Multirate Digital Signal Processing1a

Embed Size (px)

Citation preview

  • 7/29/2019 Multirate Digital Signal Processing1a

    1/67

    1

    S-88.3105 Digital signal

    processing systems Lectures on Wednesdays 14.15 15.30 Room S5

    and Fridays 8.45 10.00 Room S3

    Digital signal processing has become one of themost important methods to handle information.The rapid development of different types of largemarket products such as mobile phones, dvd:s, etccould not have been possible without modern

    DSP methods.

    Lecturer: Professor Iiro HartimoRoom G406, e-mail: [email protected]

    mailto:[email protected]:[email protected]
  • 7/29/2019 Multirate Digital Signal Processing1a

    2/67

    2

    Exercises, homework and

    course assistant Exercises: check the web

    All information about the exercises and homeworkcan be found from the exercise page.

    Assistant: Mobien Shoaib

    Room G401a, e-mail: [email protected] time after the exercises.

    http://localhost/var/www/apps/conversion/tmp/scratch_3/s88115/fall2001/exercise.htmlmailto:[email protected]:[email protected]://localhost/var/www/apps/conversion/tmp/scratch_3/s88115/fall2001/exercise.html
  • 7/29/2019 Multirate Digital Signal Processing1a

    3/67

    3

    Course prerequisites

    Basics of digital signal processing (eg., the

    HUT course T-61.246) or equal knowledge.

    Basic Matlab knowledge will help in

    solving the Matlab-homework problems

    It is mandatory to join the course via

    its web pages!

  • 7/29/2019 Multirate Digital Signal Processing1a

    4/67

    4

    Course contents and goals

    This course is intended to present

    fundamental, as well as advanced, concepts

    that are important to the understanding oftimely methods of digital signal processing

    needed for modern communication systems.

    Digital filter banks constitute the main

    subject of the course.

  • 7/29/2019 Multirate Digital Signal Processing1a

    5/67

    5

    Multirate digital signal

    processing The rapid development of multirate digital

    signal processing is complemented by the

    emergence of new applications. Theseinclude subband coding of speech, audio,and video signals, multicarrier datatransmission, fast transforms using digital

    filter banks and discrete wavelet analysis ofall types of signals.

  • 7/29/2019 Multirate Digital Signal Processing1a

    6/67

    6

    Multirate algorithms

    A key characteristic of multirate algorithms

    is their high computational efficiency. In

    many cases, these algorithms are the primereason that an application can now be

    implemented economically using modern

    digital signal processors

  • 7/29/2019 Multirate Digital Signal Processing1a

    7/67

    7

    1 Sampling Rate Conversion

    Many different sampling rates in the

    system

    Reduction of computational complexity.

    What happens when the sampling rate ischanged?

  • 7/29/2019 Multirate Digital Signal Processing1a

    8/67

    8

    1.1.1 Discrete sampling

    Discrete signals are often described using the

    complex number

    This is one of the M different M-th roots of 1,

    since

    On the unit circle of the complex plane:

    1WM

    M

    (1.1)1/M)(-j2exp MMW

  • 7/29/2019 Multirate Digital Signal Processing1a

    9/67

    9

    Figure 1.1 Definition of WM

    Im

    Re

    2/M

    2/M

    ZWM

    Z

    0 1

  • 7/29/2019 Multirate Digital Signal Processing1a

    10/67

    10

    Figure 1.2 Sampling of a discrete

    signal

    1 2 4 515

    0 3

    x(n)

    n

    n

    32 4 5 15n

    x(n)w4(n)

    w4(n)

    a)

    b)

    c)1

  • 7/29/2019 Multirate Digital Signal Processing1a

    11/67

    11

    Figure 1.3 Sampling with a phase

    offset of =3

    3

    a)

    b)

    c)

    n

    15

    x(n)

    1 2 4 50 3 n

    1 2 4 5 15

    x(n)w4(n- )

    n

    w4(n- )

  • 7/29/2019 Multirate Digital Signal Processing1a

    12/67

    The sampling function

    (1.4)otherwise0

    intgermmM,nfor1

    M

    1)(n

    1M

    0

    )(n

    MM Ww

    (1.3)M

    1n)((n)

    1M

    0

    n

    MMM Www

    (1.2)otherwise0

    integermmM,nfor1W

    M

    1(n)W

    1M

    0

    n

    MM

    With the phase offset :

    Note:

  • 7/29/2019 Multirate Digital Signal Processing1a

    13/67

    1.1.2 Polyphase Representation

    It is possible to sample M different

    signals out of x(n) each having every

    Mth sample of the original .

    Or in general,

    3)(nx(n)2)(nx(n)1)(nx(n)(n)x(n)

    (1.5)(n)(n)(n)(n)x(n)

    wwwwxxxx

    4444

    (p)

    3

    (p)

    2

    (p)

    1

    (p)

    0

    (1.6))(nw(n)x(n)x(n) M

    1M

    0

    1M

    0

    (p)

    x

  • 7/29/2019 Multirate Digital Signal Processing1a

    14/67

    The z-transform

    Can likewise be partitioned into M sub-signals. For example, for the

    finite signal x(n) in Fig. 1.4, we have

    (1.7)n-(n)X(z)n

    zx

    (1.8)x(15)x(11)x(7)x(3)

    x(14)x(10)x(6)x(2)

    x(13)x(9)x(5)x(1)x(12)x(8)x(4)x(0)X(z)

    15-11-7-3-

    14-10-6-2-

    13-9-5-1-

    -12-8-4-0

    zzzzzzzz

    zzzz zzzz

  • 7/29/2019 Multirate Digital Signal Processing1a

    15/67

    15

    gives0.....3,,offactoroutTaking z

    (1.9)x(15)x(11)x(7)x(3)

    x(14)x(10)x(6)x(2)

    x(13)x(9)x(5)x(1)

    x(12)x(8)x(4)x(0))(

    zzzzzzzzzz

    zzzzz

    zzzzz

    12-8-4-0-3-

    12-8-4-0-2-

    12-8-4-0-1-

    12-8-4-0-0-

    zx

    These are polynomials in z-4

  • 7/29/2019 Multirate Digital Signal Processing1a

    16/67

    16

    Figure 1.4Polyphase representation of adiscrete signal (next slide):

  • 7/29/2019 Multirate Digital Signal Processing1a

    17/67

    17

    150 1 2 4 53

    x(n)

    n

    n

    n

    n

    n

    x 1(p)(n)

    x 3(p)(n)

    x 1(n)

    x 2(p)(n)

    x 0(p)(n)

    =0

    =1

    =2

    =3

  • 7/29/2019 Multirate Digital Signal Processing1a

    18/67

    18

    (1.10))().x(mMX(z)

    Mmn

    zXzz

    M1M

    0

    (p)

    1-M

    0 -m

    )(mM-

    m

    m M-M(p)

    (1.11))x(mM)( zzX

    Equation (1.10) is called the

    polyphase representation of the z-transform X(z)

    where

  • 7/29/2019 Multirate Digital Signal Processing1a

    19/67

    19

    (1.12))12()8()4()0()(

    :polynomialFirst

    3210(p)

    0x zzzz xxxxz

    One-to-one Mapping

    z n

    (1.13)1-M0,1,2....(n),)()()(-

    z

    xzxpMp

    (1.14)T(z)(z),....,(z),(z):FormVector

    XzXzXX(p)

    1M

    1)(M(p)

    1

    1(p)

    0

    (p)

  • 7/29/2019 Multirate Digital Signal Processing1a

    20/67

    20

    (1.17))1Mx(mM(m)

    and

    (1.16)(m).)(

    Where

    (1.15))(X(z)

    :88bVai

    tionrepresentapolyphase2typethetoleads-1-MbyReplacing

    x

    zxzX

    zXz

    (p2)

    -m

    mM(p2)

    M(p2)

    M1M

    0

    (p2)

    )1(m

  • 7/29/2019 Multirate Digital Signal Processing1a

    21/67

    21

    :83Crotionrepresentastandardthefromobtainedbetion willrepresenta

    polyphase3typethe-byReplacing

    order.reversein the

    doneisindexingOnly theidentical.ethereforare

    (n)and1.4cFig.from(n)signalsThe

    (1.18)1-M...0,1,2.....(z),(z)

    byrelatedaretionsrepresenta2typeand1typeThe

    xx

    xx(p2)

    2

    (p)

    1

    (p)

    1M

    (p2)

  • 7/29/2019 Multirate Digital Signal Processing1a

    22/67

    22

    identicalthereforeare(n)and1.4cfigin(n)signalsThe

    (1.23)1...M1,2,3.....(z),(z)and

    (1.22)(z)(z)

    byrelatedaretionsrepresenta3typeand1typeThe(1.21))x(mM(m)

    and

    (1.20)(m)Where

    (1.19))((z)

    xx

    xzx

    xx

    x

    zxzX

    zXz

    (p3)

    3

    (p)

    1

    (p)

    M

    1(p3)

    (p)

    0

    (p3)

    0

    (p3)

    mM(p3)

    m

    M(p3)

    M(p3)

    1-M

    0

    X

  • 7/29/2019 Multirate Digital Signal Processing1a

    23/67

    23

    1.1.3 Modulation Representation

    M

    k2byfrequencytheshiftingModulation

    (1.25))()()(

    Transform)Fourier(Z

    (1.24)1-0,1,2....Mk),(z)(

    byzargumentheMultiply t

    k/M]2-j [k/Mj2-jj(m )

    k

    j

    k

    M

    j(m )

    k

    kM

    eXeeXeX

    eWXeX

    W

  • 7/29/2019 Multirate Digital Signal Processing1a

    24/67

    24

    In The Time Domain

    kn/M)sin(2jx(n)kn/M)cos(2x(n)

    (1.26)kn/M)exp(j2x(n)x(n))()X(z WW

    kM

    kM

  • 7/29/2019 Multirate Digital Signal Processing1a

    25/67

    25

    )(signalaof

    tionrepresentaModulation

    1.5Figure

    eXj

  • 7/29/2019 Multirate Digital Signal Processing1a

    26/67

    26

    0

    0 2

    0 2

    0 2

    x(m )

    1

    x(m )

    2

    M/2

    M/4

    M/6

    x(m )

    3

    )b

    )c

    2

    XX(m )

    0

    /M

    )a0k

    1k

    2k

    3k)d

  • 7/29/2019 Multirate Digital Signal Processing1a

    27/67

    27

    m

    n(p)

    M(p)

    -

    T(m )

    1M

    (m )

    1

    (m )

    0

    (m )

    kn

    M

    kn-

    M

    k-M

    M

    k

    M

    (1.29).)(

    (1.28)(z)......(z)(z)(z)

    :formMatrixin the

    Transforms-zmodulatedofsetcompleteThe

    (1.27)kn/M)cos(22x(n)

    x(n)x(n))(z)(z

    combinetohavewe

    signalsDomainTimecomplexavoidTo

    zXzXz

    xxxx

    WWWXWX

  • 7/29/2019 Multirate Digital Signal Processing1a

    28/67

    28

    1.1.4 Transformation of the

    signal Components

    (1.30)

    M

    1x(n)

    )(nx(n)(n)

    1M

    0

    n)(

    M

    M(p)

    W

    wx

    From (1.13):

  • 7/29/2019 Multirate Digital Signal Processing1a

    29/67

    29

    substituting the expression in

    (1.30) into equation (1.29) gives,

    replacing by k,

    (1.31)x(n)M

    1

    nx(n)M1

    .M

    1(n))(

    -

    W(zW

    Wz

    zWxzXz

    k

    M

    1M

    0k

    n-

    n

    k

    M

    1M

    0k n

    n)k(

    M

    n

    -n

    1M

    0k

    n)k(

    M

    M(p)

    (z))x(z XW(m)

    k

    k

    M

  • 7/29/2019 Multirate Digital Signal Processing1a

    30/67

    30

    The relationship between the polyphase components

    and the modulation components is thus

    the following

    1M

    0k

    k

    M

    (m)

    k

    M(p)

    WXzXz (z)M1

    )()32.1(

    (1.33)(z).M1(z)

    MatrixDFTUsing

    xWx (m)M(p)

  • 7/29/2019 Multirate Digital Signal Processing1a

    31/67

    31

    Reducing the Sampling Rate

    Decimation

    ANTI-ALIASING

    M

  • 7/29/2019 Multirate Digital Signal Processing1a

    32/67

    32

    1.2.1 Downsampling

    The sampling rate of a discrete signal x(n) is

    reduced by a factor M by taking only every

    M-th value of the signal. The relationship between

    the resulting signal y(m) and

    the original signal x(n) is as follows:

    y(m) = x(mM) (1.34)

    Fig1.6 shows a signal flow representation of thisprocess:

  • 7/29/2019 Multirate Digital Signal Processing1a

    33/67

    33

    Figure 1.6 Downsampler

    Mx(n) y(m)

  • 7/29/2019 Multirate Digital Signal Processing1a

    34/67

    34

    Can also be described using the polyphase

    representation using discrete sampling

    function and leaving out the zeroes.In the z-domain, we can use the z-transform of

    the original signal,

    )n(wM

    (1.36)zYzY

    zy(m)

    zM)x(m

    z

    transform-zobtain theto0,with(1.11)and

    (1.35)zx(n)(z)

    M

    m

    m

    M

    mM

    m

    M(p)

    0

    n

    n-

    x

    X

  • 7/29/2019 Multirate Digital Signal Processing1a

    35/67

    35

    Figure 1.7

    steps in signalprocessing used to perform

    downsampling

  • 7/29/2019 Multirate Digital Signal Processing1a

    36/67

    36

    15

    x(n)

    1 2 4 50 3n

    1 4 m

    T

    31 2 4 5 15n

    )(

    x

    (p)

    0

    n

    )0(x )4(x )12(x

    y(m)

    )0(x )4(x )12(x

    3

    T4

    a)

    b)

    c)

  • 7/29/2019 Multirate Digital Signal Processing1a

    37/67

    37

    (1.41)zz

    thenisvariablestwoebetween thiprelationshthe(1.39),from

    (1.40)z

    variablenewadefinecanwesoand(1.39)MTT

    nowissamplesbetweenspaceThe

    (1.38)zplaneLaplaceusing

    (1.37)y(m).)zY()Y(

    explainedbecanvalueszeroout theLeaving

    M

    Ts

    sT

    M

    e

    e

    z

  • 7/29/2019 Multirate Digital Signal Processing1a

    38/67

    38

    (1.45)zx(12)zx(8)zx(4)x(0))zY(

    1.7c,fig.insignalddownsampletheoftransform-zthethusand

    (1.44)x(12)x(8)x(4)x(0))Y(

    polynomialget thewe,thisFrom

    (1.43)x(12)x(8)x(4)x(0))(

    is1.7bfig.in0withcomponentpolyphaseThe

    (1.42)x(15)x(14)....x(2)x(1)x(0)X(z)bygivenis1.7afiginx(n)signaltheoftransform-zThe

    :1.1Example

    321

    34

    24

    144

    12844(p)

    0

    151421

    zzzz

    zzzzX

    zzzz

  • 7/29/2019 Multirate Digital Signal Processing1a

    39/67

    39

    1.2.2 Spectrum of the

    Downsampled Signal

    (1.47))X(M

    1)Y(

    ansformFourier trtime-discretethederiveushelpsezonsubstitutithesignals,stableFor

    (1.46))X(zM

    1)Y(

    obtainwe

    ,0with(1.32)From

    .componentsmodulationusingexpressedbecan(1.36)in

    )Y(signalsampleddiscretelytheoftransform-zThe

    ee

    Wz

    z

    k/Mj2j1-M

    0k

    jM

    j

    1-M

    0k

    k

    M

    M

    M

  • 7/29/2019 Multirate Digital Signal Processing1a

    40/67

    40

    In the following, the magnitude of this

    transform is referred to

    as the magnitude spectrum,often shortened to just spectrum.

    i 1 8 b i d i

  • 7/29/2019 Multirate Digital Signal Processing1a

    41/67

    41

    Fig1.8 spectra obtained using

    downsampling

    0 2

    0

    Xm

    X)(

    0

    2

    M/

    must be bandlimited

    0 2

    Y

    0 k 1 k 2 k 3 k 0 k

    M/2 M/4 M/6

    M2 2isRateSamplingNormalised

  • 7/29/2019 Multirate Digital Signal Processing1a

    42/67

    42

    (1.50))(XM

    1)Y(

    ofin termsSpectrum

    Tspacingtimescorrespond

    (1.49)MfrequencynormalizedThe(1.48)

    js

    M

    2ratesamplingNew

    MfactorbydecreasedisMagnitude

    2isRateSamplingNormalised

    ee

    eeee

    k]/M2j [1M

    0k

    j

    jTjTjMjM

  • 7/29/2019 Multirate Digital Signal Processing1a

    43/67

    43

    (1.51)/(3M)T2T:isfrequency

    normalisedingcorrespondThe/(6M).

    frequencyat thespectrumtheofvaluethefindto

    wishWe.Moffactorabyddownsamplethenand1/T

    frequencyaatsampledbeenhaswhichsignalaConsider

    f

    ff

    f

    111

    o1

    o

    :1.2Example

  • 7/29/2019 Multirate Digital Signal Processing1a

    44/67

    44

    1.8b.fig.inshownalsoisThis

    (1.53))X(

    M

    1)Y(

    namely(1.50),into(1.52)fromngsubstitutiasresultsamethegives(1.47)into(1.51)fromthengSubstituti

    (1.52)/3T2T

    :frequencynormalizednewtherespect towith

    frequencynormalizedthecalculatesimilarlycanWe

    1-M

    0k

    k/Mj2-/3Mj/3j

    /

    1

    1

    11

    /

    1

    ee

    fw

  • 7/29/2019 Multirate Digital Signal Processing1a

    45/67

    45

    1.2.3 Aliasing Effects

    (Vierastumisilmit)

    h(n) Mu(n)x(n) y(m)

    Fig 1.9 Decimator consisting of an anti-

    aliasing filter h(n) and

    a down-sampler M

    Ua) limitedbandnot

  • 7/29/2019 Multirate Digital Signal Processing1a

    46/67

    46

    Fig 1.10 The effect of anti-aliasing

    low-pass filter

    Anti-aliasing

    filter

    Band-limited

    Signal0 2M/

    0 2M/

    X

    U

    H

    a)

    b)

    c)

    0 2M/

    M)/(to

    limited-bandnot

    Signal

  • 7/29/2019 Multirate Digital Signal Processing1a

    47/67

    47

    After Filtering:

    k

    k

    kmMhku

    knhkununx

    (1.55)).()(y(m)

    sampleddownbewill

    (1.54)),()(h(n)*)()(

  • 7/29/2019 Multirate Digital Signal Processing1a

    48/67

    48

    In the z-transform Domain:

    (1.57))(zU)H(zM

    1)Y(

    :thenis

    signaldecimatedtheoftransform-zthe(1.46),From

    (1.56)U(z)H(z)X(z)

    WWzK

    M

    1M

    0k

    K

    M

    M

  • 7/29/2019 Multirate Digital Signal Processing1a

    49/67

    49

    1.2.4 Scaling of the Anti-Aliasing

    FilterThe gain of the Anti-aliasing filter=?

    Consider the sampled analog signal

    (1.59)/T2

    ,)(T1)X(x(n)

    thenis

    x(n)signaldiscretetheofspectrumperiodicThe(1.58)).((n)x

    0

    0a

    Tj

    a

    Xe

    x

    n

    jnj

    nT

    i ld i t dhid ti il lW

  • 7/29/2019 Multirate Digital Signal Processing1a

    50/67

    50

    (1.61)/M)jn-(jMT

    1

    )Y(y(n)

    isspectrumperiodicingcorrespondThe(1.60)(mMT)y(m)

    :MTofspacingsampleawith

    timebut this,(t)signalcontinuoussamethe

    samplingbyobtainedbeenhaveto(1.34)iny(m)

    signaldecimatedheconsider tsimilarlycanWe

    noa

    MTj

    a

    a

    x

    e

    x

    x

  • 7/29/2019 Multirate Digital Signal Processing1a

    51/67

    51

    M

    1factorscaling

    (1.63)),(MT

    1)(

    and

    (1.62))(T1)(

    :0issexpression

    summetheofnindexthewherebaseband,in the

    (1.61)and(1.59)spectratwothecomparingBy

    Y

    X

    o

    o

    j

    j

    Xe

    Xe

    a

    MTj

    aTj

  • 7/29/2019 Multirate Digital Signal Processing1a

    52/67

    52

    1.2.5 Decimation of Band-pass

    Signals

    /M2ofshiftfrequencya

    bySignalBasebandthefromformedis

    (1.64)integer),X(z(z)signalpass-Band

    WX M(m )

    modulation

    )(

  • 7/29/2019 Multirate Digital Signal Processing1a

    53/67

    53

    Figure 1.11 Spectra of decimated

    band pass signals

    0 2M/

    1 k 2 k 3 k0 k

    Xm

    X)(

    1

    1 k

    2M/2 M/4 M/6

    )X(zsignalpass-bandthengDownsampli MW

  • 7/29/2019 Multirate Digital Signal Processing1a

    54/67

    54

    (1.66))X()Y(

    and

    (1.65))X()Y(

    givesX(z),ofinstead,(1.47)and(1.46)

    into)X(zsignalpass-bandthengsubstituti

    X(z).signalbasebandtheofngdownsampliingcorresponda

    asresultsamethegivesMfactoraby

    )(gpgp

    1-M

    0k

    k)/M(j2jjM

    1-M

    0k

    k

    MM

    M

    M

    ee

    WWz

    W

    M1

    zM1

    Ua)

  • 7/29/2019 Multirate Digital Signal Processing1a

    55/67

    55

    Figure 1.12 The effect of anti-

    aliasing band-pass filtering

    0 2

    0 2

    0 2

    X

    U

    H

    a)

    b)

    c)

    M/2

  • 7/29/2019 Multirate Digital Signal Processing1a

    56/67

    56

    Anti-Aliasing Band-passFilter is needed

    1byshiftedkindexwith the

    (1.47)inspectrumthetoidenticalisIt

    )2(periodinperiodicis)(z WMX

  • 7/29/2019 Multirate Digital Signal Processing1a

    57/67

    57

    1.2.6 Downsampling with

    a phase offset

    (1.67)1M...0,1,2),Mx(m(m)

    :introducedbewilloffestPhase

    y

    x(n)

  • 7/29/2019 Multirate Digital Signal Processing1a

    58/67

    58

    Figure 1.13 Downsampling

    with a phase offset

    1501 2 4 53

    x(n)

    n

    n

    x 2(p)(n)

    15

    m

    y2(m)

    M/1 M/3 M/

    componentpolyphase

    2

    (1 13)t f

  • 7/29/2019 Multirate Digital Signal Processing1a

    59/67

    59(1.70))X(

    :(n)componentspolyphasetheofspectrumthededuceto

    ezsetcanwehere,From

    (1.69))X()(

    :(1.24)indefinedcomponentsthe

    usingwrittenbecanthis(1.32),From

    (1.68)(n))(

    (1.13)transform-z

    We

    x

    WzWzz

    xzxz

    k

    M

    1M

    0k

    k/Mj2-j

    (p)

    j

    kM

    1M

    0k

    kM

    M(p)

    -

    (p)

    M(p)

    -

    M

    1

    X

    givenalreadyx(n)signaltheshows1 13afig

  • 7/29/2019 Multirate Digital Signal Processing1a

    60/67

    60

    (1.71))X()((m)

    thereforeisspectrumIts

    1.2.1).section(seelyrespective,/by

    orby Zreplacingby1.13c,fig.in

    shown(m)signalddownsamplethe

    obtaincanwehere,From(n).components

    polyphasethe1.13bfigand1.2a,figin the

    givenalreadyx(n),signaltheshows1.13afig

    1

    0

    k/]2j [

    j

    M

    2

    (p)2

    We

    eYy

    z

    y

    x

    M1

    M

    kM

    Mk

    M

  • 7/29/2019 Multirate Digital Signal Processing1a

    61/67

    61

    The nonzero values of the downsampled polyphase

    components will not appear at integeral values

    of m unless =0. This is shown in fig 1.13c. This

    representation is occasionally used for

    hypothetical filter prototypes.

  • 7/29/2019 Multirate Digital Signal Processing1a

    62/67

    62

    Example 1.3:

    Consider the finite real signal x(n) in the Fig 1.14a,

    whose spectrum X(exp j ) is shown in the Fig

    1.15a, the non-causal signal is even, i.e. x(n)= x(-n).

    The spectrum is thus real and has even symmetry.

    x(n)

  • 7/29/2019 Multirate Digital Signal Processing1a

    63/67

    63

    Figure 1.14 Downsampled

    polyphase components with M=2

    n0 1 2

    m0 1

    m0

    x~0

    x~1

    1/2 3/2 7/2

    = 0

    = 1

  • 7/29/2019 Multirate Digital Signal Processing1a

    64/67

    64

    (1.73),)X(

    2

    1

    1.2.2).section(see2ofafactorbyratesampling

    thereducedhavingand0offestphaseahavingwith

    compatiblebeseen toisresultThis.respctivly2or

    periodawithspectrumrealaformtocombine

    termssumtwoThe1.15b.figinshownisspectrumThis

    (1.72))X(2

    1

    :spectrumthe

    obtainwe(1.70),into2MngSubstituti.0fori.e.

    (m),componentddownsampletheshows1.14bFig

    1

    0k

    K

    2

    k]j[(p)

    1

    1

    0k

    k]j[(p)

    0

    (p)

    0

    1)(k

    Wex~

    ex~

    x~

  • 7/29/2019 Multirate Digital Signal Processing1a

    65/67

    65

    true.alwaysist thisevdent thaisIt

    spectrum.theofperiodaffect thenotdoes0

    offsetphaseagIntroducin.4or2periodahas(m)ofspectrumtheresult,aAs

    .signsoppositehavetermssumtwothe1offest

    phaseaithbut that wmagnitude,samethehavespectrathat tworeveals1.15cfigwith1.15bFig.or

    (1.73)with(1.72)Comparing1.15c.FigindisplayedisThis

    x~(p)

    1

    X

  • 7/29/2019 Multirate Digital Signal Processing1a

    66/67

    66

    Figure 1.15 spectra of

    downsampled polyphase

    components

    0 2

    20

    20

    42

    20

    a)

    b)

    c)

    Zero Padding = insert zeroes

  • 7/29/2019 Multirate Digital Signal Processing1a

    67/67

    Zero Padding insert zeroes

    between existing samples

    M=4M=5