MSE 3300-Lecture Note 14-Chapter 09 Phase Diagrams

  • Upload
    chuong

  • View
    229

  • Download
    0

Embed Size (px)

Citation preview

  • 8/18/2019 MSE 3300-Lecture Note 14-Chapter 09 Phase Diagrams

    1/22

    MSE 3300 / 5300 UTA Spring 2015 Lecture 14 -

    Lecture 14. Phase Diagrams (1)

    Learning Objectives After this lecture, you should be able to do the following:

    1. Understand terminology associated with phase diagrams and

    interpretate phase diagrams.

    2. Sketch isomorphous phase diagrams and label the various regions

    and liquidus, solidus, and solvus lines.3. Given a binary phase diagram, the composition of an alloy, and its

    temperature, determine what phases are present, the compositions of

    the phases, and the mass fractions of the phases.

    Reading• Chapter 9: Phase Diagrams (9.1–9.10)

    Multimedia

    • Virtual Materials Science & Engineering (VMSE):

    http://www.wiley.com/college/callister/CL_EWSTU01031_S/vmse/ 

    1

  • 8/18/2019 MSE 3300-Lecture Note 14-Chapter 09 Phase Diagrams

    2/22

    MSE 3300 / 5300 UTA Spring 2015 Lecture 14 -

    1. Definitions and Basic Concepts

    2

    • Components: pure metals and/or compounds of which an alloy is composed

    (e.g., in a copper–zinc brass, Cu and Zn).

    • Solute and solvent

    • System: (1) a specific body of material under consideration and (2) the series

    of possible alloys consisting of the same components, but without regard to

    alloy composition (e.g., the iron–carbon system). 

    • Solubility limit: maximum

    concentration of solute

    atoms that may dissolve in

    the solvent to form a solid

    solution.

    Figure 9.1: The solubility of

    sugar in a sugar–water syrup. 

  • 8/18/2019 MSE 3300-Lecture Note 14-Chapter 09 Phase Diagrams

    3/22

    MSE 3300 / 5300 UTA Spring 2015 Lecture 14 -

    Phases

    3

    • Phase: a homogeneous portion of a system that has uniform physical and

    chemical characteristics (e.g., phase 1: sugar–water syrup solution; phase 2:solid sugar).

    • Single-phase system: homogeneous system

    • Systems with two or more phases: mixtures or heterogeneous systems

    • Equilibrium: The free energy of a

    system is at a minimum undersome specified combination of

    temperature, pressure, and

    composition; the characteristics of

    the system do not change (or the

    system is stable).

    • Phase equilibrium: a constancy

    with time in the phase

    characteristics of a system (sugar–

    water syrup in contact with solid

    sugar at 20 °C).

    • Metastable state (Non-equilibrium) 

  • 8/18/2019 MSE 3300-Lecture Note 14-Chapter 09 Phase Diagrams

    4/22

    MSE 3300 / 5300 UTA Spring 2015 Lecture 14 - 4

    Phase Equilibria: Solubility Limit

    Question:  What is the

    solubility limit for sugar inwater at 20°C?

     Answer: 65 wt% sugar . At 20°C, if C  < 65 wt% sugar: syrup

     At 20°C, if C  > 65 wt% sugar: syrup + sugar

    65 

    • Solubility Limit:Maximum concentration forwhich only a single phase

    solution exists. 

    Sugar/Water Phase Diagram

       S

      u  g  a  r

       T  e  m

      p  e  r  a   t  u  r  e   (                 °   C   )

    0  20  40  60  80  100 C  = Composition (wt% sugar) 

    L(liquid solution

    i.e., syrup)

    SolubilityLimit L 

    (liquid)

    +S  

    (solidsugar)20 

    4 0 

    6 0 

    8 0 

    10 0 

       W

      a   t  e  r

     Adapted from Fig. 9.1,

    Callister & Rethwisch 9e. 

    • Solution – solid, liquid, or gas solutions, single phase• Mixture – more than one phase

  • 8/18/2019 MSE 3300-Lecture Note 14-Chapter 09 Phase Diagrams

    5/22

    MSE 3300 / 5300 UTA Spring 2015 Lecture 14 - 5

    • Components:

    The elements or compounds which are present in the alloy(e.g., Al and Cu)

    • Phases:The physically and chemically distinct material regions

    that form (e.g., α  and  β).

     Aluminum-

    Copper

     Alloy

    Components and Phases

    α  

    (darkerphase) 

     β (lighter

    phase) 

     Adapted from chapter-

    opening photograph,

    Chapter 9, Callister,

    Materials Science &

    Engineering: An

    Introduction, 3e.

  • 8/18/2019 MSE 3300-Lecture Note 14-Chapter 09 Phase Diagrams

    6/22

    MSE 3300 / 5300 UTA Spring 2015 Lecture 14 - 6

    70 80 1006040200

       T  e  m  p  e  r  a   t  u  r  e   (                 °   C

       )

     C = Composition (wt% sugar)

    L(liquid solution

    i.e., syrup)

    20

    100

    40

    60

    80

    0

    L (liquid)+S 

    (solidsugar)

    Effect of Temperature & Composition

    • Altering T  can change # of phases: path A to B.

    •  Altering C  can change # of phases: path B to D.

    water-

    sugar

    system

    Fig. 9.1, Callister &

    Rethwisch 9e. 

    D (100°C,C  = 90)2 phases

    B (100°C,C  = 70)1 phase

     A (20°C,C  = 70)2 phases

  • 8/18/2019 MSE 3300-Lecture Note 14-Chapter 09 Phase Diagrams

    7/22MSE 3300 / 5300 UTA Spring 2015 Lecture 14 -

    2. One-component (or Unary)

    Phase Diagrams

    7

  • 8/18/2019 MSE 3300-Lecture Note 14-Chapter 09 Phase Diagrams

    8/22MSE 3300 / 5300 UTA Spring 2015 Lecture 14 -

    3. Binary Isomorphous Systems

    8

    • Binary Isomorphous Systems: copper–nickel system

    • Isomorphous: the complete liquid and solid solubility of the two components

  • 8/18/2019 MSE 3300-Lecture Note 14-Chapter 09 Phase Diagrams

    9/22MSE 3300 / 5300 UTA Spring 2015 Lecture 14 - 9

    Criteria for Solid Solubility

    CrystalStructure

    electroneg r  (nm)

    Ni FCC 1.9 0.1246

    Cu FCC 1.8 0.1278

    •  Both have the same crystal structure (FCC) and havesimilar electronegativities and atomic radii (W. Hume –

    Rothery rules) suggesting high mutual solubility.

    Simple system  (e.g., Ni-Cu solution)

    •  Ni and Cu are totally soluble in one another for all proportions.

  • 8/18/2019 MSE 3300-Lecture Note 14-Chapter 09 Phase Diagrams

    10/22MSE 3300 / 5300 UTA Spring 2015 Lecture 14 - 10

    Phase Diagrams

    • Indicate phases as a function of T , C , and P .

    • For this course: - binary systems: just 2 components.

    - independent variables: T  and C   (P  = 1 atm is almost always used).

    PhaseDiagram 

    for Cu-Ni

    system

    • 2 phases: 

    L (liquid) α  (FCC solid solution) 

    • 3 different phase fields:

    L

    L + α  α  

    L (liquid) 

    α  

    (FCC solidsolution) 

  • 8/18/2019 MSE 3300-Lecture Note 14-Chapter 09 Phase Diagrams

    11/22MSE 3300 / 5300 UTA Spring 2015 Lecture 14 - 11

    Cu-Ni

    phase

    diagram

    Isomorphous Binary Phase Diagram

    • Phase diagram: 

    Cu-Ni system. 

    • System is: 

    Fig. 9.3(a), Callister & Rethwisch 9e. (Adapted from Phase Diagrams of Binary

    Nickel Alloys, P. Nash, Editor, 1991. Reprinted

    by permission of ASM International, Materials

    Park, OH.)

    -- binaryi.e., 2 components:

    Cu and Ni.

    -- isomorphousi.e., complete

    solubility of one

    component in

    another; α  phase

    field extends from0 to 100 wt% Ni. 

    wt% Ni20 40 60 80 10001000

    1100

    1200

    1300

    1400

    1500

    1600

    T (°C)

    L (liquid) 

    α  

    (FCC solidsolution) 

  • 8/18/2019 MSE 3300-Lecture Note 14-Chapter 09 Phase Diagrams

    12/22MSE 3300 / 5300 UTA Spring 2015 Lecture 14 -

    wt% Ni20 40 60 80 10001000

    1100

    1200

    1300

    1400

    1500

    1600T (°C)

    L (liquid) 

    α  (FCC solid

    solution) 

    Cu-Ni

    phase

    diagram

    12

    Phase Diagrams:Determination of phase(s) present

    • Rule 1:  If we know T  and C o, then we know:-- which phase(s) is (are) present.

    • Examples: 

     A(1100°C, 60 wt% Ni):

    1 phase: α  B (1250°C, 35 wt% Ni):

    2 phases: L + α  

       B 

       (   1   2   5   0   º   C ,   3

       5   )

      A(1100ºC,60) Fig. 9.3(a), Callister & Rethwisch 9e. (Adapted from Phase Diagrams of Binary

    Nickel Alloys, P. Nash, Editor, 1991. Reprinted

    by permission of ASM International, Materials

    Park, OH.)

  • 8/18/2019 MSE 3300-Lecture Note 14-Chapter 09 Phase Diagrams

    13/22

    MSE 3300 / 5300 UTA Spring 2015 Lecture 14 -

    Determination of Phase

    Composition

    13

    1. A tie line is constructed

    across the two-phase

    region at the temperature of

    the alloy.

    2. The intersections of the tie

    line and the phaseboundaries on either side

    are noted.

    3. Perpendiculars are dropped

    from these intersections to

    the horizontal compositionaxis, from which the

    composition of each of the

    respective phases is read.

  • 8/18/2019 MSE 3300-Lecture Note 14-Chapter 09 Phase Diagrams

    14/22

    MSE 3300 / 5300 UTA Spring 2015 Lecture 14 - 14

    wt% Ni20

    1200

    1300

    T (°C)

    L (liquid) 

    α  

    (solid) 

    30 40 50

    Cu-Ni

    system

    Phase Diagrams:Determination of phase compositions

    • Rule 2:  If we know T  and C 0, then we can determine:-- the composition of each phase.

    • Examples: T  A 

     A

    35 C 0 32 C L 

     At T  A  = 1320°C:

    Only Liquid (L) presentC L = C 0 ( = 35 wt% Ni) 

     At T B  = 1250°C:

    Both α  and L  present

    C L = C liquidus ( = 32 wt% Ni)

    C α   = Csolidus ( = 43 wt% Ni) 

     At T D  = 1190°C:

    Only Solid (α ) present

    C α  = C 0  ( = 35 wt% Ni) 

    Consider C 0 = 35 wt% Ni

    DT D

    tie line

    4 C α  3 

    Fig. 9.3(b), Callister & Rethwisch 9e. (Adapted from Phase Diagrams of Binary

    Nickel Alloys, P. Nash, Editor, 1991. Reprinted

    by permission of ASM International, Materials

    Park, OH.)

    BT B

  • 8/18/2019 MSE 3300-Lecture Note 14-Chapter 09 Phase Diagrams

    15/22

    MSE 3300 / 5300 UTA Spring 2015 Lecture 14 -

    Determination of Phase Amounts:

    Lever Rule

    15

  • 8/18/2019 MSE 3300-Lecture Note 14-Chapter 09 Phase Diagrams

    16/22

    MSE 3300 / 5300 UTA Spring 2015 Lecture 14 - 16

    • Rule 3:  If we know T  and C 0, then can determine:

    -- the weight fraction of each phase.

    • Examples: 

     At T  A : Only Liquid (L) present

    W L  = 1.00, W α = 0 At T D : Only Solid (α  ) present

    W L = 0, Wα  = 1.00

    Phase Diagrams:Determination of phase weight fractions

    wt% Ni

    20

    1200

    1300

    T (°C)

    L (liquid) 

    α  

    (solid) 

    3 0 4 0 5 0

    Cu-Ni

    system

    T  A A

    35 C 0 

    32 C L 

    BT B

    DT D

    tie line

    4 C α  3 

    R   S 

     At T B : Both α  and L present

    = 0.27

    W L =  S R  +S 

    W α  = R  

    R  +S 

    Consider C 0 = 35 wt% Ni

    Fig. 9.3(b), Callister & Rethwisch 9e. (Adapted from Phase Diagrams of Binary

    Nickel Alloys, P. Nash, Editor, 1991. Reprinted

    by permission of ASM International, Materials

    Park, OH.)

  • 8/18/2019 MSE 3300-Lecture Note 14-Chapter 09 Phase Diagrams

    17/22

    MSE 3300 / 5300 UTA Spring 2015 Lecture 14 - 17

    • Tie line – connects the phases in equilibrium with

    each other – also sometimes called an isotherm

    The Lever Rule

    What fraction of each phase?

    Think of the tie line as a lever

    (teeter-totter)

    M L  M α  

    R S

    wt% Ni

    20

    1200

    1300

    T (°C)

    L (liquid) 

    α  

    (solid) 

    3 0 4 0 5 0

    BTB

    tie line

    C 0 C L  C α  

    S  R  

     Adapted from Fig. 9.3(b),

    Callister & Rethwisch 9e. 

  • 8/18/2019 MSE 3300-Lecture Note 14-Chapter 09 Phase Diagrams

    18/22

    MSE 3300 / 5300 UTA Spring 2015 Lecture 14 -

    Equilibrium Colling

    18

  • 8/18/2019 MSE 3300-Lecture Note 14-Chapter 09 Phase Diagrams

    19/22

    MSE 3300 / 5300 UTA Spring 2015 Lecture 14 - 19

    wt% Ni20

    120 0

    130 0

    3 0 4 0 5 0110 0

    L (liquid) 

    α  

    (solid) 

    T (°C)

     A

    35 C 0 

    L: 35 wt%Ni 

    Cu-Nisystem

    • Phase diagram: 

    Cu-Ni system.

     Adapted from Fig. 9.4,

    Callister & Rethwisch 9e. 

    • Consider

    microstuctural

    changes that

    accompany thecooling of a

    C 0 = 35 wt% Ni alloy

    Ex: Cooling of a Cu-Ni Alloy

    46 35 

    43 32 

    α : 43 wt% Ni

    L: 32 wt% Ni 

    Bα : 46 wt% Ni L: 35 wt% Ni 

    C

    EL: 24 wt% Ni 

    α : 36 wt% Ni

    24  36 D

    α : 35 wt% Ni

  • 8/18/2019 MSE 3300-Lecture Note 14-Chapter 09 Phase Diagrams

    20/22

    MSE 3300 / 5300 UTA Spring 2015 Lecture 14 -

    Nonequilibrium Colling

    20

    Equilibrium Nonequilibrium

  • 8/18/2019 MSE 3300-Lecture Note 14-Chapter 09 Phase Diagrams

    21/22

    MSE 3300 / 5300 UTA Spring 2015 Lecture 14 -

    • Slow rate of cooling: Equilibrium structure

    • Fast rate of cooling: Cored structure

    First α  to solidify: 46 wt% Ni 

    Last α  to solidify: 

    < 35 wt% Ni 

    21

    • C α  changes as we solidify.

    • Cu-Ni case: First α  to solidify has C α  = 46 wt% Ni.Last α  to solidify has C α  = 35 wt% Ni.

    Equilibrium vs Cored Structures

    Uniform C α : 35 wt% Ni 

  • 8/18/2019 MSE 3300-Lecture Note 14-Chapter 09 Phase Diagrams

    22/22

    MSE 3300 / 5300 UTA Spring 2015 Lecture 14 -

    Summary

    1. Definitions and basic concepts: phases, phase

    equilibrium, phase diagrams

    2. One-component phase diagrams

    3. Phase diagrams: Binary isomorphous systems

    22