MT 1.2 1.4 Bahan Kuliah

Embed Size (px)

Citation preview

  • 8/15/2019 MT 1.2 1.4 Bahan Kuliah

    1/43

     Crystal structure

    There are two main forms of solid substance, characterizing different atoms arrangement in theirmicrostructures: amorphous and crystalline.

    Amorphous solid

    Amorphous solid substance does not possess long-range order of atoms positions. Some liquids

    when cooled become more and more viscous and then rigid, retaining random atom characteristic

    distribution.

    This state is called undercooled liquid or amorphous solid. ommon glass, most of !olymers, 

    glues and some of eramics are amorphous solids. Some of the "etals may be prepared in

    amorphous solid form by rapid cooling from molten state.

    Crystalline solid

    rystalline solid substance is characterized by atoms arranged in a regular pattern, e#tending inall three dimensions. The crystalline structure is described in terms of crystal lattice, which is a

    lattice with atoms or ions attached to the lattice points. The smallest possible part of crystal

    lattice, determining the structure, is called primitive unit cell.

    $#amples of typical crystal lattice are presented in the picture:

    Metal crystal structure and specific metal properties are determined by metallic bonding %force, holding together the atoms of a metal. $ach of the atoms of the metal contributes its

    valence electrons to the crystal lattice, forming an electron cloud or electron &gas', surrounding

     positive metal ions. These free electrons belong to the whole metal crystal.

    http://www.substech.com/dokuwiki/doku.php?id=polymershttp://www.substech.com/dokuwiki/doku.php?id=polymershttp://www.substech.com/dokuwiki/doku.php?id=ceramicshttp://www.substech.com/dokuwiki/doku.php?id=ceramicshttp://www.substech.com/dokuwiki/doku.php?id=metalshttp://www.substech.com/dokuwiki/lib/exe/detail.php?id=metals_crystal_structure&cache=cache&media=crystal_lattice.pnghttp://www.substech.com/dokuwiki/doku.php?id=ceramicshttp://www.substech.com/dokuwiki/doku.php?id=metalshttp://www.substech.com/dokuwiki/doku.php?id=polymers

  • 8/15/2019 MT 1.2 1.4 Bahan Kuliah

    2/43

    Ability of the valence free electrons to travel throughout the solid e#plains both the high

    electrical conductivity and thermal conductivity of metals.

    (ther specific metal features are: luster or shine of their surface )when polished*, theirmalleability )ability to be hammered* and ductility )ability to be drawn*.

    These properties are also associated with the metallic bonding and presence of free electrons in

    the crystal lattice.

    The following elements are common metals:

    aluminum)Al*, barium)+a*, beryllium)+e*, bismuth)+i*, cadmium)d*, calcium)a*,

    cerium)e*, cesium)s*, chromium)r*, cobalt)o*, copper)u*, gold)Au*, indium)n*,

    iridium)r*, iron)e*, lead)!b*, lithium)i*, magnesium)"g*, manganese)"n*, mercury)/g*,molybdenum)"o*, nic0el)1i*, osmium)(s*, palladium)!d*, platinum)!t*, potassium)2*,

    radium)3a*, rhodium)3h*, silver)Ag*, sodium)1a*, tantalum)Ta*, thallium)Tl*, thorium)Th*,

    tin)Sn*, titanium)Ti*, tungsten)4*, uranium)5*, vanadium)6*, zinc)7n*.

    Thermal properties

    http://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=aluminum_alloyshttp://www.substech.com/dokuwiki/doku.php?id=copper_alloyshttp://www.substech.com/dokuwiki/doku.php?id=steels_and_cast_ironshttp://www.substech.com/dokuwiki/doku.php?id=magnesium_alloyshttp://www.substech.com/dokuwiki/doku.php?id=nickel_alloyshttp://www.substech.com/dokuwiki/doku.php?id=nickel_alloyshttp://www.substech.com/dokuwiki/doku.php?id=titanium_alloyshttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=aluminum_alloyshttp://www.substech.com/dokuwiki/doku.php?id=copper_alloyshttp://www.substech.com/dokuwiki/doku.php?id=steels_and_cast_ironshttp://www.substech.com/dokuwiki/doku.php?id=magnesium_alloyshttp://www.substech.com/dokuwiki/doku.php?id=nickel_alloyshttp://www.substech.com/dokuwiki/doku.php?id=titanium_alloys

  • 8/15/2019 MT 1.2 1.4 Bahan Kuliah

    3/43

    Thermal Conductivity 

    Thermal Conductivity (λ) is amount of heat passing in unit time through unit surface in adirection normal to this surface when this transfer is driven by unite temperature gradient under

    steady state conditions.

    Thermal conductivity may be e#pressed and calculated from the Fourier’s law:

    ΔQ/ Δt !"# "ΔT/ Δ$ 

    4here

    Q -heat, passing through the surface #8

    Δt - change in time8

    !  - thermal conductivity8

    # - surface area, normal to the heat transfer direction8

    ΔT/Δ$-temperature gradient along $ % direction of the heat transfer.

    ourier9s law is analogue of the irst ic09s law, describing diffusion in steady state.

    "etals have high thermal conductivity. /eat is transferred through the metal crystal by freeelectrons. ompare:

    !  of alumina ;< +T5=)lb>?* )@. 4=)m>2**.

    !  of Al B@CC +T5=)lb>?* )DB 4=)m>2**.

    Coefcient o Thermal Expansion

    Thermal Expansion ( Coefficient of Thermal Expansion ) is relative increase in length per unite

    temperature rise:

    % Δ&/ '&oΔT(

    4here

    % -coefficient of thermal e#pansion )CT)*8

    Δ& % length increase8

    &o % initial length8

    http://www.substech.com/dokuwiki/doku.php?id=metals_crystal_structurehttp://www.substech.com/dokuwiki/doku.php?id=metals_crystal_structurehttp://www.substech.com/dokuwiki/doku.php?id=metals_crystal_structurehttp://www.substech.com/dokuwiki/doku.php?id=metals_crystal_structurehttp://www.substech.com/dokuwiki/doku.php?id=metals_crystal_structurehttp://www.substech.com/dokuwiki/doku.php?id=metals_crystal_structurehttp://www.substech.com/dokuwiki/doku.php?id=metals_crystal_structure

  • 8/15/2019 MT 1.2 1.4 Bahan Kuliah

    4/43

    ΔT % temperature rise.

    Thermal e#pansion of metals is generally higher, than that of ceramics.

    ompare:

    CT) of Si D. ?EF );.C ?EF*.

    CT) of Al B ?EF )D ?EF*.

    Specic Heat Capacity 

     Heat Capacity is amount of heat required to raise material temperature by one unit.

     Specific Heat Capacity is amount of heat required to raise temperature of unit mass of material by one unit:

    c ΔQ=)mΔT( 

    4here

    c -specific heat capacity8

    ΔQ % amount of heat8

    m % material mass8

    ΔT % temperature rise.

    Specific /eat apacity of metals is lower, than that of ceramics.

    ompare:

    *c+ of alumina C.DC +T5=)lb>?* )GHC I=)0g>2**.

    *c+ of steel C.BBH +T5=)lb>?* );GB I=)0g>2**.

    Magnetic properties

    "ost of metals are slightly magnetic, but only few of them )iron, nic0el, cobalt and their alloys*

    display pronounced magnetic properties, called ferromagnetism.

    • Magnetically soft metals – metals, which are demagnetized after themagnetic eld is removed. Magnetically soft metals are used in electricmotors and transformers.

    http://www.substech.com/dokuwiki/doku.php?id=ceramicshttp://www.substech.com/dokuwiki/doku.php?id=ceramics

  • 8/15/2019 MT 1.2 1.4 Bahan Kuliah

    5/43

    • Magnetically hard metals – metals, retaining their magnetization after themagnetic eld is removed.Magnetically hard metals are used for permanentmagnets.

    • Magnetostriction – eect of changing dimensions of a ferromagnetic metalwhen its magnetization is changed.

  • 8/15/2019 MT 1.2 1.4 Bahan Kuliah

    6/43

    Tensile test and Stress-Strain Diagram

    #tress,#train -iagram e#presses a relationship between a load applied to a material and the

    deformation of the material, caused by the load .

    Stress-Strain Jiagram is determined by tensile test.

    Tensile tests are conducted in tensile test machines, providing controlled uniformly increasingtension force, applied to the specimen.

    The specimen9s ends are gripped and fi#ed in the machine and its gauge length &. )a calibrated

    distance between two mar0s on the specimen surface* is continuously measured until the rupture.

    Test specimen may be round or flat in the cross-section.

    n the round specimens it is accepted, that &.  " diameter.

    The specimen deformation )strain* is the ratio of the increase of the specimen gauge length to its

    original gauge length:

    0 '& 1 &.( / &. 

    Tensile stress is the ratio of the tensile load F applied to the specimen to its original cross-

    sectional area #.:

    2 F / #. 

    http://www.substech.com/dokuwiki/lib/exe/detail.php?id=tensile_test_and_stress-strain_diagram&cache=cache&media=tensile_specimen.png

  • 8/15/2019 MT 1.2 1.4 Bahan Kuliah

    7/43

    The initial straight line ).3*of the curve characterizes proportional relationship between the

    stress and the deformation )strain*.

    The stress value at the point 3 is called the limit of proportionality:

    2p F3 / #. 

    This behavior conforms to the 4oo5’s &aw:

    2 )"0 

    4here ) is a constant, 0nown as 6oung’s Modulus or  Modulus of )lasticity.

    The value of Koung9s "odulus is determined mainly by the nature of the material and is nearly

    insensitive to the heat treatment and composition.

    "odulus of elasticity determines stiffness - resistance of a body to elastic deformation caused byan applied force.

    The line .) in the Stress-Strain curve indicates the range of elastic deformation % removal of

    the load at any point of this part of the curve results in return of the specimen length to its

    original value.

    The elastic behavior is characterized by the elasticity limit )stress value at the point )*:

    2el F) / #. 

    or the most materials the points 3 and ) coincide and therefore 2el2p.

    http://www.substech.com/dokuwiki/doku.php?id=basic_principles_of_heat_treatmenthttp://www.substech.com/dokuwiki/doku.php?id=basic_principles_of_heat_treatment

  • 8/15/2019 MT 1.2 1.4 Bahan Kuliah

    8/43

    A point where the stress causes sudden deformation without any increase in the force is calledyield limit 'yield stress7 yield strength(:

    2y F6 / #. 

    The highest stress )point 68* , occurring before the sudden deformation is called upper yield

    limit .

    The lower stress value, causing the sudden deformation )point 6&* is called lower yield limit.

    The commonly used parameter of yield limit is actually lower yield limit.

    f the load reaches the yield point the specimen undergoes plastic deformation % it does not

    return to its original length after removal of the load.

    http://www.substech.com/dokuwiki/doku.php?id=plastic_deformationhttp://www.substech.com/dokuwiki/lib/exe/detail.php?id=tensile_test_and_stress-strain_diagram&cache=cache&media=stress-strain_diagram.pnghttp://www.substech.com/dokuwiki/doku.php?id=plastic_deformation

  • 8/15/2019 MT 1.2 1.4 Bahan Kuliah

    9/43

    /ard steels and non-ferrous metals do not have defined yield limit, therefore a stress,

    corresponding to a definite deformation )C.BL or C.DL* is commonly used instead of yield limit.

    This stress is called proof stress or offset yield limit 'offset yield strength(9

    2.:;

  • 8/15/2019 MT 1.2 1.4 Bahan Kuliah

    10/43

    (ther important characteristic of metals is ductility - ability of a material to deform under

    tension without rupture.

    Two ductility parameters may be obtain from the tensile test:

    =elative elongation - ratio between the increase of the specimen length before its rupture and itsoriginal length:

    0 '&m 1 &.( / &. 

    4here &m % ma#imum specimen length.

    =elative reduction of area , ratio between the decrease of the specimen cross-section area

     before its rupture and its original cross-section area9 

    > '#. 1 #min( / #. 

    Where Smin– minimum specimen cross-section area.

  • 8/15/2019 MT 1.2 1.4 Bahan Kuliah

    11/43

    Fracture Toughness

    Fracture is a process of brea0ing a solid into pieces as a result of  stress. 

    There are two principal stages of the fracture process:

    • Crac5 formation

    • Crac5 propagation

    -uctile fracture

    Juctile materials undergo observable plastic deformation and absorb significant energy before

    fracture.

    A crac0, formed as a result of the ductile fracture, propagates slowly and when the stress is

    increased.

    !lastic deformation of a multi- phase material causes formation and coalescence of voids on the

     phase and inclusions boundaries. These voids are responsible for the specific appearance of the

    ductile fracture surface, consisting of numerous spherical micro-cavities )dimples*, initiatingformation of the crac0.

    Tensile specimen fractured by the ductile mechanism is characterized by the cap and cone 

    appearance of the fracture.

    Single-phase alloys and pure metals are more ductile, than metals, containing second phases or

    inclusions.

    http://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=plastic_deformationhttp://www.substech.com/dokuwiki/doku.php?id=plastic_deformationhttp://www.substech.com/dokuwiki/doku.php?id=solid_solutionshttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=solid_solutionshttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=plastic_deformationhttp://www.substech.com/dokuwiki/doku.php?id=solid_solutionshttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=solid_solutions

  • 8/15/2019 MT 1.2 1.4 Bahan Kuliah

    12/43

    ?rittle fracture

    +rittle fracture is characterized by very low plastic deformation and low energy absorption prior

    to brea0ing.

    A crac0, formed as a result of the brittle fracture, propagates fast and without increase of the

    stress applied to the material.

    The brittle crac0 is perpendicular to the stress direction.

    There are two possible mechanisms of the brittle fracture: transcrystalline 'transgranular7

    cleavage( or  intercrystalline 'intergranular(: 

    Cleavage crac0s pass along crystallographic planes through the grains.

    @ntercrystalline fracture occurs through the grain boundaries, embrittled by segregatedimpurities, second phase inclusions and other defects.

    The brittle fractures usually possess bright granular appearance.

    http://www.substech.com/dokuwiki/doku.php?id=metals_crystal_structurehttp://www.substech.com/dokuwiki/doku.php?id=metals_crystal_structurehttp://www.substech.com/dokuwiki/doku.php?id=grain_structurehttp://www.substech.com/dokuwiki/doku.php?id=grain_structurehttp://www.substech.com/dokuwiki/doku.php?id=grain_structurehttp://www.substech.com/dokuwiki/doku.php?id=microsegregationhttp://www.substech.com/dokuwiki/doku.php?id=microsegregationhttp://www.substech.com/dokuwiki/lib/exe/detail.php?id=fracture_toughness&cache=cache&media=ductile_and_brittle_fracture.pnghttp://www.substech.com/dokuwiki/doku.php?id=metals_crystal_structurehttp://www.substech.com/dokuwiki/doku.php?id=grain_structurehttp://www.substech.com/dokuwiki/doku.php?id=grain_structurehttp://www.substech.com/dokuwiki/doku.php?id=microsegregationhttp://www.substech.com/dokuwiki/doku.php?id=microsegregation

  • 8/15/2019 MT 1.2 1.4 Bahan Kuliah

    13/43

    Toughness

    Toughness is ability of material to resist fracture.

    The general factors, affecting the toughness of a material are: temperature, strain rate,relationship between the strength and ductility of the material and presence of stress

    concentration )notch* on the specimen surface.

    racture toughness is indicated by the area below the curve on strain-stress diagram )see the

    figure*:

    As seen from the diagram toughness of the ductile materials is higher than toughness of brittle

    materials.

     Stress-intensity Factor () is a quantitative parameter of fracture toughness determining a

    ma#imum value of stress which may be applied to a specimen containing a crac0 )notch* of a

    certain length.

    Jepending on the direction of the specimen loading and the specimen thic0ness, four types ofstress-intensity factors are used:  C7  @C  @@C  @@@C.

    http://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_strain-stress_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/lib/exe/detail.php?id=fracture_toughness&cache=cache&media=toughness.pnghttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_strain-stress_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagram

  • 8/15/2019 MT 1.2 1.4 Bahan Kuliah

    14/43

     C % stress-intensity factor of a specimen, thic0ness of which is less than a critical value.

     C depends on the specimen thic0ness. This condition is called plane stress.

     @C7 @@C7  @@@C % stress-intensity factors, relating to the specimens, thic0ness of which is above

    the critical value therefore the values of  @C  @@C  @@@C do not depend on the specimen thic0ness.This condition is called plane strain.

     @@C and  @@@C % stress-intensity factors relating to the fracture modes in which the loading

    direction is parallel to the crac0 plane. These factors are rarely used for metals and are not used

    for ceramics8

     @C % plane strain stress-intensity factor relating to the fracture modes in which the loading

    direction is normal to the crac0 plane. This factor is widely used for both metallic and ceramic

    materials.

     @C is used for estimation critical stress applied to a specimen with a given crac0 length:

    2C B @C /'6' a(D( 

    4here

     @C % stress-intensity factor, measured in "!a>mM8

    2C % the critical stress applied to the specimen8

    a % the crac0 length for edge crac0 or half crac0 length for internal crac08

    6 % geometry factor.

    http://www.substech.com/dokuwiki/doku.php?id=metalshttp://www.substech.com/dokuwiki/doku.php?id=ceramicshttp://www.substech.com/dokuwiki/doku.php?id=metalshttp://www.substech.com/dokuwiki/doku.php?id=ceramics

  • 8/15/2019 MT 1.2 1.4 Bahan Kuliah

    15/43

  • 8/15/2019 MT 1.2 1.4 Bahan Kuliah

    16/43

    (ne of the most popular impact tests is the Charpy Test, schematically presented in the figure

     below:

    The hammer stri0ing energy in the harpy test is DDC ft>lbf )CC I*.

    http://www.substech.com/dokuwiki/lib/exe/detail.php?id=fracture_toughness&cache=cache&media=charpy.png

  • 8/15/2019 MT 1.2 1.4 Bahan Kuliah

    17/43

    FatigueFatigue is a type of failure of a material, occurring under alternating loads.

    "ost of the failures of machine details are caused by fatigue.

    Fatigue life is the number of cycling stresses, causing failure of the material.

    requency of these stresses is not important.

    Fatigue limit is the ma#imum value of repeatedly applied stress that the material can withstand

    after an infinite number of cycles )BC-DC mln. ycles in practice*.

    Fatigue strength at E cycles is the load, producing the material fracture after 1 cyclingapplications of the load.

    atigue limit of a material is much lower, than its ultimate tensile strength.

    atigue tests are carried out in the 4Nhler-type machine, schematically shown in the picture.

    The rotating specimen in form of a cantilever is driven by an electric motor. The specimen is

    loaded by the force , applied to the ball bearing, mounted on the end of the specimen.

    Since the force direction does not change, the direction of the stress applied to the specimen will be reversed each BGC? of the shaft rotation.

    http://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/lib/exe/detail.php?id=fatigue&cache=cache&media=fatigue_test.pnghttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagram

  • 8/15/2019 MT 1.2 1.4 Bahan Kuliah

    18/43

    This scheme provides cycling loading of the specimen, presented in the equivalent scheme.

    To find the fatigue limit the fatigue test is repeated at different loads.

    The tests results are presented in form of #,E curve )stress vs. number of cycles*:

    atigue fracture is characterized by presence of two different types of the surface:

    (ne part is smooth and discolored with ripple-li0e mar0s, indicating slow crac0 growth from the

    center of the crac0 formation. Another part of the surface has coarse crystalline appearanceresulted from the final catastrophic crac0 propagation.

    The following factors affect fatigue fracture:

    • #urface factor

    atigue crac0s form and initiate on the specimen surface therefore hardened and smooth surface

    )without stress concentrations - notch, flaw* will increase the fatigue limit.

    • Compressive stress

    ompressive stresses, produced in the specimen surface by Shot peening, cold wor0  or heattreatment result in considerable increase of fatigue limit.

    • Micro,structure defects

     1on-metallic inclusions and other micro-defects may initiate formation of fatigue crac0s.

    • )nvironmental factoratigue in the presence of corrosive environment )orrosion

    fatigue* occurs at lower cycling stresses and after lower number of cycles.

    http://www.substech.com/dokuwiki/doku.php?id=shot_peeninghttp://www.substech.com/dokuwiki/doku.php?id=basic_principles_of_heat_treatment#hardeninghttp://www.substech.com/dokuwiki/doku.php?id=basic_principles_of_heat_treatment#hardeninghttp://www.substech.com/dokuwiki/doku.php?id=basic_principles_of_heat_treatmenthttp://www.substech.com/dokuwiki/doku.php?id=basic_principles_of_heat_treatmenthttp://www.substech.com/dokuwiki/doku.php?id=basic_principles_of_heat_treatmenthttp://www.substech.com/dokuwiki/doku.php?id=non-metallic_inclusions_in_steelhttp://www.substech.com/dokuwiki/doku.php?id=corrosion_fatiguehttp://www.substech.com/dokuwiki/doku.php?id=corrosion_fatiguehttp://www.substech.com/dokuwiki/lib/exe/detail.php?id=fatigue&cache=cache&media=s-n_curve.pnghttp://www.substech.com/dokuwiki/doku.php?id=shot_peeninghttp://www.substech.com/dokuwiki/doku.php?id=basic_principles_of_heat_treatment#hardeninghttp://www.substech.com/dokuwiki/doku.php?id=basic_principles_of_heat_treatmenthttp://www.substech.com/dokuwiki/doku.php?id=basic_principles_of_heat_treatmenthttp://www.substech.com/dokuwiki/doku.php?id=non-metallic_inclusions_in_steelhttp://www.substech.com/dokuwiki/doku.php?id=corrosion_fatiguehttp://www.substech.com/dokuwiki/doku.php?id=corrosion_fatigue

  • 8/15/2019 MT 1.2 1.4 Bahan Kuliah

    19/43

    Creep

    Creep is a phenomenon of slow plastic deformation )elongation* of a metal at high temperature

    under a constant load.

    The creep mechanism9 

    At low stresses the creep is controlled by the diffusion of atoms through the grain boundaries. Athigher stresses the creep strain proceeds due to the dislocations movement.

    The rate of creep is a function of the material, the applied stress value, the temperature, and the

    time e#posure.

    onsiderable creep deformation, causing damage of machines and structures occur at high

    temperatures )about a half of the melting point measured in the absolute temperature scale*.

    Therefore this phenomenon is ta0en into account in design and operation of heat e#changers,steam boilers and pipes, Oet engines and other loaded equipment, wor0ing at high temperatures.

    Soft metals )lead, tin* may e#perience creep at room temperature.

    A typical creep behavior is presented in the diagram:

    The initial strain is not time dependent and it is caused mainly by elastic deformation.

    http://www.substech.com/dokuwiki/doku.php?id=plastic_deformationhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=diffusion_in_alloyshttp://www.substech.com/dokuwiki/doku.php?id=diffusion_in_alloyshttp://www.substech.com/dokuwiki/doku.php?id=grain_structurehttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=imperfections_of_crystal_structurehttp://www.substech.com/dokuwiki/doku.php?id=imperfections_of_crystal_structurehttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/lib/exe/detail.php?id=creep&cache=cache&media=creep.pnghttp://www.substech.com/dokuwiki/doku.php?id=plastic_deformationhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=diffusion_in_alloyshttp://www.substech.com/dokuwiki/doku.php?id=grain_structurehttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=imperfections_of_crystal_structurehttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagram

  • 8/15/2019 MT 1.2 1.4 Bahan Kuliah

    20/43

    The first stage creep is characterized by relatively fast plastic deformation occurring at

    decreasing rate. Juring this stage resistance creep increases causing decrease the deformation

    rate.

    The second stage creep occurs at a constant and relatively low deformation rate. This rate is

    used in the engineering design.

    The rate of creep at the second stage depends on both the load )stress* and the temperature.

    The third stage creep is associated with accelerated strain rate caused by decrease of the cross

    sectional area of the specimen )nec0ing*. This stage is finalized by the specimen fracture.

    At room temperature creep is negligible at any stress below the yield point.

    The quantity, which is used in precise design of machines and structures wor0ing at elevated

    temperatures, is creep strength.

    Creep strength is a stress which causes a definite creep strain after a specified period of time at

    a given temperature.

    reep strength of a material is much lower, than its tensile strength.

    f a large amount of deformation is tolerated rupture strength is used in design.

    =upture strength is a stress which causes a fracture of a metal after a specified period of time at

    a given temperature.

    reep strength and rupture strength are determined in stress-rupture tests conducted in PTensiletest and Stress-Strain JiagramQtensile testRR machines equipped with a furnace providing uniform

    heating of the tested specimens.

    This machine records amount of strain at every moment after the test has started and until the

    specimen failure.

    http://www.substech.com/dokuwiki/doku.php?id=plastic_deformationhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=plastic_deformationhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagram

  • 8/15/2019 MT 1.2 1.4 Bahan Kuliah

    21/43

    http://www.substech.com/dokuwiki/lib/exe/detail.php?id=creep&cache=cache&media=stress_rupture.png

  • 8/15/2019 MT 1.2 1.4 Bahan Kuliah

    22/43

    Fracture toughness tests of ceramics

    Fracture is a process of brea0ing a solid into pieces as a result of stress.

    There are two principal stages of the fracture process:

    • Crack formation

    • Crack propagation

    There are two fracture mechanisms: ductile fracture and brittle fracture.

    eramic materials have e#tremely low ductility, therefore they failure by brittle mechanism.

    • Brittle fracture• Fracture Toughness

    • Flexure Test

    • Indentation Fracture Test

    ?rittle fracture

    +rittle fracture is characterized by very low !lastic deformation and low energy absorption priorto brea0ing.

    A crac0, formed as a result of the brittle fracture, propagates fast and without increase of the

    stress applied to the material.

    The brittle crac0 is perpendicular to the stress direction.

    There are two possible mechanisms of the brittle fracture: transcrystalline 'transgranular7

    cleavage( or  intercrystalline 'intergranular(: 

    Cleavage crac0s pass along crystallographic planes through the grains.

    @ntercrystalline fracture occurs through the grain boundaries, embrittled by segregated

    impurities, second phase inclusions and other defects.

    The brittle fractures usually possess bright granular appearance.

    http://www.substech.com/dokuwiki/doku.php?id=fracture_toughness_tests_of_ceramics#brittle_fracturehttp://www.substech.com/dokuwiki/doku.php?id=fracture_toughness_tests_of_ceramics#fracture_toughnesshttp://www.substech.com/dokuwiki/doku.php?id=fracture_toughness_tests_of_ceramics#flexure_testhttp://www.substech.com/dokuwiki/doku.php?id=fracture_toughness_tests_of_ceramics#indentation_fracture_testhttp://www.substech.com/dokuwiki/doku.php?id=plastic_deformationhttp://www.substech.com/dokuwiki/doku.php?id=grain_structurehttp://www.substech.com/dokuwiki/doku.php?id=grain_structurehttp://www.substech.com/dokuwiki/doku.php?id=solid_solutions#phasehttp://www.substech.com/dokuwiki/doku.php?id=solid_solutions#phasehttp://www.substech.com/dokuwiki/doku.php?id=fracture_toughness_tests_of_ceramics#brittle_fracturehttp://www.substech.com/dokuwiki/doku.php?id=fracture_toughness_tests_of_ceramics#fracture_toughnesshttp://www.substech.com/dokuwiki/doku.php?id=fracture_toughness_tests_of_ceramics#flexure_testhttp://www.substech.com/dokuwiki/doku.php?id=fracture_toughness_tests_of_ceramics#indentation_fracture_testhttp://www.substech.com/dokuwiki/doku.php?id=plastic_deformationhttp://www.substech.com/dokuwiki/doku.php?id=grain_structurehttp://www.substech.com/dokuwiki/doku.php?id=solid_solutions#phase

  • 8/15/2019 MT 1.2 1.4 Bahan Kuliah

    23/43

    Fracture Toughness

    Fracture Toughness is ability of material to resist fracture when a crac0 is present.

    The general factors, affecting the fracture toughness of a material are: temperature, strain rate, presence of structure defects and presence of stress concentration )notch* on the specimen

    surface.

    #tress,intensity Factor '( is a quantitative parameter of fracture toughness determining a

    ma#imum value of stress which may be applied to a specimen containing a crac0 )notch* of acertain length.

    Jepending on the direction of the specimen loading and the specimen thic0ness, four types of

    stress-intensity factors are used:  C,  @C,  @@C,  @@@C.

     C % stress-intensity factor of a specimen, thic0ness of which is less than a critical value.

     C depends on the specimen thic0ness. This condition is called plane stress.

     @C7 @@C7  @@@C % stress-intensity factors, relating to the specimens, thic0ness of which is above thecritical value therefore the values of  @C7  @@C7  @@@C do not depend on the specimen thic0ness.

    This condition is called plane strain.

     @@C and  @@@C % stress-intensity factors relating to the fracture modes in which the loading

    direction is parallel to the crac0 plane. These factors are rarely used for metallic materials and are

    not used for ceramics8

     @C % plane strain stress-intensity factor relating to the fracture modes in which the loading

    direction is normal to the crac0 plane. This factor is widely used for both metallic and ceramic materials.

     @C is used for estimation critical stress applied to a specimen with a given crac0 length:

    2C B @C /'6' a(D( 

    4here

     @C % stress-intensity factor, measured in "!a>mM8

    2C % the critical stress applied to the specimen8

    a % the crac0 length for edge crac0 or half crac0 length for internal crac08

    6 % geometry factor.

    http://www.substech.com/dokuwiki/doku.php?id=metalshttp://www.substech.com/dokuwiki/doku.php?id=metalshttp://www.substech.com/dokuwiki/doku.php?id=ceramicshttp://www.substech.com/dokuwiki/doku.php?id=metalshttp://www.substech.com/dokuwiki/doku.php?id=ceramics

  • 8/15/2019 MT 1.2 1.4 Bahan Kuliah

    24/43

    Two test methods are used for measuring fracture toughness parameter )stress-intensity factor* of 

    ceramic materials: le#ure Test and ndentation racture Test.

    Flexure Test 

    The test method is similar to that which is used for measuring le#ural Strength, howevernotched specimens are used.

    ndentation Fracture Test 

    6ic0ers /ardness "ethod is used for this test.

    !olished surface of a ceramic sample is indented by 6ic0ers ndenter , resulting in formation offour crac0s emanating from the indent corners.

    The crac0s length is inversely proportion to the material toughness8 therefore  @C may be

    estimated by measuring the crac0s length.

    http://www.substech.com/dokuwiki/doku.php?id=hardness_tests_of_ceramics#vickers_hardness_testhttp://www.substech.com/dokuwiki/doku.php?id=hardness_tests_of_ceramics#vickers_hardness_testhttp://www.substech.com/dokuwiki/doku.php?id=hardness_tests_of_ceramics#vickers_hardness_testhttp://www.substech.com/dokuwiki/doku.php?id=hardness_tests_of_ceramics#vickers_hardness_testhttp://www.substech.com/dokuwiki/doku.php?id=hardness_tests_of_ceramics#vickers_hardness_testhttp://www.substech.com/dokuwiki/doku.php?id=hardness_tests_of_ceramics#vickers_hardness_test

  • 8/15/2019 MT 1.2 1.4 Bahan Kuliah

    25/43

    4ardness test methods4ardness is resistance of material to  plastic deformation caused by indentation.

    Sometimes hardness refers to resistance of material to scratching or abrasion.

    n some cases relatively quic0 and simple hardness test may substitute tensile test. 

    /ardness may be measured from a small sample of material without destroying it.

    There are hardness methods, allowing to measure hardness onsite.

    3rinciple of any hardness test method is forcing an indenter into the sample surface followed

     by measuring dimensions of the indentation )depth or actual surface area of the indentation*.

    /ardness is not fundamental property and its value depends on the combination of yield strength,

    tensile strength and modulus of elasticity.

     Benefits of hardness test:

    • $asy

    • ne#pensive

    • uic0 

    •  1on-destructive

    • "ay be applied to the samples of various dimensions and shapes

    • "ay be performed in-situ

    Jepending on the loading force value and the indentation dimensions, hardness is defined as a

    macro- , micro- or nano-hardness.

    Macro,hardness tests '=oc5well7 ?rinell7 ic5ers( are the most widely used methods for rapidroutine hardness measurements. The indenting forces in macro-hardness tests are in the range of

    HC1 to CCCC1.

    Micro,hardness tests 'micro,ic5ers7 noop( is applicable when hardness of coatings, surface

    hardness, or hardness of different phases in the multi-phase material is measured. Small diamond pyramid is used as indenter loaded with a small force of BC to BCCCgf.

    Eano,hardness test uses minor loads of about B nano-1ewton followed by precise measuring

    depth of indentation.

    • ?rinell 4ardness Test

    • =oc5well 4ardness Test

    http://www.substech.com/dokuwiki/doku.php?id=plastic_deformationhttp://www.substech.com/dokuwiki/doku.php?id=plastic_deformationhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=coating_technologieshttp://www.substech.com/dokuwiki/doku.php?id=solid_solutionshttp://www.substech.com/dokuwiki/doku.php?id=hardness_test_methods#brinell_hardness_testhttp://www.substech.com/dokuwiki/doku.php?id=hardness_test_methods#rockwell_hardness_testhttp://www.substech.com/dokuwiki/doku.php?id=plastic_deformationhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=coating_technologieshttp://www.substech.com/dokuwiki/doku.php?id=solid_solutionshttp://www.substech.com/dokuwiki/doku.php?id=hardness_test_methods#brinell_hardness_testhttp://www.substech.com/dokuwiki/doku.php?id=hardness_test_methods#rockwell_hardness_test

  • 8/15/2019 MT 1.2 1.4 Bahan Kuliah

    26/43

    • =oc5well #uperficial 4ardness Test

    • ic5ers 4ardness Test

    • noop 4ardness Test

    • #hore #cleroscope 4ardness Test

    ?rinell 4ardness Test

    n this test a hardened steel ball of D.H, H or BC mm in diameter is used as indenter.

    The loading force is in the range of CC1 to CCCC1 )CC1 for testing lead alloys, HCCC1 for

    testing aluminum alloys, BCCCC1 for copper alloys, CCCC1 for testing steels*. The +rinell/ardness 1umber )/+* is calculated by the formula:

    4? ;F/ 'G:HI-"'-,'-J , -iJ(D(( 

    4here

    F- applied load, 0g

    - % indenter diameter, mm

    -i % indentation diameter, mm.

    n order to eliminate an influence of the specimen supporting base, the specimen should be seven

    times )as minimum* thic0er than indentation depth for hard alloys and fifteen times thic0er than

    indentation depth for soft alloys.

    http://www.substech.com/dokuwiki/doku.php?id=hardness_test_methods#rockwell_superficial_hardness_testhttp://www.substech.com/dokuwiki/doku.php?id=hardness_test_methods#vickers_hardness_testhttp://www.substech.com/dokuwiki/doku.php?id=hardness_test_methods#knoop_hardness_testhttp://www.substech.com/dokuwiki/doku.php?id=hardness_test_methods#shore_scleroscope_hardness_testhttp://www.substech.com/dokuwiki/lib/exe/detail.php?id=hardness_test_methods&cache=cache&media=brinell.pnghttp://www.substech.com/dokuwiki/doku.php?id=hardness_test_methods#rockwell_superficial_hardness_testhttp://www.substech.com/dokuwiki/doku.php?id=hardness_test_methods#vickers_hardness_testhttp://www.substech.com/dokuwiki/doku.php?id=hardness_test_methods#knoop_hardness_testhttp://www.substech.com/dokuwiki/doku.php?id=hardness_test_methods#shore_scleroscope_hardness_test

  • 8/15/2019 MT 1.2 1.4 Bahan Kuliah

    27/43

    =oc5well 4ardness Test

    n the 3oc0well test the depth of the

    indenter penetration into the specimen surface is measured. The indenter may be either ahardened steel ball with diameter B=B@', B=G' or a spherical diamond cone of BDC? angle )+rale*.

    oading procedure starts from applying a minor load of BC 0gf )0gf in 3oc0well Superficial

    Test* and then the indicator, measuring the penetration depth, is set to zero. After that the maOor

    http://www.substech.com/dokuwiki/lib/exe/detail.php?id=hardness_test_methods&cache=cache&media=rockwell_c.pnghttp://www.substech.com/dokuwiki/lib/exe/detail.php?id=hardness_test_methods&cache=cache&media=rockwell_b.png

  • 8/15/2019 MT 1.2 1.4 Bahan Kuliah

    28/43

    load )@C, BCC or BHC 0gf*is applied. The penetration depth is measured after removal of the maOor 

    load.

    /ardness is measured in different scales )A, +, , J, $, , , /, 2* and in numbers, having nounits )in contrast to +rinell and 6ic0ers methods*.

    Aluminum alloys, copper alloys and soft steels are tested with B=B@' diameter steel ball at BCC

    0gf load )=oc5well hardness scale ?*.

    /arder alloys and hard cast iron are tested with the diamond cone at BHC 0gf )=oc5well

    hardness scale C*.

    An e#ample of 3oc0well test result: H /3. t means H units, measured in the scale by the

    method /3 )/ardness 3oc0well*.

    =oc5well #uperficial 4ardness Test

    =oc5well #uperficial Test is applied for thin strips, coatings, carburized surfaces.

    3educed loads )BH 0gf, C 0gf, and C 0gf* as a maOor load and deduced preload )0gf* are usedin the superficial test.

    Jepending on the indenter, two scales of 3oc0well Superficial method may be used: T )B=B@'

    steel ball* or 1 )diamond cone*.

    @D 3CT means @D units, measured in the scale CT )C 0gf, B=B@' steel ball indenter* by the

    3oc0well Superficial method )3*.

    http://www.substech.com/dokuwiki/doku.php?id=aluminum_alloyshttp://www.substech.com/dokuwiki/doku.php?id=copper_alloyshttp://www.substech.com/dokuwiki/doku.php?id=steels_and_cast_ironshttp://www.substech.com/dokuwiki/lib/exe/detail.php?id=hardness_test_methods&cache=cache&media=rockwell_superficial.pnghttp://www.substech.com/dokuwiki/doku.php?id=aluminum_alloyshttp://www.substech.com/dokuwiki/doku.php?id=copper_alloyshttp://www.substech.com/dokuwiki/doku.php?id=steels_and_cast_irons

  • 8/15/2019 MT 1.2 1.4 Bahan Kuliah

    29/43

    ic5ers 4ardness Test

    The principle of the 6ic0ers /ardness method is similar to the +rinell method.

    The 6ic0ers indenter is a B@ degrees square-based diamond pyramid.

    The impression, produced by the 6ic0ers indenter is clearer, than the impression of +rinellindenter, therefore this method is more accurate.

    The load, varying from B0gf to BDC 0gf, is usually applied for C seconds.

    The 6ic0ers number )/6* is calculated by the formula:

    4 H:KI"F/ -J

    4here

    F-applied load, 0g

    - % length of the impression diagonal, mm

    The length of the impression diagonal is measured by means of a microscope, which is usually

    an integral part of the 6ic0ers Tester.

  • 8/15/2019 MT 1.2 1.4 Bahan Kuliah

    30/43

    noop 4ardness Test

    http://www.substech.com/dokuwiki/lib/exe/detail.php?id=hardness_test_methods&cache=cache&media=vickers.png

  • 8/15/2019 MT 1.2 1.4 Bahan Kuliah

    31/43

  • 8/15/2019 MT 1.2 1.4 Bahan Kuliah

    32/43

    The appliance consists of a diamond-tipped hammer, falling in a graduated glass tube from a

    definite height. The tube is divided into B;C equal parts.

    The height of the first rebound is the hardness inde# of the material.

    The harder the material, the higher the rebound.

    The Shore method is widely used for measuring hardness of large machine components li0e rolls,

    gears, dies, etc.

    The Shore scleroscope is not only small and mobile, it also leaves no impressions on the tested

    surface.

    4ardness Conversion Table

    )submitted by the website administration*

    =A

    .

    ?rale

    =?

    H..

    H/H+

    =C

    H.

    ?rale

    =-

    H..

    ?rale

    =HE

    ?rale

    =G.E

    ?rale

    =IE

    ?rale

    =HT

    H/H+

    =G.T

    H/H+

    =IT

    H/H+

    4?

    ..

    H.mm

    4?

    G...

    H.mm

    4

    -iamond

    3yramid

    #hore

    UD - GC G< U< UD G< - - - - - BG@H -

    UD -

  • 8/15/2019 MT 1.2 1.4 Bahan Kuliah

    33/43

  • 8/15/2019 MT 1.2 1.4 Bahan Kuliah

    34/43

    @B UU DB ;C.U @U.U ;D. DC.< UD.H GB.H

  • 8/15/2019 MT 1.2 1.4 Bahan Kuliah

    35/43

     #ule of $ixtures is a method of approach to appro#imate estimation of composite material

     properties, based on an assumption that a composite property is the volume weighed average of

    the phases )matri# and dispersed phase* properties.

    According to 3ule of "i#tures properties of composite materials are estimated as follows:

    • Density• Coecient of Thermal Expansion

    • Modulus of Elasticity

    • Shear modulus

    • !oisson"s ratio

    • Tensile strength

    Density 

    dc  dm"m N df "f  

    4here

    dc,dm,df  % densities of the composite, matri# and dispersed phase respectively8

    m,f  % volume fraction of the matri# and dispersed phase respectively.

    Coefcient o Thermal Expansion

    • Coefcient o Thermal Expansion ( CTE ) in longitudinal direction (along thebers)

    %cl  '%m")m"m N %f ")f "f (/'m"m N )f "f ( 

    4here

    %cl, %m, %f  % CT) of composite in longitudinal direction, matri# and dispersed phase )fiber*

    respectively8

    )m,)f  % modulus of elasticity of matri# and dispersed phase )fiber* respectively.

    • Coefcient o Thermal Expansion ( CTE ) in transverse direction (perpendicular to the bers)

    %ct  'HNOm( %m "m N %f " f  

    4here

    http://www.substech.com/dokuwiki/doku.php?id=classification_of_compositeshttp://www.substech.com/dokuwiki/doku.php?id=classification_of_compositeshttp://www.substech.com/dokuwiki/doku.php?id=estimations_of_composite_materials_properties#densityhttp://www.substech.com/dokuwiki/doku.php?id=estimations_of_composite_materials_properties#coefficient_of_thermal_expansionhttp://www.substech.com/dokuwiki/doku.php?id=estimations_of_composite_materials_properties#modulus_of_elasticityhttp://www.substech.com/dokuwiki/doku.php?id=estimations_of_composite_materials_properties#shear_modulushttp://www.substech.com/dokuwiki/doku.php?id=estimations_of_composite_materials_properties#poisson_s_ratiohttp://www.substech.com/dokuwiki/doku.php?id=estimations_of_composite_materials_properties#tensile_strengthhttp://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metals#coefficient_of_thermal_expansionhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=classification_of_compositeshttp://www.substech.com/dokuwiki/doku.php?id=classification_of_compositeshttp://www.substech.com/dokuwiki/doku.php?id=estimations_of_composite_materials_properties#densityhttp://www.substech.com/dokuwiki/doku.php?id=estimations_of_composite_materials_properties#coefficient_of_thermal_expansionhttp://www.substech.com/dokuwiki/doku.php?id=estimations_of_composite_materials_properties#modulus_of_elasticityhttp://www.substech.com/dokuwiki/doku.php?id=estimations_of_composite_materials_properties#shear_modulushttp://www.substech.com/dokuwiki/doku.php?id=estimations_of_composite_materials_properties#poisson_s_ratiohttp://www.substech.com/dokuwiki/doku.php?id=estimations_of_composite_materials_properties#tensile_strengthhttp://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metals#coefficient_of_thermal_expansionhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagram

  • 8/15/2019 MT 1.2 1.4 Bahan Kuliah

    36/43

    Om % !oisson9s ratio of matri#.

     %oisson&s ratio is the ratio of transverse contraction strain to longitudinal e#tension strain in the

    direction of applied force.

    !odulus o Elasticity 

    &ong align fibers

    • Modulus o Elasticity in longitudinal direction ( Ecl  )

    )cl  )m"m N )f "f  

    • Modulus o Elasticity in transverse direction ( Ect  )

    H/)ct  m/)m N f /)f  

    #hort fibers

    )cl  P.P&f  )f  N m)m

    P&  H , ;/&"tanh'& /;(

    RK Sm/')f -Jln';=/-((D

    where:

    )f  % modulus of elasticity of fiber material8

    )m % modulus of elasticity of matri# material8Sm - shear modulus of matri# material8

    P& % length correction factor8

    & % fibers length8

    - % fibers diameter8

    ;=  % distance between fibers8

    P. - fiber orientation distribution factor.

    P.  C.C align fibers in transverse direction

    P.  B=H random orientation in any direction )J*

    P.  =G random orientation in plane )DJ*

    P.  B=D bia#ial parallel to the fibers

    P.  B.C unidirectional parallel to the fibers

    #hear modulus

    Sct  Sf  Sm/'f  Sm N mSf (

    4here:

  • 8/15/2019 MT 1.2 1.4 Bahan Kuliah

    37/43

    Sf  % shear modulus of elasticity of fiber material8

    Sm % shear modulus of elasticity of matri# material8

    3oissonUs ratio

    OH;  vf  Of  N mOm

    4here:

    Of  % !oisson9s ratio of fiber material8

    Om % !oisson9s ratio of matri# material8

    Tensile Strength

    • Tensile strength o long-ber reinorced composite in longitudinal direction

    2c  2m"m N 2f "f  

    4here

    2c, 2m, 2f  % tensile strength of the composite, matri# and dispersed phase )fiber* respectively.

    • Tensile strength o short-ber composite in longitudinal direction

    )fiber length is less than critical value &c*

    &c  2f "d/Vc 

    4here

    d % diameter of the fiber8

    Vc %shear strength of the bond between the matri# and dispersed phase )fiber*.

    2c  2m"m N 2f "f "'H 1 &c/;&( 

    4here

    & % length of the fiber

    • Tensile strength o short-ber composite in longitudinal direction

    )fiber length is greater than critical value &c*

    2c  2m"m N &" Vc"f /d 

    http://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagram

  • 8/15/2019 MT 1.2 1.4 Bahan Kuliah

    38/43

    Classi#cation of composites

    Composite material is a material composed of t$o or more distinct

    phases %matrix phase and dispersed phase& and ha'ing (ulk

    properties signi#cantly di)erent form those of any of the

    constituents*

    • Matrix phase

    The primary phase, having a continuous character, is called matri#. "atri# is usually more

    ductile and less hard phase. t holds the dispersed phase and shares a load with it.

    • Dispersed %reinforcing& phase

    The second phase )or phases* is embedded in the matri# in a discontinuous form. This secondary phase is called dispersed phase. Jispersed phase is usually stronger than the matri#, therefore it

    is sometimes called reinforcing phase.

    http://www.substech.com/dokuwiki/doku.php?id=solid_solutions#phasehttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=solid_solutions#phasehttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagram

  • 8/15/2019 MT 1.2 1.4 Bahan Kuliah

    39/43

    "any of common materials )metal alloys, doped eramics and !olymers mi#ed with additives*

    also have a small amount of dispersed phases in their structures, however they are not considered

    as composite materials since their properties are similar to those of their base constituents) physical properties of steel are similar to those of pure iron*.

    There are two classification systems of composite materials. (ne of them is based on the matri#material )metal, ceramic, polymer* and the second is based on the material structure:

    Classification of composites @

    )based on matri# material*

    !etal !atrix Composites "!!C#

    "etal "atri# omposites are composed of a metallic matri# )aluminum, magnesium, iron,

    cobalt, copper * and a dispersed ceramic )o#ides, carbides* or metallic )lead, tungsten,

    molybdenum* phase.

    Ceramic !atrix Composites "C!C#

    eramic "atri# omposites are composed of a ceramic matri# and embedded fibers of other

    ceramic material )dispersed phase*.

    $olymer !atrix Composites "$!C#

    !olymer "atri# omposites are composed of a matri# from thermoset )5nsaturated !olyester

    )5!*, $po#iy )$!** or thermoplastic )!olycarbonate )!*, !olyvinylchloride, 1ylon,

    !olysterene* and embedded glass, carbon, steel or 2evlar fibers )dispersed phase*.

    Classification of composite materials @@

    )based on reinforcing material structure*

    $articulate Composites

    !articulate omposites consist of a matri# reinforced by a dispersed phase in form of particles.

    1. Composites $ith random orientation of particles*. Composites $ith preferred orientation of particles* !ispersed phase ofthese materials consists of two-dimensional "at platelets #"a$es%, laid parallelto each other.

    Fi%rous Composites

    http://www.substech.com/dokuwiki/doku.php?id=metalshttp://www.substech.com/dokuwiki/doku.php?id=solid_solutions#alloyhttp://www.substech.com/dokuwiki/doku.php?id=solid_solutions#alloyhttp://www.substech.com/dokuwiki/doku.php?id=solid_solutions#alloyhttp://www.substech.com/dokuwiki/doku.php?id=ceramicshttp://www.substech.com/dokuwiki/doku.php?id=ceramicshttp://www.substech.com/dokuwiki/doku.php?id=polymershttp://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metalshttp://www.substech.com/dokuwiki/doku.php?id=steels_and_cast_ironshttp://www.substech.com/dokuwiki/doku.php?id=metal_matrix_compositeshttp://www.substech.com/dokuwiki/doku.php?id=metal_matrix_compositeshttp://www.substech.com/dokuwiki/doku.php?id=aluminum_alloyshttp://www.substech.com/dokuwiki/doku.php?id=magnesium_alloyshttp://www.substech.com/dokuwiki/doku.php?id=magnesium_alloyshttp://www.substech.com/dokuwiki/doku.php?id=copper_alloyshttp://www.substech.com/dokuwiki/doku.php?id=oxide_ceramicshttp://www.substech.com/dokuwiki/doku.php?id=oxide_ceramicshttp://www.substech.com/dokuwiki/doku.php?id=carbide_ceramicshttp://www.substech.com/dokuwiki/doku.php?id=ceramic_matrix_compositeshttp://www.substech.com/dokuwiki/doku.php?id=polymer_matrix_compositeshttp://www.substech.com/dokuwiki/doku.php?id=thermosetshttp://www.substech.com/dokuwiki/doku.php?id=thermoset_unsaturated_polyester_uphttp://www.substech.com/dokuwiki/doku.php?id=thermoset_unsaturated_polyester_uphttp://www.substech.com/dokuwiki/doku.php?id=thermoset_epoxy_ephttp://www.substech.com/dokuwiki/doku.php?id=thermoset_epoxy_ephttp://www.substech.com/dokuwiki/doku.php?id=thermoplasticshttp://www.substech.com/dokuwiki/doku.php?id=thermoplastic_polycarbonate_pchttp://www.substech.com/dokuwiki/doku.php?id=thermoplastic_polyvinyl_chloride_pvchttp://www.substech.com/dokuwiki/doku.php?id=thermoplastic_polyamide_nylon_6http://www.substech.com/dokuwiki/doku.php?id=classification_of_carbon_materialshttp://www.substech.com/dokuwiki/doku.php?id=classification_of_carbon_materialshttp://www.substech.com/dokuwiki/doku.php?id=classification_of_carbon_materialshttp://www.substech.com/dokuwiki/doku.php?id=metalshttp://www.substech.com/dokuwiki/doku.php?id=solid_solutions#alloyhttp://www.substech.com/dokuwiki/doku.php?id=ceramicshttp://www.substech.com/dokuwiki/doku.php?id=polymershttp://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metalshttp://www.substech.com/dokuwiki/doku.php?id=steels_and_cast_ironshttp://www.substech.com/dokuwiki/doku.php?id=metal_matrix_compositeshttp://www.substech.com/dokuwiki/doku.php?id=aluminum_alloyshttp://www.substech.com/dokuwiki/doku.php?id=magnesium_alloyshttp://www.substech.com/dokuwiki/doku.php?id=copper_alloyshttp://www.substech.com/dokuwiki/doku.php?id=oxide_ceramicshttp://www.substech.com/dokuwiki/doku.php?id=carbide_ceramicshttp://www.substech.com/dokuwiki/doku.php?id=ceramic_matrix_compositeshttp://www.substech.com/dokuwiki/doku.php?id=polymer_matrix_compositeshttp://www.substech.com/dokuwiki/doku.php?id=thermosetshttp://www.substech.com/dokuwiki/doku.php?id=thermoset_unsaturated_polyester_uphttp://www.substech.com/dokuwiki/doku.php?id=thermoset_unsaturated_polyester_uphttp://www.substech.com/dokuwiki/doku.php?id=thermoset_epoxy_ephttp://www.substech.com/dokuwiki/doku.php?id=thermoplasticshttp://www.substech.com/dokuwiki/doku.php?id=thermoplastic_polycarbonate_pchttp://www.substech.com/dokuwiki/doku.php?id=thermoplastic_polyvinyl_chloride_pvchttp://www.substech.com/dokuwiki/doku.php?id=thermoplastic_polyamide_nylon_6http://www.substech.com/dokuwiki/doku.php?id=classification_of_carbon_materials

  • 8/15/2019 MT 1.2 1.4 Bahan Kuliah

    40/43

    1. Short+#(er reinforced composites* &hort-'er reinforced compositesconsist of a matri( reinforced 'y a dispersed phase in form of discontinuous'ers #length ) 1**+diameter%.

    1. Composites $ith random orientation of #(ers*

    . Composites $ith preferred orientation of #(ers* 

    . ,ong+#(er reinforced composites* ong-'er reinforced compositesconsist of a matri( reinforced 'y a dispersed phase in form of continuous'ers.

    1. -nidirectional orientation of #(ers*

    . Bidirectional orientation of #(ers %$o'en&*

    &aminate Composites

    4hen a fiber reinforced composite consists of several layers with different fiber orientations, it is

    called multilayer 'angle,ply( composite.

    Structure of composites

    Structure of a composite material determines its properties to a significant e#tent.

    Structure factors affecting properties of composites are as follows: 

    • Bonding strength on the interface 'etween the dispersed phase andmatri(

    • Shape of the dispersed phase inclusions #particles, "a$es, 'ers,laminates%

    • .rientation of the dispersed phase inclusions #random or preferred%.

    http://www.substech.com/dokuwiki/doku.php?id=estimations_of_composite_materials_propertieshttp://www.substech.com/dokuwiki/doku.php?id=fundamentals_of_adhesive_bonding#adhesionhttp://www.substech.com/dokuwiki/doku.php?id=classification_of_compositeshttp://www.substech.com/dokuwiki/doku.php?id=classification_of_compositeshttp://www.substech.com/dokuwiki/doku.php?id=estimations_of_composite_materials_propertieshttp://www.substech.com/dokuwiki/doku.php?id=fundamentals_of_adhesive_bonding#adhesionhttp://www.substech.com/dokuwiki/doku.php?id=classification_of_compositeshttp://www.substech.com/dokuwiki/doku.php?id=classification_of_composites

  • 8/15/2019 MT 1.2 1.4 Bahan Kuliah

    41/43

    @nterfacial bonding

    ood bonding )adhesion* between matri# phase and dispersed phase provides transfer of load,

    applied to the material to the dispersed phase via the interface. Adhesion is necessary forachieving high level of mechanical properties of the composite.

    There are three forms of interface between the two phases:

    1. !irect 'onding with no intermediate layer. n this case adhesion #/wetting/% isprovided 'y either covalent 'onding or van der Waals force.

    . ntermediate layer #inter-phase% is in form of solid solution of the matri( anddispersed phases constituents.

    0. ntermediate layer is in form of a third 'onding phase #adhesive%.

    #hape and orientation of dispersed phase

    mportance of these structure parameters is confirmed by the fact, that one of the systems oflassification of composites is based on them.

    • !articulate Composites• Fi(rous Composites

    • ,aminate Composites

    $articulate Composites

    !articulate omposites consist of a matri# reinforced with a dispersed phase in form of particles.

    $ffect of the dispersed particles on the composite properties depends on the particles dimensions.

    6ery small particles )less than C.DH micron in diameter* finely distributed in the matri# impede

    movement of dislocations and deformation of the material. Such strengthening effect is similar to

    the precipitation hardening. n contrast to the precipitation hardening, which disappears atelevated temperatures when the precipitated particles dissolve in the matri#, dispersed phase of

     particulate composites )ceramic particles* is usually stable at high temperatures, so the

    strengthening effect is retained. "any of composite materials are designed to wor0 in hightemperature applications.

    arge dispersed phase particles have low strengthening effect but they are capable to share loadapplied to the material, resulting in increase of stiffness and decrease of ductility.

    /ard particles dispersed in a softer matri# increase wear and abrasion resistance.

    Soft dispersed particles in a harder matri# improve machinability )lead particles in steel orcopper matri#* and reduce coefficient of friction )tin in aluminum matri# or lead in copper

    matri#*.

    http://www.substech.com/dokuwiki/doku.php?id=ionic_and_covalent_bonding#covalent_bondinghttp://www.substech.com/dokuwiki/doku.php?id=solid_solutionshttp://www.substech.com/dokuwiki/doku.php?id=classification_of_compositeshttp://www.substech.com/dokuwiki/doku.php?id=structure_of_composites#particulate_compositeshttp://www.substech.com/dokuwiki/doku.php?id=structure_of_composites#fibrous_compositeshttp://www.substech.com/dokuwiki/doku.php?id=structure_of_composites#laminate_compositeshttp://www.substech.com/dokuwiki/doku.php?id=classification_of_composites#particulate_compositeshttp://www.substech.com/dokuwiki/doku.php?id=imperfections_of_crystal_structurehttp://www.substech.com/dokuwiki/doku.php?id=plastic_deformationhttp://www.substech.com/dokuwiki/doku.php?id=basic_principles_of_heat_treatment#hardeninghttp://www.substech.com/dokuwiki/doku.php?id=basic_principles_of_heat_treatment#hardeninghttp://www.substech.com/dokuwiki/doku.php?id=basic_principles_of_heat_treatment#hardeninghttp://www.substech.com/dokuwiki/doku.php?id=basic_principles_of_heat_treatment#hardeninghttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=ionic_and_covalent_bonding#covalent_bondinghttp://www.substech.com/dokuwiki/doku.php?id=solid_solutionshttp://www.substech.com/dokuwiki/doku.php?id=classification_of_compositeshttp://www.substech.com/dokuwiki/doku.php?id=structure_of_composites#particulate_compositeshttp://www.substech.com/dokuwiki/doku.php?id=structure_of_composites#fibrous_compositeshttp://www.substech.com/dokuwiki/doku.php?id=structure_of_composites#laminate_compositeshttp://www.substech.com/dokuwiki/doku.php?id=classification_of_composites#particulate_compositeshttp://www.substech.com/dokuwiki/doku.php?id=imperfections_of_crystal_structurehttp://www.substech.com/dokuwiki/doku.php?id=plastic_deformationhttp://www.substech.com/dokuwiki/doku.php?id=basic_principles_of_heat_treatment#hardeninghttp://www.substech.com/dokuwiki/doku.php?id=basic_principles_of_heat_treatment#hardeninghttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagram

  • 8/15/2019 MT 1.2 1.4 Bahan Kuliah

    42/43

    omposites with high electrical conductivity matrices )copper, silver* and with refractory

    dispersed phase )tungsten, molybdenum* wor0 in high temperature electrical applications.

    4hen dispersed phase of these materials consists of two-dimensional flat platelets )fla0es* whichare laid parallel to each other, material e#hibits anisotropy (dependence of the properties on the

    axis or plane along which they were measured). n the case of fla0es oriented parallel to a particular plane, material demonstrates equal properties in all directions parallel to the plane and

    different properties in the direction normal to the plane.

    Fi%rous Composites

    Jispersed phase in form of fibers )ibrous omposites* improves strength, stiffness and ractureToughness of the material, impeding crac0 growth in the directions normal to the fiber.

    $ffect of the strength increase becomes much more significant when the fibers are arranged in a

     particular direction )preferred orientation* and a stress is applied along the same direction.

    The strengthening effect is higher in long-fiber )continuous-fiber* reinforced composites than in

    short-fiber )discontinuous-fiber* reinforced composites. 

    Short-fiber reinforced composites, consisting of a matri# reinforced with a dispersed phase in

    form discontinuous fibers )length V BCC>diameter*, has a limited ability to share load.

    oad, applied to a long-fiber reinforced composite, is carried mostly by the dispersed phase -

    fibers. "atri# in such materials serves only as a binder of the fibers 0eeping them in a desiredshape and protecting them from mechanical or chemical damages.

    &aminate Composites

    aminate composites consist of layers with different anisotropic orientations or of a matri#reinforced with a dispersed phase in form of sheets.

    4hen a fiber reinforced composite consists of several layers with different fiber orientations, it is

    called multilayer )angle-ply* composite.

    aminate composites provide increased mechanical strength in two directions and only in one

    direction, perpendicular to the preferred orientations of the fibers or sheet, mechanical propertiesof the material are low.

    http://www.substech.com/dokuwiki/doku.php?id=classification_of_composites#fibrous_compositeshttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=fracture_toughnesshttp://www.substech.com/dokuwiki/doku.php?id=fracture_toughnesshttp://www.substech.com/dokuwiki/doku.php?id=classification_of_composites#fibrous_compositeshttp://www.substech.com/dokuwiki/doku.php?id=classification_of_composites#fibrous_compositeshttp://www.substech.com/dokuwiki/doku.php?id=classification_of_composites#fibrous_compositeshttp://www.substech.com/dokuwiki/doku.php?id=classification_of_composites#laminate_compositeshttp://www.substech.com/dokuwiki/doku.php?id=classification_of_composites#laminate_compositeshttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=classification_of_composites#fibrous_compositeshttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=fracture_toughnesshttp://www.substech.com/dokuwiki/doku.php?id=fracture_toughnesshttp://www.substech.com/dokuwiki/doku.php?id=classification_of_composites#fibrous_compositeshttp://www.substech.com/dokuwiki/doku.php?id=classification_of_composites#fibrous_compositeshttp://www.substech.com/dokuwiki/doku.php?id=classification_of_composites#laminate_compositeshttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagram

  • 8/15/2019 MT 1.2 1.4 Bahan Kuliah

    43/43