei(u"u

!)·!!

(1 + iu · "!(!!, t) + · · · )

! (2!)2"D[u " u!] + iu ·

!d2#ei(u"u

!)·!"#(#, t)

A(u!,u) = !D[u ! u!] + i

!

m

amu!D[u ! u!! bm] + cross terms

I(!) =!

OTN

!1O

"!1

AT (u,u")BT (u",v)

# $% &

OT

N!1

m(v)

Data reduction, v2:(Zaldarriaga & Morales; Morales et al.)

Page 26: MW A LFD Epoch of R eionization P ow er Spectr um Obser vations · 2007-09-18 · MW A !LFD Epoch of R eionization P ow er Spectr um Obser vations Miguel F . M orales for the MW A

Correlator

Receiver

Node

Correlator Boards

Realtime Computer

Visibility Binner

Calibrate &

Integrate

Visibilities to

2-8 sec. in

baseline rings

(2 Gvis, 8 Gops)

Bin subset of

baselines at full

freq. & time

resolution to 2°

FOV (100 M u,v,f,p

cells, 250 Mops)

Combine vis.

in freq. to 32

kHz resolution

(500 Mvis, 1/2

Gops)

125 Mvis/s 0.5 GB/s

50 MB/s

EOR Realtime

System –

integrates to 10

min. and adds to

database

Sort into per

antenna sets [500]

& beamform each

in direction of 100

calibrators (25

Gops)

Mapper

Ionospheric

Calibration

ASM v1

Survey

Instrumental

Calibration

Faraday Rotation

Solar Imaging,

2° FOV, 32 kHz

every 8 sec.

(75 Mops)

1 GB/sec.

1.7

GB

/s~

1/2

Gvis

/s

125 M

vis

/s

Oversampled

map of primary

FOV, every 8

sec. (4 pol., 32

kHz, 3.6 Gcells

3.5 Gops)

Map to RA Dec

at array res.

(96 kHz, I pol.,

every 8 sec.,

0.5 Gops)

Map to RA Dec

at array res.

(32 kHz, 4 pol.,

every ~100

sec. 0.5 Gops)

GSM

Prediction

EOR Imaging

EOR Power

Spectrum

SurveyPostage

stamps towards

calibrators (4

pol. 32 kHz, <<

1 Mops)

Solar Imaging

Legend

Software Block

Hardware Block

Parallel Software

Block

Output Broadcast

IPS Power

Detection

Pulsar

Interface

16 GB/s – 2 Gvis every 1/2 sec.

Voltage

Beamformer

16 voltage beams, 2 pol., 1 GB/s

Monitor &

Control

Antenna

Beamformer

Bin to primary

beam FOV & 32

kHz channels

(1.8 G u,v,f,p cells,

~10 Gops)

Bin towards 100

calibrators, image

postage stamps, 1

pol. (outside

primary FOV) 25

Gops

Clock

IPS

Pulsars

Data Transport Layer

32 GB/s

Faraday Rotation

Solar Imaging

Realt

ime S

cie

nce

P

ack

ag

es

Offl

ine S

cie

nc

e

Pa

ck

ag

es

MWA-LFD Dataflow Diagram

Realtime Common Data Processing

Shadow indicates

workpackage

GPS

GSM

v2

System Diagram

Page 27: MW A LFD Epoch of R eionization P ow er Spectr um Obser vations · 2007-09-18 · MW A !LFD Epoch of R eionization P ow er Spectr um Obser vations Miguel F . M orales for the MW A

Correlator

Receiver

Node

Correlator Boards

Realtime Computer

Visibility Binner

Calibrate &

Integrate

Visibilities to

2-8 sec. in

baseline rings

(2 Gvis, 8 Gops)

Bin subset of

baselines at full

freq. & time

resolution to 2°

FOV (100 M u,v,f,p

cells, 250 Mops)

Combine vis.

in freq. to 32

kHz resolution

(500 Mvis, 1/2

Gops)

125 Mvis/s 0.5 GB/s

50 MB/s

EOR Realtime

System –

integrates to 10

min. and adds to

database

Sort into per

antenna sets [500]

& beamform each

in direction of 100

calibrators (25

Gops)

Mapper

Ionospheric

Calibration

ASM v1

Survey

Instrumental

Calibration

Faraday Rotation

Solar Imaging,

2° FOV, 32 kHz

every 8 sec.

(75 Mops)

1 GB/sec.

1.7

GB

/s~

1/2

Gvis

/s

125 M

vis

/s

Oversampled

map of primary

FOV, every 8

sec. (4 pol., 32

kHz, 3.6 Gcells

3.5 Gops)

Map to RA Dec

at array res.

(96 kHz, I pol.,

every 8 sec.,

0.5 Gops)

Map to RA Dec

at array res.

(32 kHz, 4 pol.,

every ~100

sec. 0.5 Gops)

GSM

Prediction

EOR Imaging

EOR Power

Spectrum

SurveyPostage

stamps towards

calibrators (4

pol. 32 kHz, <<

1 Mops)

Solar Imaging

Legend

Software Block

Hardware Block

Parallel Software

Block

Output Broadcast

IPS Power

Detection

Pulsar

Interface

16 GB/s – 2 Gvis every 1/2 sec.

Voltage

Beamformer

16 voltage beams, 2 pol., 1 GB/s

Monitor &

Control

Antenna

Beamformer

Bin to primary

beam FOV & 32

kHz channels

(1.8 G u,v,f,p cells,

~10 Gops)

Bin towards 100

calibrators, image

postage stamps, 1

pol. (outside

primary FOV) 25

Gops

Clock

IPS

Pulsars

Data Transport Layer

32 GB/s

Faraday Rotation

Solar Imaging

Realt

ime S

cie

nce

P

ack

ag

es

Offl

ine S

cie

nc

e

Pa

ck

ag

es

MWA-LFD Dataflow Diagram

Realtime Common Data Processing

Shadow indicates

workpackage

GPS

GSM

v2

System Diagram

m(v)

Page 28: MW A LFD Epoch of R eionization P ow er Spectr um Obser vations · 2007-09-18 · MW A !LFD Epoch of R eionization P ow er Spectr um Obser vations Miguel F . M orales for the MW A

Correlator

Receiver

Node

Correlator Boards

Realtime Computer

Visibility Binner

Calibrate &

Integrate

Visibilities to

2-8 sec. in

baseline rings

(2 Gvis, 8 Gops)

Bin subset of

baselines at full

freq. & time

resolution to 2°

FOV (100 M u,v,f,p

cells, 250 Mops)

Combine vis.

in freq. to 32

kHz resolution

(500 Mvis, 1/2

Gops)

125 Mvis/s 0.5 GB/s

50 MB/s

EOR Realtime

System –

integrates to 10

min. and adds to

database

Sort into per

antenna sets [500]

& beamform each

in direction of 100

calibrators (25

Gops)

Mapper

Ionospheric

Calibration

ASM v1

Survey

Instrumental

Calibration

Faraday Rotation

Solar Imaging,

2° FOV, 32 kHz

every 8 sec.

(75 Mops)

1 GB/sec.

1.7

GB

/s~

1/2

Gvis

/s

125 M

vis

/s

Oversampled

map of primary

FOV, every 8

sec. (4 pol., 32

kHz, 3.6 Gcells

3.5 Gops)

Map to RA Dec

at array res.

(96 kHz, I pol.,

every 8 sec.,

0.5 Gops)

Map to RA Dec

at array res.

(32 kHz, 4 pol.,

every ~100

sec. 0.5 Gops)

GSM

Prediction

EOR Imaging

EOR Power

Spectrum

SurveyPostage

stamps towards

calibrators (4

pol. 32 kHz, <<

1 Mops)

Solar Imaging

Legend

Software Block

Hardware Block

Parallel Software

Block

Output Broadcast

IPS Power

Detection

Pulsar

Interface

16 GB/s – 2 Gvis every 1/2 sec.

Voltage

Beamformer

16 voltage beams, 2 pol., 1 GB/s

Monitor &

Control

Antenna

Beamformer

Bin to primary

beam FOV & 32

kHz channels

(1.8 G u,v,f,p cells,

~10 Gops)

Bin towards 100

calibrators, image

postage stamps, 1

pol. (outside

primary FOV) 25

Gops

Clock

IPS

Pulsars

Data Transport Layer

32 GB/s

Faraday Rotation

Solar Imaging

Realt

ime S

cie

nce

P

ack

ag

es

Offl

ine S

cie

nc

e

Pa

ck

ag

es

MWA-LFD Dataflow Diagram

Realtime Common Data Processing

Shadow indicates

workpackage

GPS

GSM

v2

System Diagram

m(v)

BT (u!

,v)

Page 29: MW A LFD Epoch of R eionization P ow er Spectr um Obser vations · 2007-09-18 · MW A !LFD Epoch of R eionization P ow er Spectr um Obser vations Miguel F . M orales for the MW A

Correlator

Receiver

Node

Correlator Boards

Realtime Computer

Visibility Binner

Calibrate &

Integrate

Visibilities to

2-8 sec. in

baseline rings

(2 Gvis, 8 Gops)

Bin subset of

baselines at full

freq. & time

resolution to 2°

FOV (100 M u,v,f,p

cells, 250 Mops)

Combine vis.

in freq. to 32

kHz resolution

(500 Mvis, 1/2

Gops)

125 Mvis/s 0.5 GB/s

50 MB/s

EOR Realtime

System –

integrates to 10

min. and adds to

database

Sort into per

antenna sets [500]

& beamform each

in direction of 100

calibrators (25

Gops)

Mapper

Ionospheric

Calibration

ASM v1

Survey

Instrumental

Calibration

Faraday Rotation

Solar Imaging,

2° FOV, 32 kHz

every 8 sec.

(75 Mops)

1 GB/sec.

1.7

GB

/s~

1/2

Gvis

/s

125 M

vis

/s

Oversampled

map of primary

FOV, every 8

sec. (4 pol., 32

kHz, 3.6 Gcells

3.5 Gops)

Map to RA Dec

at array res.

(96 kHz, I pol.,

every 8 sec.,

0.5 Gops)

Map to RA Dec

at array res.

(32 kHz, 4 pol.,

every ~100

sec. 0.5 Gops)

GSM

Prediction

EOR Imaging

EOR Power

Spectrum

SurveyPostage

stamps towards

calibrators (4

pol. 32 kHz, <<

1 Mops)

Solar Imaging

Legend

Software Block

Hardware Block

Parallel Software

Block

Output Broadcast

IPS Power

Detection

Pulsar

Interface

16 GB/s – 2 Gvis every 1/2 sec.

Voltage

Beamformer

16 voltage beams, 2 pol., 1 GB/s

Monitor &

Control

Antenna

Beamformer

Bin to primary

beam FOV & 32

kHz channels

(1.8 G u,v,f,p cells,

~10 Gops)

Bin towards 100

calibrators, image

postage stamps, 1

pol. (outside

primary FOV) 25

Gops

Clock

IPS

Pulsars

Data Transport Layer

32 GB/s

Faraday Rotation

Solar Imaging

Realt

ime S

cie

nce

P

ack

ag

es

Offl

ine S

cie

nc

e

Pa

ck

ag

es

MWA-LFD Dataflow Diagram

Realtime Common Data Processing

Shadow indicates

workpackage

GPS

GSM

v2

System Diagram

m(v)

BT (u!

,v)

AT (!, !!)FT (!!,u!)

Page 30: MW A LFD Epoch of R eionization P ow er Spectr um Obser vations · 2007-09-18 · MW A !LFD Epoch of R eionization P ow er Spectr um Obser vations Miguel F . M orales for the MW A

Correlator

Receiver

Node

Correlator Boards

Realtime Computer

Visibility Binner

Calibrate &

Integrate

Visibilities to

2-8 sec. in

baseline rings

(2 Gvis, 8 Gops)

Bin subset of

baselines at full

freq. & time

resolution to 2°

FOV (100 M u,v,f,p

cells, 250 Mops)

Combine vis.

in freq. to 32

kHz resolution

(500 Mvis, 1/2

Gops)

125 Mvis/s 0.5 GB/s

50 MB/s

EOR Realtime

System –

integrates to 10

min. and adds to

database

Sort into per

antenna sets [500]

& beamform each

in direction of 100

calibrators (25

Gops)

Mapper

Ionospheric

Calibration

ASM v1

Survey

Instrumental

Calibration

Faraday Rotation

Solar Imaging,

2° FOV, 32 kHz

every 8 sec.

(75 Mops)

1 GB/sec.

1.7

GB

/s~

1/2

Gvis

/s

125 M

vis

/s

Oversampled

map of primary

FOV, every 8

sec. (4 pol., 32

kHz, 3.6 Gcells

3.5 Gops)

Map to RA Dec

at array res.

(96 kHz, I pol.,

every 8 sec.,

0.5 Gops)

Map to RA Dec

at array res.

(32 kHz, 4 pol.,

every ~100

sec. 0.5 Gops)

GSM

Prediction

EOR Imaging

EOR Power

Spectrum

SurveyPostage

stamps towards

calibrators (4

pol. 32 kHz, <<

1 Mops)

Solar Imaging

Legend

Software Block

Hardware Block

Parallel Software

Block

Output Broadcast

IPS Power

Detection

Pulsar

Interface

16 GB/s – 2 Gvis every 1/2 sec.

Voltage

Beamformer

16 voltage beams, 2 pol., 1 GB/s

Monitor &

Control

Antenna

Beamformer

Bin to primary

beam FOV & 32

kHz channels

(1.8 G u,v,f,p cells,

~10 Gops)

Bin towards 100

calibrators, image

postage stamps, 1

pol. (outside

primary FOV) 25

Gops

Clock

IPS

Pulsars

Data Transport Layer

32 GB/s

Faraday Rotation

Solar Imaging

Realt

ime S

cie

nce

P

ack

ag

es

Offl

ine S

cie

nc

e

Pa

ck

ag

es

MWA-LFD Dataflow Diagram

Realtime Common Data Processing

Shadow indicates

workpackage

GPS

GSM

v2

System Diagram

m(v)

BT (u!

,v)

AT (!, !!)FT (!!,u!)

AT (u,u

!)

Page 31: MW A LFD Epoch of R eionization P ow er Spectr um Obser vations · 2007-09-18 · MW A !LFD Epoch of R eionization P ow er Spectr um Obser vations Miguel F . M orales for the MW A

Correlator

Receiver

Node

Correlator Boards

Realtime Computer

Visibility Binner

Calibrate &

Integrate

Visibilities to

2-8 sec. in

baseline rings

(2 Gvis, 8 Gops)

Bin subset of

baselines at full

freq. & time

resolution to 2°

FOV (100 M u,v,f,p

cells, 250 Mops)

Combine vis.

in freq. to 32

kHz resolution

(500 Mvis, 1/2

Gops)

125 Mvis/s 0.5 GB/s

50 MB/s

EOR Realtime

System –

integrates to 10

min. and adds to

database

Sort into per

antenna sets [500]

& beamform each

in direction of 100

calibrators (25

Gops)

Mapper

Ionospheric

Calibration

ASM v1

Survey

Instrumental

Calibration

Faraday Rotation

Solar Imaging,

2° FOV, 32 kHz

every 8 sec.

(75 Mops)

1 GB/sec.

1.7

GB

/s~

1/2

Gvis

/s

125 M

vis

/s

Oversampled

map of primary

FOV, every 8

sec. (4 pol., 32

kHz, 3.6 Gcells

3.5 Gops)

Map to RA Dec

at array res.

(96 kHz, I pol.,

every 8 sec.,

0.5 Gops)

Map to RA Dec

at array res.

(32 kHz, 4 pol.,

every ~100

sec. 0.5 Gops)

GSM

Prediction

EOR Imaging

EOR Power

Spectrum

SurveyPostage

stamps towards

calibrators (4

pol. 32 kHz, <<

1 Mops)

Solar Imaging

Legend

Software Block

Hardware Block

Parallel Software

Block

Output Broadcast

IPS Power

Detection

Pulsar

Interface

16 GB/s – 2 Gvis every 1/2 sec.

Voltage

Beamformer

16 voltage beams, 2 pol., 1 GB/s

Monitor &

Control

Antenna

Beamformer

Bin to primary

beam FOV & 32

kHz channels

(1.8 G u,v,f,p cells,

~10 Gops)

Bin towards 100

calibrators, image

postage stamps, 1

pol. (outside

primary FOV) 25

Gops

Clock

IPS

Pulsars

Data Transport Layer

32 GB/s

Faraday Rotation

Solar Imaging

Realt

ime S

cie

nce

P

ack

ag

es

Offl

ine S

cie

nc

e

Pa

ck

ag

es

MWA-LFD Dataflow Diagram

Realtime Common Data Processing

Shadow indicates

workpackage

GPS

GSM

v2

System Diagram

m(v)

BT (u!

,v)

AT (!, !!)FT (!!,u!)

AT (u,u

!)

!

OTN

!1O

"

!1

Page 32: MW A LFD Epoch of R eionization P ow er Spectr um Obser vations · 2007-09-18 · MW A !LFD Epoch of R eionization P ow er Spectr um Obser vations Miguel F . M orales for the MW A

Correlator

Receiver

Node

Correlator Boards

Realtime Computer

Visibility Binner

Calibrate &

Integrate

Visibilities to

2-8 sec. in

baseline rings

(2 Gvis, 8 Gops)

Bin subset of

baselines at full

freq. & time

resolution to 2°

FOV (100 M u,v,f,p

cells, 250 Mops)

Combine vis.

in freq. to 32

kHz resolution

(500 Mvis, 1/2

Gops)

125 Mvis/s 0.5 GB/s

50 MB/s

EOR Realtime

System –

integrates to 10

min. and adds to

database

Sort into per

antenna sets [500]

& beamform each

in direction of 100

calibrators (25

Gops)

Mapper

Ionospheric

Calibration

ASM v1

Survey

Instrumental

Calibration

Faraday Rotation

Solar Imaging,

2° FOV, 32 kHz

every 8 sec.

(75 Mops)

1 GB/sec.

1.7

GB

/s~

1/2

Gvis

/s

125 M

vis

/s

Oversampled

map of primary

FOV, every 8

sec. (4 pol., 32

kHz, 3.6 Gcells

3.5 Gops)

Map to RA Dec

at array res.

(96 kHz, I pol.,

every 8 sec.,

0.5 Gops)

Map to RA Dec

at array res.

(32 kHz, 4 pol.,

every ~100

sec. 0.5 Gops)

GSM

Prediction

EOR Imaging

EOR Power

Spectrum

SurveyPostage

stamps towards

calibrators (4

pol. 32 kHz, <<

1 Mops)

Solar Imaging

Legend

Software Block

Hardware Block

Parallel Software

Block

Output Broadcast

IPS Power

Detection

Pulsar

Interface

16 GB/s – 2 Gvis every 1/2 sec.

Voltage

Beamformer

16 voltage beams, 2 pol., 1 GB/s

Monitor &

Control

Antenna

Beamformer

Bin to primary

beam FOV & 32

kHz channels

(1.8 G u,v,f,p cells,

~10 Gops)

Bin towards 100

calibrators, image

postage stamps, 1

pol. (outside

primary FOV) 25

Gops

Clock

IPS

Pulsars

Data Transport Layer

32 GB/s

Faraday Rotation

Solar Imaging

Realt

ime S

cie

nce

P

ack

ag

es

Offl

ine S

cie

nc

e

Pa

ck

ag

es

MWA-LFD Dataflow Diagram

Realtime Common Data Processing

Shadow indicates

workpackage

GPS

GSM

v2

System Diagram

m(v)

BT (u!

,v)

AT (!, !!)FT (!!,u!)

AT (u,u

!)

!

OTN

!1O

"

!1

Calibration

Page 33: MW A LFD Epoch of R eionization P ow er Spectr um Obser vations · 2007-09-18 · MW A !LFD Epoch of R eionization P ow er Spectr um Obser vations Miguel F . M orales for the MW A

Instrumental calibration

Instrument:

Gain from one antenna to rest of array, simultaneously for all antennas & 100 sources

Page 34: MW A LFD Epoch of R eionization P ow er Spectr um Obser vations · 2007-09-18 · MW A !LFD Epoch of R eionization P ow er Spectr um Obser vations Miguel F . M orales for the MW A

Ionospheric calibration

Up to 1500 sources with known location, fit every 8 seconds ➙ rubber sheet

(Doeleman, Ting)

Page 35: MW A LFD Epoch of R eionization P ow er Spectr um Obser vations · 2007-09-18 · MW A !LFD Epoch of R eionization P ow er Spectr um Obser vations Miguel F . M orales for the MW A

Ionospheric calibration

Up to 1500 sources with known location, fit every 8 seconds ➙ rubber sheet

(Doeleman, Ting)

Page 36: MW A LFD Epoch of R eionization P ow er Spectr um Obser vations · 2007-09-18 · MW A !LFD Epoch of R eionization P ow er Spectr um Obser vations Miguel F . M orales for the MW A

1995MNRAS.274..324G

EOR foreground subtraction

Page 37: MW A LFD Epoch of R eionization P ow er Spectr um Obser vations · 2007-09-18 · MW A !LFD Epoch of R eionization P ow er Spectr um Obser vations Miguel F . M orales for the MW A

EOR collaboration

J. Hewitt, M. Morales, R. Webster, F. Briggs, C. Carilli, S. Furlanetto, L. Greenhill,

L. Hernquist, A. Loeb, C. Lonsdale, A. de Oliveira-Costa, M. Tegmark, S. Wyithe, M. Zaldarriaga

Page 38: MW A LFD Epoch of R eionization P ow er Spectr um Obser vations · 2007-09-18 · MW A !LFD Epoch of R eionization P ow er Spectr um Obser vations Miguel F . M orales for the MW A

Stages of astrophysical foreground subtraction

• Bright source & RFI subtraction

• Spectral fitting

• Parameter estimation, using power spectrum templates

Page 39: MW A LFD Epoch of R eionization P ow er Spectr um Obser vations · 2007-09-18 · MW A !LFD Epoch of R eionization P ow er Spectr um Obser vations Miguel F . M orales for the MW A

Spectral fitting

Morales, Bowman & Hewitt (2006)

Page 40: MW A LFD Epoch of R eionization P ow er Spectr um Obser vations · 2007-09-18 · MW A !LFD Epoch of R eionization P ow er Spectr um Obser vations Miguel F . M orales for the MW A

Spectral foreground errors

!Ps(!)" = 2!d"B2

!

"2a

#2!4+

"2

b

#2!2+ "2

c!$k(!)

"

!S(f) = !a df2 + !b df + !c

Page 41: MW A LFD Epoch of R eionization P ow er Spectr um Obser vations · 2007-09-18 · MW A !LFD Epoch of R eionization P ow er Spectr um Obser vations Miguel F . M orales for the MW A

Parameter fitting

v

u

h

v

u

h

• Use templates to separate EOR signal from residual foreground subtraction errors

• Fit both local parameters & their ensemble errors

Morales, Bowman & Hewitt (2006)

Page 42: MW A LFD Epoch of R eionization P ow er Spectr um Obser vations · 2007-09-18 · MW A !LFD Epoch of R eionization P ow er Spectr um Obser vations Miguel F . M orales for the MW A

MWA-LFD power

spectrum sensitivity

Bowman, Morales & Hewitt (2005)

z = 8, 360 hours of integration

0

1

2

3

4

5

6

7

8x 108

P [J

y2 Hz2 ]

0

1

2

3

4

5

6

7

8x 108

10-3 10-2 10-1 100 10110-1

100

101

102

103

k [Mpc-1 ]

(k3 P

/ 2π

t2 )1/2 [M

pc-3

/2 J

y Hz

]

10-3 10-2 10-1 100 10110-1

100

101

102

103

Page 43: MW A LFD Epoch of R eionization P ow er Spectr um Obser vations · 2007-09-18 · MW A !LFD Epoch of R eionization P ow er Spectr um Obser vations Miguel F . M orales for the MW A

MWA-LFD sensitivity vs. redshift

!

"

#!

#"$%#!

&

'%()*+%,-+.

!

"

#!

#"$%#!

&

-%/%0

#!!+

#!!

#!!#

#!!

#!#

#!+

1%(234!#.

516%'%7%+!+8#7+%(234!67+%)*%,-.

#!!6

#!!+

#!!#

#!!

#!!#

#!!

#!#

#!+

!

#

+

6

9

"

0

:

&$%#!

&

!

#

+

6

9

"

0

:

&$%#!

&

-%/%&

#!!+

#!!

#!!#

#!!

#!#

#!+

1%(234!#.

#!!6

#!!+

#!!#

#!!

#!!#

#!!

#!#

#!+

!

!;"

#

#;"

+

+;"

6$%#!

&

!

!;"

#

#;"

+

+;"

6$%#!

&

-%/%#!

#!!+

#!!

#!!#

#!!

#!#

#!+

1%(234!#.

#!!6

#!!+

#!!#

#!!

#!!#

#!!

#!#

#!+

!

"

#!

#"$%#!

:

!

"

#!

#"$%#!

:

-%/%#+

#!!+

#!!

#!!#

#!!

#!#

#!+

1%(234!#.

#!!6

#!!+

#!!#

#!!

#!!#

#!!

#!#

#!+

Bowman, Morales & Hewitt (2005)

Page 44: MW A LFD Epoch of R eionization P ow er Spectr um Obser vations · 2007-09-18 · MW A !LFD Epoch of R eionization P ow er Spectr um Obser vations Miguel F . M orales for the MW A

MWA-LFD vs. MWA+,,,

0

1

2

3

4

5

6

7

8x 108

P [J

y2 Hz2 ]

0

1

2

3

4

5

6

7

8x 108

10-3 10-2 10-1 100 10110-1

100

101

102

103

k [Mpc-1 ]

(k3 P

/ 2π

2 )1/2 [M

pc-3

/2 J

y Hz

]

10-3 10-2 10-1 100 10110-1

100

101

102

103

angu

lar o

nly

Page 45: MW A LFD Epoch of R eionization P ow er Spectr um Obser vations · 2007-09-18 · MW A !LFD Epoch of R eionization P ow er Spectr um Obser vations Miguel F . M orales for the MW A

MWA-LFD

http://web.haystack.mit.edu/arrays/MWA/index.html

• ~$., million instrument, funded

• Data taking starting in late /,,0

• Premier EOR instrument• Strict attention to systematic errors