MSE 3300-Lecture Note 20-Chapter 18 Electrical Properties

  • Upload
    chuong

  • View
    214

  • Download
    0

Embed Size (px)

Citation preview

  • 8/18/2019 MSE 3300-Lecture Note 20-Chapter 18 Electrical Properties

    1/27

    MSE 3300 / 5300 UTA Spring 2015 Lecture 20 -

    Lecture 20. Electrical Properties

    Learning Objectives After this lecture, you should be able to do the following:

    1. Describe intrinsic and extrinsic semiconductors (n-type and p-type

    semiconductors) with their energy band structures.

    2. Understand the conductivity in semiconductors.

    Reading

    • Chapter 18: Electrical Properties (18.10–15)

    Multimedia• Virtual Materials Science & Engineering (VMSE):

    http://www.wiley.com/college/callister/CL_EWSTU01031_S/vmse/

    1

  • 8/18/2019 MSE 3300-Lecture Note 20-Chapter 18 Electrical Properties

    2/27

    MSE 3300 / 5300 UTA Spr ing 2015 Lecture 20 -

    1. Semiconductors

    (Intrinsic Semiconductors)

    2

    • Intrinsic semiconductors : the electrical behavior is based on the electronic structure

    inherent in the pure material.

    • They have a completely filled valence band, separated from an empty conduction band

    by a relatively narrow band gap (< 2 eV) at 0 K:• Elemental semiconductors: silicon (Si) and germanium (Ge) have band gap energies of

    approximately 1.1 and 0.7 eV.

  • 8/18/2019 MSE 3300-Lecture Note 20-Chapter 18 Electrical Properties

    3/27

    MSE 3300 / 5300 UTA Spr ing 2015 Lecture 20 - 3

    Charge Carriers in Semiconductors:

    Concept of a Hole

    Two types of electronic charge carriers:

    Free Electron – negative charge (-1.6 X 10-19 C)

     – in conduction band

    Hole – positive charge (+1.6 X 10-19 C):same magnitude as that for anelectron, but of opposite sign – vacant electron state in

    the valence band

    Move at different speeds - drift velocities

  • 8/18/2019 MSE 3300-Lecture Note 20-Chapter 18 Electrical Properties

    4/27

    MSE 3300 / 5300 UTA Spr ing 2015 Lecture 20 -

    Conduction in Semiconductors

    4

    • To become free electrons, electrons must be promoted across the energy band gap and

    into empty states at the bottom of the conduction band.

    • The excitation energy is from a nonelectrical source such as heat or light.

    • Thermal excitation: The number of electrons excited thermally (by heat energy) into the

    conduction band depends on the energy band gap width as well as temperature.

  • 8/18/2019 MSE 3300-Lecture Note 20-Chapter 18 Electrical Properties

    5/27

    MSE 3300 / 5300 UTA Spring 2015 Lecture 20 - 5

    Energy Band Structures:

    Insulators & Semiconductors• Insulators:

    -- wide band gap (> 2 eV)

    -- few electrons excitedacross band gap

    Energy

    filledband

    filledvalence

    band

       f   i   l   l  e   d  s   t  a

       t  e  s

    GAP

    empty

    bandconduction

    • Semiconductors:-- narrow band gap (< 2 eV)

    -- more electrons excitedacross band gap

    Energy

    filledband

    filledvalence

    band

       f   i   l   l  e   d  s   t  a

       t  e  s

    GAP?

    empty

    bandconduction

  • 8/18/2019 MSE 3300-Lecture Note 20-Chapter 18 Electrical Properties

    6/27

    MSE 3300 / 5300 UTA Spr ing 2015 Lecture 20 -

    Conduction in Intrinsic

    Semiconductors

    6

    Electron bonding model of

    electrical conduction in intrinsic

    silicon: (a) before excitation, (b)and (c ) after excitation (the

    subsequent free-electron and

    hole motions in response to an

    external electric field).

  • 8/18/2019 MSE 3300-Lecture Note 20-Chapter 18 Electrical Properties

    7/27

    MSE 3300 / 5300 UTA Spring 2015 Lecture 20 - 7

    Intrinsic Semiconduction in Terms of

    Electron and Hole Migration

    electric field electric field electric field

    • Electrical Conductivity given by:

    # electrons/m

    3 electron mobility

    # holes/m3

    hole mobility

    • Concept of electrons and holes:

    +-

    electron holepair creation

    +-

    no applied applied

    valence

    electron Si atom

    applied

    electron holepair migration

  • 8/18/2019 MSE 3300-Lecture Note 20-Chapter 18 Electrical Properties

    8/27

    MSE 3300 / 5300 UTA Spring 2015 Lecture 20 - 8

    Number of Charge Carriers

    Intrinsic Conductivity

    For GaAs ni = 4.8 x 1024 m-3

    For Si ni = 1.3 x 1016 m-3

    • Ex: GaAs

    • for intrinsic semiconductor n = p = ni 

      σ = ni |e|( μ e +  μ h)

  • 8/18/2019 MSE 3300-Lecture Note 20-Chapter 18 Electrical Properties

    9/27

    MSE 3300 / 5300 UTA Spr ing 2015 Lecture 20 - 9

    Intrinsic Semiconductors:

    Conductivity vs T• Data for Pure Silicon:

    --  σ  increases with T 

    -- opposite to metals

     Adapted from Fig. 18.16,Callister & Rethwisch 9e.

    material

    Si

    Ge

    GaPCdS

    band gap (eV)

    1.11

    0.67

    2.252.40

    Selected values from Table 18.3,

    Callister & Rethwisch 9e.

  • 8/18/2019 MSE 3300-Lecture Note 20-Chapter 18 Electrical Properties

    10/27

    MSE 3300 / 5300 UTA Spring 2015 Lecture 20 - 10

    Intrinsic Semiconductors

    • Pure material semiconductors: silicon (Si) &

    germanium (Ge); Band gaps: 1.1 eV and 0.67 eV

     – Group IVA materials• Compound semiconductors

     – III-V compounds

    • Ex: GaAs & InSb; 1.42 eV, 0.17 eV

     – II-VI compounds

    • Ex: CdS & ZnTe; 2.40 eV, 2.4 eV

     – The wider the electronegativity difference between

    the elements the wider the energy gap.

  • 8/18/2019 MSE 3300-Lecture Note 20-Chapter 18 Electrical Properties

    11/27

    MSE 3300 / 5300 UTA Spr ing 2015 Lecture 20 - 11

    The Periodic Table• Columns: Similar Valence Structure

     Adapted fromFig. 2.8,

    Callister &

    Rethwisch 9e.

    Electropositive elements:

    Readily give up electrons

    to become + ions.

    Electronegative elements:

    Readily acquire electrons

    to become - ions.

      g   i  v  e

      u  p   1      e  -

      g   i  v  e  u

      p   2      e  -

      g

       i  v  e  u  p   3      e  -

       i  n  e  r   t  g  a  s  e  s

      a  c  c  e  p

       t   1      e  -

      a  c  c  e  p

       t   2      e  -

    O

    Se

    Te

    Po At

    I

    Br 

    He

    Ne

     Ar 

    Kr 

    Xe

    Rn

    F

    ClS

    Li Be

    H

    Na Mg

    BaCs

    RaFr 

    CaK Sc

    Sr Rb Y

  • 8/18/2019 MSE 3300-Lecture Note 20-Chapter 18 Electrical Properties

    12/27

    MSE 3300 / 5300 UTA Spr ing 2015 Lecture 20 -

    Table 18.3: Electrical Properties of

    Semiconductors

    12

  • 8/18/2019 MSE 3300-Lecture Note 20-Chapter 18 Electrical Properties

    13/27

    MSE 3300 / 5300 UTA Spr ing 2015 Lecture 20 -

    2. Extrinsic Semiconductors

    13

    • Extrinsic semiconductors : the electrical behavior is determined by impurities.

    • An impurity concentration of one atom in 1012 is sufficient to render silicon extrinsic at

    room temperature (semiconductor devices: doping with dopants).

    n-Type semiconductors p-Type semiconductors

    Dopant (donor) : P, As, and Sb Dopant (acceptor) : P, As, and Sb

  • 8/18/2019 MSE 3300-Lecture Note 20-Chapter 18 Electrical Properties

    14/27

    MSE 3300 / 5300 UTA Spr ing 2015 Lecture 20 -

    n-Type semiconductors: Electron

    Energy Band Structure

    14

    n >> p

  • 8/18/2019 MSE 3300-Lecture Note 20-Chapter 18 Electrical Properties

    15/27

    MSE 3300 / 5300 UTA Spr ing 2015 Lecture 20 -

    p-Type semiconductors: Electron

    Energy Band Structure

    15

     p >> n

  • 8/18/2019 MSE 3300-Lecture Note 20-Chapter 18 Electrical Properties

    16/27

    MSE 3300 / 5300 UTA Spring 2015 Lecture 20 - 16

    • Intrinsic:-- case for pure Si

    -- # electrons = # holes (n = p)

    • Extrinsic:-- electrical behavior is determined by presence of impuritiesthat introduce excess electrons or holes

    -- n  ≠  p

    Intrinsic vs Extrinsic Conduction

    3+

    •  p-type Extrinsic: ( p >> n)

    no applied

    electric field

    Boron atom

    4+ 4+ 4+ 4+

    4+

    4+4+4+4+

    4+ 4+

    hole

    • n-type Extrinsic: (n >> p)

    no applied

    electric field

    5+

    4+ 4+ 4+ 4+

    4+

    4+4+4+4+

    4+ 4+

    Phosphorus atom

    valenceelectron

    Si atom

    conduction

    electron

     Adapted from Figs. 18.12(a)

    & 18.14(a), Callister &Rethwisch 9e.

  • 8/18/2019 MSE 3300-Lecture Note 20-Chapter 18 Electrical Properties

    17/27

    MSE 3300 / 5300 UTA Spr ing 2015 Lecture 20 -

    Conductivity of Extrinsic

    Semiconductors

    17

    n-Type semiconductors p-Type semiconductors

  • 8/18/2019 MSE 3300-Lecture Note 20-Chapter 18 Electrical Properties

    18/27

    MSE 3300 / 5300 UTA Spr ing 2015 Lecture 20 -

    Conductivity: Temperature

    Dependence of Carrier Concentration

    18

    Intrinsic carrier concentration

    as a function of temperature

    Electron concentration versus

    temperature for silicon (n-type)

    Solid-state device

    operation

  • 8/18/2019 MSE 3300-Lecture Note 20-Chapter 18 Electrical Properties

    19/27

    MSE 3300 / 5300 UTA Spring 2015 Lecture 20 - 19

    Extrinsic Semiconductors: Conductivity

    vs. Temperature• Data for Doped Silicon:--  σ  increases doping

    -- reason: imperfection sites

    lower the activation energy toproduce mobile electrons.

    • Comparison: intrinsic vs

    extrinsic conduction...-- extrinsic doping level:1021/m3 of a n-type donor 

    impurity (such as P).

    -- for T < 100 K: "freeze-out“,

    thermal energy insufficient toexcite electrons.

    -- for 150 K < T < 450 K: "extrinsic"

    -- for T >> 450 K: "intrinsic"

     Adapted from Fig. 18.17, Callister & Rethwisch

    9e.  (From S. M. Sze, Semiconductor Devices, Physicsand Technology. Copyright © 1985 by Bell Telephone

    Laboratories, Inc. Reprinted by permission of John Wiley

    & Sons, Inc.)

       C  o  n   d  u  c

       t   i  o  n  e   l  e  c   t  r  o  n

      c  o  n  c  e  n   t  r  a   t   i  o  n   (   1   0   2   1   /  m   3   )

    T (K)6004002000

    0

    1

    2

    3

       f

      r  e  e  z  e  -  o  u   t

      e  x   t  r   i  n  s   i  c

       i  n   t  r   i  n  s   i  c

    doped

    undoped

  • 8/18/2019 MSE 3300-Lecture Note 20-Chapter 18 Electrical Properties

    20/27

    MSE 3300 / 5300 UTA Spr ing 2015 Lecture 20 -

    Conductivity: Factors that Affect

    Carrier Mobility

    20

    1. Dopant content

    2. Temperature

    Dependence of electron and hole mobilities in silicon as a function of the

    dopant (both acceptor and donor) content at room temperature

  • 8/18/2019 MSE 3300-Lecture Note 20-Chapter 18 Electrical Properties

    21/27

  • 8/18/2019 MSE 3300-Lecture Note 20-Chapter 18 Electrical Properties

    22/27

    MSE 3300 / 5300 UTA Spr ing 2015 Lecture 20 -

    4. Semiconductor Devices

    22

  • 8/18/2019 MSE 3300-Lecture Note 20-Chapter 18 Electrical Properties

    23/27

    MSE 3300 / 5300 UTA Spring 2015 Lecture 20 - 23

    •  Allows flow of electrons in one direction only (e.g., usefulto convert alternating current to direct current).

    • Processing: diffuse P into one side of a B-doped crystal.

    -- No applied potential:

    no net current flow.

    -- Forward bias: carriers

    flow through p-type andn-type regions; holes and

    electrons recombine at

     p-n junction; current flows.

    -- Reverse bias: carriers

    flow away from p-n junction;

     junction region depleted of

    carriers; little current flow.

    p-n Rectifying Junction

    ++++

    +-

    --- -

     p-type n-type

    + -

    ++ +

    ++

    --

    --

    -

     p-type n-type  Adapted fromFig. 18.21,

    Callister &

    Rethwisch

    9e.

    +++

    +

    +

    ---

    --

     p-type n-type- +

  • 8/18/2019 MSE 3300-Lecture Note 20-Chapter 18 Electrical Properties

    24/27

    MSE 3300 / 5300 UTA Spr ing 2015 Lecture 20 - 24

    Properties of Rectifying Junction

    Fig. 18.22, Callister & Rethwisch 9e. Fig. 18.23, Callister & Rethwisch 9e.

  • 8/18/2019 MSE 3300-Lecture Note 20-Chapter 18 Electrical Properties

    25/27

    MSE 3300 / 5300 UTA Spr ing 2015 Lecture 20 - 25

    MOSFET Transistor

    Integrated Circuit Device

    • Integrated circuits - state of the art ca. 50 nm line width

     – ~ 1,000,000,000 components on chip

     – chips formed one layer at a time

    • MOSFET (metal oxide semiconductor field effect transistor)

  • 8/18/2019 MSE 3300-Lecture Note 20-Chapter 18 Electrical Properties

    26/27

    MSE 3300 / 5300 UTA Spring 2015 Lecture 20 -

    Summary

    1. Semiconductors: intrinsic and extrinsic

    semiconductors

    2. Band structures of semiconductors3. Conductivity of semiconductors

    4. Semiconductor devices

    26

  • 8/18/2019 MSE 3300-Lecture Note 20-Chapter 18 Electrical Properties

    27/27

    MSE 3300 / 5300 UTA Spring 2015 Lecture 20 -

    Homework 10

    • 18.4, 18.5, 18.8, 18.11, 18.17

    • 18.21, 18.25, 18.29, 18.38

    * Problems from Callister, 9th Edition

    27