43
Mr. Jorma Vitkala GPD Chairman [email protected] +358 40 553 2042

Mr. Jorma Vitkala GPD Chairman [email protected] +358

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Mr. Jorma Vitkala GPD Chairman Jorma.vitkala@gpd.fi +358

Mr. Jorma VitkalaGPD Chairman

[email protected]+358 40 553 2042

Page 2: Mr. Jorma Vitkala GPD Chairman Jorma.vitkala@gpd.fi +358

Tempering process

2

∆t

Source: www.gii.fi © Jorma Vitkala GPD

Page 3: Mr. Jorma Vitkala GPD Chairman Jorma.vitkala@gpd.fi +358

Annealed vs. tempered glass

3Source: www.gii.fi © Jorma Vitkala GPD

Page 4: Mr. Jorma Vitkala GPD Chairman Jorma.vitkala@gpd.fi +358

4

Physical principles of temperingGlass is amorphous material, no fixed melting or freezing pointThermal expansion is not linear

Source: www.gii.fi © Jorma Vitkala GPD

Page 5: Mr. Jorma Vitkala GPD Chairman Jorma.vitkala@gpd.fi +358

Physical principles of tempering

5

Thermal contraction in transition range during cooling depends on cooling power

temperature

fast cooling

slow cooling

volume

surface

mid plate

Source: www.gii.fi © Jorma Vitkala GPD

Page 6: Mr. Jorma Vitkala GPD Chairman Jorma.vitkala@gpd.fi +358

Quenching / Cooling Process Control

T1

T2

∆t ~ 130 °C

T1

∆t

6

Tempering stresses development

Source: www.gii.fi © Jorma Vitkala GPD

Page 7: Mr. Jorma Vitkala GPD Chairman Jorma.vitkala@gpd.fi +358

Physical principles of tempering

Glass is heated up to 600…640 °C While heated to the transition range (~600 °C)• molecular structure starts to loosen• viscosity changes quickly• volume grows → density decreases

Fast cooling• surface cools quickly and solidifies• center cools slower, continues to contract, harder

surface resists the contraction of center• result is: surface in compression,

center in tension

7

tension

compression

glas

s th

ickn

ess

surface

mid plate

Source: www.gii.fi © Jorma Vitkala GPD

Page 8: Mr. Jorma Vitkala GPD Chairman Jorma.vitkala@gpd.fi +358

Physical principles of tempering

In quenching, glass is cooled down from 630°C to about 500°Cso that temperature difference between glass surface andmid-layer is about 120°C.

8

0

100

200

300

400

500

600

700

0 2 4 6 8 10 12 14 16 18 20

Time (s)

Tem

pera

ture

(C)

MIDPLATE

SURFACE

TEMPERATURE DIFFERENCE

QUENCHING COOLING

Source: www.gii.fi © Jorma Vitkala GPD

Page 9: Mr. Jorma Vitkala GPD Chairman Jorma.vitkala@gpd.fi +358

Tempering pressure

6 mm: 1000…1600 Pa3 mm: 23 000 Pa

9

∆t

∆t

6 mm

3 mm

Source: www.gii.fi © Jorma Vitkala GPD

Page 10: Mr. Jorma Vitkala GPD Chairman Jorma.vitkala@gpd.fi +358

Glass Tempering Process –Stress During Cooling

10

Temperature distribution Stress distribution

t = 3 mm , T0 = 630°C, h = 700 W/m2K

0

100

200

300

400

500

600

700

-1.5 -1 -0.5 0 0.5 1 1.5

T / °

C

z / mm

0 s

0.5 s

3 s

5 s

10 s

TG

-100

-80

-60

-40

-20

0

20

40

60

-1.5 -1 -0.5 0 0.5 1 1.5

/ M

Pa

z / mm

0 s

0.5 s

3 s

5 s

10 s

TG

(Aronen A., 2014)

Source: Antti Aronen TUT

Page 11: Mr. Jorma Vitkala GPD Chairman Jorma.vitkala@gpd.fi +358

Temperature and stress distributions during cooling. Glass thickness is 3 mm, T0 is 650 °C and h is 600 W/m2K. (Aronen A., Modelling of Deformations and Stresses in Glass Tempering, Dissertation, 2012)

-100

-80

-60

-40

-20

0

20

40

60

-1.5 -1 -0.5 0 0.5 1 1.5

/ M

Pa

z / mm

0 s

0.5 s

3 s

5 s

10 s

TG

11Source: Antti Aronen TUT

Page 12: Mr. Jorma Vitkala GPD Chairman Jorma.vitkala@gpd.fi +358

Quenching / Cooling Process Control

T1

T2

∆t ~ 130 °C

T1

∆t

12

Tempering stresses development

Source: www.gii.fi © Jorma Vitkala GPD

Page 13: Mr. Jorma Vitkala GPD Chairman Jorma.vitkala@gpd.fi +358

18.3

.201

6

14

Calculation of Strains and Stresses

Iteration of T, k, cp, S

Iteration of Tf,

Calculation of , G, K, th

Calculation of

),()()( xTSxTTk

xtTTcpg

Iteration of 0, , z

tTx

tTx

TRHt

fref

11exp tt

tttTttTtT

i

fiifi

tTCtT fi

n

iif

1

ttTtTttTtTt gffglth

t

dttt0

''

i

n

ii

twGGGtG11

10 exp

i

n

ii

twKKKtK21

20 exp

t

kkijij

t thkk

ij

ij

dtdt

ttd

ttG

dtdt

ttdttK

t

0

0

´´

3'

')´(2

´´

'3')´(

2

2

,h

h

Ndztz

2

2

,h

h

Mzdztz

zyx 0

1,

2,1 coscoscoscos

cos44

2121

11,,,,

),(kjki

ji xLaxLaxaxa

Lam

mjibjib

mimimimi

mi

eeeee

TTFTTFxTS

0zPlane stress

Source: Antti Aronen TUT

Page 14: Mr. Jorma Vitkala GPD Chairman Jorma.vitkala@gpd.fi +358

Heating and cooling times

15Source: www.gii.fi © Jorma Vitkala GPD

Page 15: Mr. Jorma Vitkala GPD Chairman Jorma.vitkala@gpd.fi +358

17

Radiation heating: First generation

Source: www.gii.fi © Jorma Vitkala GPD

Page 16: Mr. Jorma Vitkala GPD Chairman Jorma.vitkala@gpd.fi +358

Combination radiation/forced convection – 2nd generation

• Air jets inside furnace to control equal heat transfer on both sides of glass• Necessity with low-e coatings• Helpful with all glasses 20

Source: www.gii.fi © Jorma Vitkala GPD

Page 17: Mr. Jorma Vitkala GPD Chairman Jorma.vitkala@gpd.fi +358

Heat transfer in tempering furnace

Thermal conduction and internal radiation

Radiation

Radiation

Convection

Convection

Contact heat transfer

Roller

Glass

Heating glass in tempering furnace

Page 18: Mr. Jorma Vitkala GPD Chairman Jorma.vitkala@gpd.fi +358

Thermal conduction and internal radiation

Radiation

Radiation

Convection

Convection

Contact heat transfer

Roller

Glass

Heating glass in tempering furnace

Low-E

Low-E glass heating

0 50 100 150 200 250 300

1Thickness

Tem perature (C )

B ottom

C lear g lass 4m m Low -e g lass 4m m

No forced convection

Tim e-step is 5 seconds

Top

22

Balanced heating from both sides can be achieved with convection

Source: www.gii.fi © Mikko Rantala Glaston Finland

Page 19: Mr. Jorma Vitkala GPD Chairman Jorma.vitkala@gpd.fi +358

Balanced heating from both sides can be achieved with convection

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0

1Thickness

T e m p e r a t u r e ( C )

B o t to m

C le a r g la s s 4 m m L o w - e g la s s 4 m mF o r c e d c o n v e c t io n

t o p : 6 5 W /m 2 C , 1 0 0 W /m 2 Cb o tt o m : 5 0 W /m 2 C

T im e - s te p is 5 s e c o n d s

T o pWith forcedconvection

Thermal conduction and internal radiation

Radiation

Radiation

Convection

Convection

Contact heat transfer

Roller

Glass

Heating glass in tempering furnace

23

Low-E

Source: www.gii.fi © Mikko Rantala Glaston Finland

Page 20: Mr. Jorma Vitkala GPD Chairman Jorma.vitkala@gpd.fi +358

Latest convection technology

25Source: www.gii.fi © Jorma Vitkala GPD

Page 21: Mr. Jorma Vitkala GPD Chairman Jorma.vitkala@gpd.fi +358

26

Page 22: Mr. Jorma Vitkala GPD Chairman Jorma.vitkala@gpd.fi +358

Thermal imageOne end colder

27Source: www.gii.fi © Jorma Vitkala GPD

Page 23: Mr. Jorma Vitkala GPD Chairman Jorma.vitkala@gpd.fi +358

Thermal image

Longitudinal gaps cause hot spots in other glasses

direction of travelSource: www.gii.fi © Jorma Vitkala GPD

Page 24: Mr. Jorma Vitkala GPD Chairman Jorma.vitkala@gpd.fi +358

Heat treatment of glass in tempering

29

top surface

bottom surface

∆t

∆t

Source: www.gii.fi © Jorma Vitkala GPD

Page 25: Mr. Jorma Vitkala GPD Chairman Jorma.vitkala@gpd.fi +358

Heat transfer in tempering process

30Source: www.gii.fi © Jorma Vitkala GPD

Page 26: Mr. Jorma Vitkala GPD Chairman Jorma.vitkala@gpd.fi +358

Glass tempering cooling

31Source: www.gii.fi © Jorma Vitkala GPD

Page 27: Mr. Jorma Vitkala GPD Chairman Jorma.vitkala@gpd.fi +358

Cooling air jets Discharging flow

Forced convection on glass surface

Heat flux between air and glass plate depends on:

• Cooling pressure

• Nozzle diameter, shape

• Nozzle to plate distance

• Nozzle to nozzle spacing

• Air removal

32Source: www.gii.fi © Mikko Rantala Glaston Finland

Page 28: Mr. Jorma Vitkala GPD Chairman Jorma.vitkala@gpd.fi +358

Cooling glass in tempering

Thermal conduction

Radiation

Radiation

Convection

Convection

Roller

Glass

20C

20C30 – 60C

30 - 60C

Temperaturedistributions

roller roller

33Source: www.gii.fi © Jorma Vitkala GPD

Page 29: Mr. Jorma Vitkala GPD Chairman Jorma.vitkala@gpd.fi +358

Fragmentation test

• EN 12150-1• Fragment sizes are proportional

to in-glass tenstion• Fragment is conted 50 x 50 mm²

area

18.3

.201

6

35Source: www.gii.fi © Jorma Vitkala GPD

Page 30: Mr. Jorma Vitkala GPD Chairman Jorma.vitkala@gpd.fi +358

Roller wave optical disturbion

18.3

.201

6

36Source: www.gii.fi © Jorma Vitkala GPD

Page 31: Mr. Jorma Vitkala GPD Chairman Jorma.vitkala@gpd.fi +358

Straight glass flatness

• prEN 12150-1• Over roll bow• Roller wave• Edge lift

18.3

.201

6

37Source: www.gii.fi © Jorma Vitkala GPD

Page 32: Mr. Jorma Vitkala GPD Chairman Jorma.vitkala@gpd.fi +358

EDGE KINK – FRAME EFFECT

• Reason:• Edges overheat the

coating starts to bend the glass

• How to fix it:1) By using individual heater

profile or convection profile (less heat for the edges or less convection for the edges) it is possible to reduce the length wise edge kink. Leading and tailing edges can be controlled by shortening heating time.

2) Shorter heating time3) Lower temperature

44

Page 33: Mr. Jorma Vitkala GPD Chairman Jorma.vitkala@gpd.fi +358

BURNED COATING

• Reason• Overheating• Too high temperature at the

beginning of heating cycle

• How to fix it• Decrease the temperature

and/or heating time• Heater profile (less heat at

the edges of the glass)• Convection profile to

prevent burning on edges

45

Page 34: Mr. Jorma Vitkala GPD Chairman Jorma.vitkala@gpd.fi +358

FLATNESS

• Bi-stable glass• This means that glass can be

bended either way by just pressing it

• Reason behind this is that center of glass has heated slower than edges and thus the glass has different stress levels between center and edge

• In specially edge deleted thin low-e production it is very crusial that tempering line is able to control the heat between center and edges accurately and that this power can be adjusted. 46

Page 35: Mr. Jorma Vitkala GPD Chairman Jorma.vitkala@gpd.fi +358

WHITE HAZE – LENSE EFFECT

47

• Lens mark in the middle is caused by same effect as “white haze”

• The glass is not heated up evenly from top and bottom

• When bottom side is heating faster than top, the glass bends upwards in furnace and this creates a lens mark to coating

• Too low convection • Low-e coating is designed to

reflect radiation and for this reason top convection system is needed

• If the top convection system in not accurate or powerful enough glass will always have lens mark in the middle

Page 36: Mr. Jorma Vitkala GPD Chairman Jorma.vitkala@gpd.fi +358

FLATNESS

• Overall flatness• To gain the best overall

flatness top and bottom surface needs to have same stress level

• In low-e production this is more challenging as the coated side reflects also the cooling effect

• Independent nozzle control helps to get best overall flatness in low-e production

48

Page 37: Mr. Jorma Vitkala GPD Chairman Jorma.vitkala@gpd.fi +358

Roller wave + edge kink

Glass optical issues

50

GPD

Nav

i 201

4 D

ubai

Gla

ston

Gen

uine

Car

e

Page 38: Mr. Jorma Vitkala GPD Chairman Jorma.vitkala@gpd.fi +358

52

Quality monitoring systems

SCANNER GLASTON QUALITY MANAGEMENT REPORT

Page 39: Mr. Jorma Vitkala GPD Chairman Jorma.vitkala@gpd.fi +358

Anisotropy

53

tempered glassthe stress distributionof the differencesaccentuated lightingpolarization

Source: www.gii.fi © Jorma Vitkala GPD

Page 40: Mr. Jorma Vitkala GPD Chairman Jorma.vitkala@gpd.fi +358

Anisotropy, iridescence, birefringence

Glass image as seen by using polarising filtersGlass stopped at early stage of quenching

54Source: www.gii.fi © Jorma Vitkala GPD

Page 41: Mr. Jorma Vitkala GPD Chairman Jorma.vitkala@gpd.fi +358

NiS-inclusion

55Source: www.gii.fi © Jorma Vitkala GPD

Page 42: Mr. Jorma Vitkala GPD Chairman Jorma.vitkala@gpd.fi +358

Large glass needs special handling equipment -Tvitec Spain

56Summary of GPD – 2015, J.VitkalaSource: www.gpd.fi ©Tvitec

Page 43: Mr. Jorma Vitkala GPD Chairman Jorma.vitkala@gpd.fi +358

57

Thank you

[email protected]+358 40 5532042