8
No. of Printed Pages : 8 MTE-02 BACHELOR'S DEGREE PROGRAMME (BDP) 07606 Term-End Examination June, 2014 ELECTIVE COURSE : MATHEMATICS MTE-02 : LINEAR ALGEBRA Time : 2 hours Maximum Marks : 50 (Weightage 70%) Note : Question no. 7 is compulsory. Attempt any four questions from Q. No. 1 to Q. No. 6. Use of calculators is not allowed. 1. (a) Show that Q[x], the set of all polynomials with rational coefficients is a vector space over Q with respect to addition of polynomials and multiplication by constant. Is the set of all polynomials with integer coefficients a subspace of this vector space ? Give reasons for your answer. 4 (b) Find the range space and the kernel of the linear transformation : 6 T R 4 --+ R4, T(xi, x2, x3, x4) = (x1 + x2 + x3 + x 4, x 1 + x2, x 3 + x4, 0) 2. (a) Show that if S and T are linear transformations on a finite dimensional vector space, then rank (ST) rank (T). Also give examples of linear transformations S and T for which rank (ST) < rank (T). 4 MTE-02 1 P.T.O.

MTE-02

  • Upload
    vipin

  • View
    25

  • Download
    6

Embed Size (px)

DESCRIPTION

IGNOU QUESTION PAPAERS

Citation preview

  • No. of Printed Pages : 8 MTE-02 BACHELOR'S DEGREE PROGRAMME

    (BDP) 07606

    Term-End Examination June, 2014

    ELECTIVE COURSE : MATHEMATICS MTE-02 : LINEAR ALGEBRA

    Time : 2 hours Maximum Marks : 50

    (Weightage 70%) Note : Question no. 7 is compulsory. Attempt any four

    questions from Q. No. 1 to Q. No. 6. Use of calculators is not allowed.

    1. (a) Show that Q[x], the set of all polynomials with rational coefficients is a vector space over Q with respect to addition of polynomials and multiplication by constant. Is the set of all polynomials with integer coefficients a subspace of this vector space ? Give reasons for your answer. 4

    (b) Find the range space and the kernel of the linear transformation : 6 T R4

    --+ R4, T(xi, x2, x3, x4) = (x1 + x2 + x3 + x4, x1

    + x2, x3 + x4, 0) 2. (a) Show that if S and T are linear

    transformations on a finite dimensional vector space, then rank (ST) rank (T). Also give examples of linear transformations S and T for which rank (ST) < rank (T). 4

    MTE-02 1 P.T.O.

  • (b) Find the eigenvalues and eigenvectors of the matrix

    3. (a)

    A=

    Is A

    Find {1, 1

    1 1 0

    1 1 0

    2 2

    2

    diagonalisable ?

    the dual basis for + x, x2 1} of the (a0 + ax + a2x2

    Justify your answer.

    the basis vector space

    E

    6

    4 P3 a0, al' a = 2 1

    (b) Verify the Cayley Hamilton theorem for 2 1 1

    A = 1 2 1 . Hence find its inverse. 4

    1 1 3

    (c) Check whether the set S = {(al, a2, ..., an) E Rn I = 1 + a2}

    is a subspace of Rn or not. 2

    . (a) Check whether the quadratic forms 2x2 + 3y2 + 5z2 4xz 6yz and

    4x2 + 3y2 + z2 6xy 2xz are orthogonally equivalent.

    MTE-02 2

  • (b) Let V = {(a, b, c) E R3 a + b = c} and

    W = {(a, b, c) E R3 I a = b} be subspaces of

    R3. (i) Find the dimensions of V, W and

    V n w. (ii) Is R3 = V 9 W ? Justify your answer.

    4

    (c) Is the following matrix Hermitian ? 1 i 0

    A= i 1 1i 0 1+ i 2

    Is it unitary ? Justify your answer. 2

    5. (a) Let V = {(a, b, c, d) R4 la+b+c+d= 0}

    and W = {(a, b, c, E R4 I a = b, c = d} be

    subspaces of R4. (i) Check that W is a subspace of V. (ii) Find the dimension of VAV. (iii) Check whether (1, 1, 1, 3) + W and

    (-1, 2, 0, 1) + W represent the same element of V/W. 5

    (b) Find an orthonormal basis for C3 by

    applying Gram Schmidt orthogonalisation process to the basis {(1, i, 0), ( i, 0, 2), (0, i, 2)1. 5

    MTE-02 3 P.T.O.

  • 6.

    7.

    (a) Find the the quadratic

    9x2 and its

    (b) Find the

    Hence,

    Which of the which are false a short proof

    orthogonal canonical reduction of form

    + 7y2 + 11z2 8xy + 8x2 principal axis. 6

    adjoint of the matrix 1 0 3

    1 1 0

    0 1 2

    find its inverse. 4

    following statements are true and ? Justify your answer either with

    or with a counter-example. 10

    (i) If W and U are subspaces of the vector space V having the same dimensions, then U = W.

    (ii) If V is a vector space over K and f : V > K is a non-zero linear function, then f is onto.

    (iii) A 3 x 3 matrix with real entries has a real eigenvalue.

    (iv) If T is a linear transformation on an inner product space V and T * T = 0, then T = 0.

    (v) The rank and signature of a quadratic form are always equal.

    MTE-02 4

  • Tz.t.t.-02 t^1idch 44111 ell I OH

    Otttlft. TrATd TrNIT 13, 2014

    ct)xiicktistoi : ITR/TF 444410

    7 : 2 E74 34*637 37W : 50

    (sp ei *770% ) gie : Ff. 7 0(41 7g-it* / AYd #. 1 46 #4 Wrf Ter er47. ei,cispe,?,,7 w 51T ema 3r-jrrfd Re*

    1. ()itury trft4 17fr.-4 Trift Arra .wr

    Qbd, 3 3r4K 77r4 1:1144T 14 14W tii441T(Th t I WTT Tuft 74t0 c4I 1:11# Wqra tiTcati t tiR41 ? 3714 cbitui Gidi I

    NO et) 4tbitcb T : R4 > R4, T(xi, x2, x3, x4) =

    (xi + x2 + x3 + x4, x1 + x2, x3 +0) 4' ITNIT 1:Frft at-{ 3 R I

    2. () S 311K T llitftra" Wifg 1Rgch ticniteb t, Rf 'RUFF i* \3111 (ST) ,3111 (T) 13-4 IRscr) ticnitcni s 311K T c a dqwui 141 ZR ,31A (ST) < AA (T)t I

    4

    4

    MTE-02 5 P.T.O.

  • 1 1 0 1 1 0 2 2 2

    374-4grrq3 3744-tur-qr Tff *tr4 I Wf A fdchui-ilei ?3 3c7*r afrP4RI 6

    3. () tiRki (-114 P3 = la0 + a1 x + a2 x2 a0' a1, a2 E RI 31T 4R a, 1 + x, x2 - 1) tff 3i1 TT Wd

    *CP4R 4 (w) aTimz

    2 1 1 1 2 1

    1 1 3

    tR-F-e9- kirenf4c1 araw 0 -shai 'Tff Ati7R 4 -qt-A- WA ft kt-cati s = {(ai, a2, ..., an) E Rn I a1 = 1 + a2) Rn*t d4wifi zrr Rtf 2

    2x2 + 3y2

    + 5z2 4xz 6yz

    4x2 + 3y2 + z2 6xy az oiNchi: t Ter I 4

    A=

    (TO

    4.

    MTE-02 6

  • 1Tfq #1?`

    V = {(a, b, c) E R3 a + b = W = {(a, b, c) R3 I a = 13}

    R3 # I (i) V, W 3 t v n w fdgiR 7rd *If*

    w R3 = V W ? 31 Brit *trA

    (ii) ;Err aTrao eitt ? 1 0 -

    i 1 1i 0 1+i 2

    Errzr- *- t?31943wKAI .3tAtiAI 5. () "grfq #tf*R

    V={(a,b,c,d)ER4 1a+b+c+d=0} 3* W = {(a, b, c, d) E R4 Ia=b,c= d} R4 Al (i) tri* w, v t

    V/W SIT Ta. *Ii* I .4fq" i* (1, 1, 1, 3) + w 31h (-1, 2, 0, 1) + W, V/W 31-4-44 '4-

    is cht;

    3111.17 {(1, i, 0), ( i, 0, 2), (0, i, 2)) 'ER *ff rtAcAchtui 5191111 31-4:44 ant; C3

    -PM 0i1ch 31TETR TTff - r1-=A I 5

    A=

    4

    5

    MTE-02 7 P.T.O.

  • s. () .kErr4t 11t111 9x2 + 7y2 + 11z2 - 8xy + 8xz

    dkichi t(1 344 Ta. AI* I

    al-r-ag l 0 3

    -1 1 0 0 1 2 t15q1 eta *If* I *fl icto A I

    7. ".21-4 A. ctl-i-A 3t1T aRr&a.

    ? 3174 drIt 'ffg z-ErrA zn- m -dcwul giki Ali*R 10 (i) zrit TAW v *I. u afr{

    fdl4T4 (-11-11-1 t, U = W t zff V, K lePT Tigift 3 f : V -> K 7" A-dK IR.gct) Th77' t, f aTIW-c0.

    I

    cliC) 3 x 3 3Tra -1cr aR.cifd.t) 374-43Tr4 slat t I

    (iv) T T aliffK !pm -vtrT kict)Rcr, atR T*T=0#,RrT=0.

    (v) ftkft ift fort witim sAA AK -kw kici wick

    4

    MTE-02 8 5.000

    Page 1Page 2Page 3Page 4Page 5Page 6Page 7Page 8