6
OJ Glaciolog), 22 1996 tf:, Int e rnati onal G lacio logica l Soc iety Morainal-bank sedirn.ent budgets and their influence on the stability of tidewater terrn.ini of valley glaciers entering Glacier Bay, Alaska, V.S.A. LE\\ 'lS E. H UNTER, C.S. ArnD' Cold R egions Research alld Engil/eering LaboralolY, 72 L. yme Road, Hallo v er, NH 03755, U.S.A. Ro ss D. PO \\ 'E LL , DejJarlml'lll oJ Geology, Northern llIill ois Dek alb, IL 60115, U.S.A. D A\, IEL E. LA\\, Oi\ [i . S. Cold Regions Research and Engil/eeril/g Laboralol]I, 72 L.JllIle Road. Hano v er, .VH 03755, U.S .A. ABSTRACT. r nvesti ga ti ons of gr ound ing-line se dim en t at i on in fr o nt of tid ewa ter term ini of t empe rate \'a ll ey glac iers demo n st rate that se dim ent yields a nd dy nami cs provide a seco nd- o rder co ntr ol on glac ier st ab ility by influenc ing water de pth a t th e gro undin g li ne. Sed im e nt is deli\'ered (0 th e gro undin g lin e by two ro ut es : (I) de bri s t ra nspo rt ed in, on and beneath the gl ac ier, a nd (2) se dim e nt transported in glac ia l out \\'ash streams. Glac ial st reams in G lac ier Bay , Alas ka , D.S.A ., de li ver l OG lO 10 7 m 3 yea r 1 of sed iment to the gro undin g lin es . Th e glacial d eb ri s nux transports 10 5 to 10 6 m 3 yea r 1 of debr is to the ice cliffs, where app r ox imatelv 10 % is release d at th e gro und ing linp , the rema ind er bein g tr ans port ed downfJo rd by icebe rg -r aft in g. An add itional 10" m ol yea r 1 of se dim e nt m ay be tr anspo rt ed to the gro undin g line by sh ea rin g a nd ach 'ec ri on o[ a deformab le b ed. INTRODUCTION Pr ocess monilOring In front of tide\\ ' ate r termin i o f t empe r ate \'a ll ey glac iers has been on go in g in G lac ier Bay (Fi g. I), Alaska, D.S.A. , since P owe ll (1 980, 198 1) bega n definin g mode rn sedime nt ary f ac ies an d pro cess relat ionship s. The we ll-kn ow n glac ial hi sto ry of Glac ier Bay (Field, 1 947; PO\\'e ll , 1 984; Go l dt h wait, 1 987; Hunt er a nd P OII'e ll , 1 995b ) pr o\ 'id es a framelVork f or glac ier beh a\' io r that, us i ng the res ult s oC modern process studi es (e.g . an d ot her s, 1984; P owel l, 199 1; Cowa n, 1 992 ), en ab les us to e\'a lu ate re l at ionship s between sed ime nt dynamic s a nd th e beha\'ior of glac ier te rmini (Powel l, 199 1; Hu nter a nd POII'e ll , 1 995a ). T he dynam ics of marine - end ing glac iers res ult from a ba lance among glac ial, marine a nd se dim en tary pro cesses a t th e gro undin g line. Br ow n a nd others (1982) not ed a rela ti ons hip between ground ing-line \I'ater depth and ca h'ing speed of Alaskan glac iers \I'ith tid ewater te rmini. Alley (l 991b ) a nd P owe ll (1 99 1) suggest th a t se dim e nt dynam ics m ay r eg ul ate gro undin g-line wa t er depth. Several processes (T a ble I; Fig. 2) int er act to reg ul ate th e growt h and co ll apse of se dim e nt pil es, o r mora inal banks, which accumu late at the gro undin g lin e. In thi s paper , se dim ent -bud ge t d ata from thr ee mora inal banks In Glac ier Bay are presented to provide insig ht into th e ma g nitud es of proc esses affect in g se dim e nt dynamics in fr o nt of t empe rate tid ewater term ini in so uth east Alaska. SAMPLING METHODOLOGY FOR SEDIMENT- BUDGET ANALYSES Our i ll\'est iga ti o n focused on de finin g th e re l at i\'e imp o rt a nce of gro undin g-line pro cesses at Grand P ac i- fi c, Mar ge ri e a nd Muir Gl ac iers ( Fi g. I). A br ief s umm ary 0 (' the da ta co ll ection s tr at egy is given below . Debri s di s tribution Tidewater te rmini are idea l [or th e s tud y or debris distr ibuti on wit hin a glac ier , since th e ice cliff re pr ese nt s a n ea r- ve rti ca l, often tr ansverse c ro ss -sec ti on . I cebe rg ca kin g introduces ice from a ll positions of the ice cliff to the fj o rd. By reco rdin g the loca tion from which eac h iceberg o ri gina ted in the ice cliff, a ll re prese nt a ti ve ice facies ca n be sa mpl ed selec ti vely, in acco rd ance with an ice -f ac ies cl ass ifi cat ion scheme based on that of L awso n (1 979; Fig. 3). It was possible (0 dete rmin e th e debris distr i bution from de bri s conce ntr ations calc ulat ed for 282 iceberg a nd 1 39 glac ier iee samp l es (Hun ter a nd others, 1 996 ). 2 11

Morainal-bank sedirn.ent budgets and their influence on ...€¦ · aeri al photographs. Thicker moraine co\'crs (0.5- 1 m) fill surrace cre\'asses and form debris ridges and morc-or-Iess

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Morainal-bank sedirn.ent budgets and their influence on ...€¦ · aeri al photographs. Thicker moraine co\'crs (0.5- 1 m) fill surrace cre\'asses and form debris ridges and morc-or-Iess

.~j l/llals OJ Glaciolog), 22 1996

tf:, Internati o na l G lacio logica l Soc ie ty

Morainal-bank sedirn.ent budgets and their influence on the stability of tidewater terrn.ini of valley glaciers

entering Glacier Bay, Alaska, V.S.A.

L E\\'lS E. H UNTER ,

C.S. ArnD' Cold Regions Research alld Engil/eering LaboralolY, 72 L.yme Road, Hallover, N H 03755, U.S.A.

Ross D . P O \\'ELL,

DejJarlml'lll oJ Geology, Northern llIillois Ul1lVersi~)I, Dek alb, IL 60115, U.S.A.

D A\, IEL E. LA\\, Oi\

[i.S. Arn~JI Cold Regions Research and Engil/eeril/g Laboralol]I, 72 L.JllIle Road. Hanover, .VH 03755, U.S.A.

ABSTRACT. r nvestiga ti ons of g round ing-line sedimen tation in front of tid ewa te r term ini of tempera te \'a ll ey g laciers demo nstra te that sedimen t yields a nd d ynamics provide a second-order control on g lac ier stab ility by influ encing water depth a t th e gro unding li ne. Sediment is del i\'e red (0 th e g rounding lin e by two ro utes : ( I ) d ebris tra nsported in , on a nd beneath the g lac ier , a nd (2) sedim ent transported in g lac ia l out\\'as h streams. G lacia l streams in G lac ier Bay , Alas ka, D.S.A ., d eli ve r l OG lO 107 m 3

yea r 1 of sed iment to the g rounding lin es . The g lacia l d eb ri s nux transports 105 to 106 m 3 yea r 1 of debris to the ice cliffs, where approx im a telv 10% is re leased at th e ground ing linp , the rem a ind er being tra nsported downfJ ord by iceberg-rafting . An add itiona l 10" m ol yea r 1 of sedim ent may be tra nsported to th e grounding line by shea ring a nd ach 'ec rion o [ a deformab le bed.

INTRODUCTION

Process monilOring In front of tide\\'ate r termin i o f temperate \'a ll ey g laciers has been ongo ing in G lac ier Bay (Fi g. I ), Alaska, D.S.A. , since Powe ll ( 1980, 198 1)

bega n defining mod ern sed im entary facies and process

re lat io nships. The we ll-known g lacia l history of G lac ier

Bay (Fie ld , 1947; PO\\'ell , 1984; Go ldthwait, 1987; Hunter a nd POII'e ll , 1995b) p ro\'id es a framelVork for g lac ier be ha\' io r that, us ing th e res ults oC modern process studi es (e.g. ~Iacki e\l' i cz an d othe rs, 1984; Powel l, 199 1; Cowa n , 1992 ), enab les us to e\'a lu ate re lationships between

sed im ent dynamics a nd th e beha\'ior of g lac ier termini

( Powel l, 199 1; Hu nter a nd POII'ell , 1995a) . T he dynam ics of marine-end ing g lac iers res ult from a

ba la nce a mo ng glac ia l, ma rin e a nd sedim en tary processes a t th e grounding line. Brow n a nd o th ers ( 1982 ) noted a

re la ti ons hip between ground ing-line \I'ater depth and

ca h 'ing speed of Alaskan glac iers \I'ith tidewater termini.

Alley (l 991b ) a nd P owell ( 199 1) sugges t th a t sedim ent dynamics may reg ul ate g rounding-lin e wa ter depth. Several processes (T a bl e I ; Fig. 2) interact to regulate th e growth and coll a pse of sedim ent pil es, o r mora ina l

banks, which accumu la te a t th e g rounding lin e. In this

paper, sedim ent-budge t d ata from three mo rainal banks In G lac ier Bay a re presented to provide insig ht into th e

magnitudes of processes affect ing sediment d yna mics in

front of tempera te tidewater term ini in south eas t Alas ka.

SAMPLING METHODOLOGY FOR SEDIMENT­BUDGET ANALYSES

Our ill\'est iga ti o n focused o n d efinin g th e re lat i\'e importa nce of grounding-line processes at Grand Pac i­fi c, M a rge ri e a nd Muir G laciers ( Fig. I ) . A br ief summ ary 0 (' the d a ta co ll ec t ion stra tegy is g ive n below .

Debris dis tribution

T idewater te rmini a re idea l [or th e stud y or debris distributio n w ithin a g lac ier, since th e ice cliff represents a nea r- ve rti ca l, often transverse c ross -sec ti on . I cebe rg

caking introduces ice from a ll positions of the ice cliff to

the fj o rd. By reco rding the loca tion from w hi ch each iceberg o ri g in a ted in th e ice cliff, a ll representa ti ve ice facies can be sampl ed se lec ti ve ly, in acco rd an ce with an ice-fac ies cl ass ifi cation sc hem e based on th a t of L awso n ( 1979; Fig . 3 ) . I t was poss ible (0 d etermine th e d ebris

distribution from d ebris concentra tio ns calculated for 282

iceberg a nd 139 g lacier iee samples (Hun ter a nd others, 1996 ).

2 11

Page 2: Morainal-bank sedirn.ent budgets and their influence on ...€¦ · aeri al photographs. Thicker moraine co\'crs (0.5- 1 m) fill surrace cre\'asses and form debris ridges and morc-or-Iess

HUllter alld others: .\lomilla/-ballk sedilll flll budgels

~;~ ....... . ~i: ....

Glacier Bay ·····\ National Park .... & Preserve ..... D Glacier ......... .

_ .. Internat ional bound~';~i""" " '" ..... Park boundary ........ .

o 20 .-""- Streams ~ \ .

138 137'

Fig. 1 . . Ih l/) 0/ Glacier B(O' • \ 'a Liolla/ Park alld PreSflTe showillg tlte locations (j[ ( I) u/JPer .\fuir IlIlet alld .Ill/ir GLacier, alld ( 2) lIjJjJer Tan IlIlet witlt Grand PaciJic alld .\fargerie Glaciers.

Basa l ice laye rs a t Gra nd P ac ifi c, ;\farge ri e a nd !\Juir Glac ie rs a re di scha rged in to fj o rd s bc lo ll' sea le\·e l. such that th csc layc rs arc mos t oft en o bsc J"\ 'Cd in ice bergs . Fo rtun a te ly, basa ll y d e ri\'ed ice bc rgs te nd to ri se \'e rticall y a nd th e ir loca ti on of ori g in ca n be inferred.

Sa mpling o f th ese ice bergs pro\'id es a \'a lua ble constra int

on basa l la\'e r thi ckn ess a nd d ebris concentra tion . Supraglac ia l d ebri s thi ckn ess lI'as es timatcd a long

tra nsec ts nca r te rmini . l\i o ra ine thi ckn ess on ?\/la rge ri e a nd Gra nd Pacifi c Gl ac ie rs ra nged from < I mm to 1. 5 m ,

but ra rely exceed ed th e 0 .08 m a\'e rage estim a te of

G o ttl e r ( 1992 ). D ebri s CO \ 'CrS of Imm a re suffi c ientl y

thick to disco lo r th e surface, lI·hereas a thi ckn ess of 1- 2 cm produ ces a cover th a t appea rs to be nea rl y comple tc on ae ri a l ph otog ra phs. Thicker mo ra in e co\'c rs (0 .5- 1 m ) fill surrace cre\'asses and fo rm d ebris rid ges a nd morc-o r-I ess

continuo us g ra \'e l surfaces .

Bathytnetric tnonitoring of glacifluvial seditnent flux

:'\loored lines with sedim ent tra ps werc deployed in bo th

:VJuir a nd T a rr Inlets to mo ni to r th e spa ti a l pa tterns o f

susp ension se ttli ng in th ese inlets (Cai, 1994; Hu n te r ,

1 99 '~ ) . Tra ps suspend ed 1- 6 m a bove the sea fl oo r a re used to represent suspcnd ed nLl\·ia l sedim cnt nux to th e sca noo r. \' 01 umes or d epos i ted sed i ment we re d e term i ned by plo ttin g a nd conto urin g se ttlin g-ra te d a ta di\'ided into

plume set tling (th e tota l th a t acc umul a ted on mora ina l­

ba nk a nd flu v ia l d e poce nte rs) a nd p lume b y-pass (sed im ent th a t became d eposited d ownfj ord from th e g rounding-line sys tem ; Fig . 2) .

Fj o rd ba th ), m e try be twee n 1988 a nd 199 1 \\'as reco rd ed ni ne tim es lI'i th i n I km or ~ l u i r G lacier a nd

seven tim es within 2 km o f Gra nd Pacifi c Gl ac ie r.

Ba th ym etri c mon itoring ena bles mo nito ring of bed load

dumping, squeeze/push a nd mass mO\ 'ements th a t canno t be meas ured direc tly in th e ice-prox ima l ell\·ironmenl. Sedim c n t \'01 u m e con tri bu ted b y th ese processes is de termined indirec tl y by subtrac tin g contributions from

2 12

T able I . Grolllldillg-lille jJrocesses

Process .I l oraillal- Difill itioll ballk cOlltri-bulio ll

GLacier debris .flux: Ice-cliff melt-out Addition

Ca l\'e dumping Addition

Ice berg ra ftin g

Clacijlllvia/ sediment .flu\: Bedload dumping Add ition

Plume se ttlin g Addi ti on

Plume by-pass

Subglacia/ alld ice margillal: F reeze-ree),c l i ng R e-cycling

Squ eeze/ p ush R ecyc ling

:-'lass movem ents R emO\'aI

D efo rming bed Addi ti on

Rel ease o f d eb ri s by surface melting a t the

te rminus

Dumping of supra g lacia l d ebri s during cah 'ing C\ 'e n ts Tra nsport or d ebri s in ice bergs beyond th e

mo ra in a l-ba nk toe

R a pid de posi ti on o r coa rse bed load a t strca m a nd conduit m o uths

Suspension se ttlin g from

overfl ow plumes o n to th c m ora ina l ba nk Fi ne-pa rticle tra nsport in o \'e rn ow plume di sta l 0 (' m o raina l-ba nk toc

Loca li zed subg lac ia l fi 'ecze-on a nd tra nsport to th e ground ing lin e­Scdim ent d eforma ti o n

ca used by grounding­

line flu ctuations

Slides, slumps a nd secli­ment-gra \ 'ity fl ows ge n­c ra ted on th e mo ra in a l ba nk

D own -g lac ie r ach-ec ti on

of so ft sediment belO\\'

th e g lac ier so le

(not drawn to scale)

Plume by-pass

........ 1----Morainal bank ---t.~

Fig. 2. Prilll([J)' sedimental)' jlrocesses at a tidewater termillus.

Page 3: Morainal-bank sedirn.ent budgets and their influence on ...€¦ · aeri al photographs. Thicker moraine co\'crs (0.5- 1 m) fill surrace cre\'asses and form debris ridges and morc-or-Iess

Fig, 3, Genera/ ice-Jacie,1 dislribllli()11 al a lidnl'aler lenllill/o ,

plume sc ttling, ca k c dum p ing a nd ice-clin' me lt-o ut f,'o lll o bsen'Cd sp a ti a l a nd tcmpo ra l c h a nges in sea -fl oo r

sed im ent \ 'o lum e, G lac illu\' ia l dumping a t po int-sourcc

de pocentcrs is illustra ted o n isop ac h ma ps b \' mo un ds o r

pil es ( Fig, +: Po\\'e ll , 199 1) , \\'he reas m o ra ina l-ba nk g ro \\'th a way I'ro m nu\·ia l so urccs is a ttribut ed to squ eeze/ push m O\'C m ents a nd th e ad \'l'C ti o n o f' sedim e nt in a d c{o rmin g bed , S imil a rl y. m ass-mo\'em e nt p rocesscs

a re reco rd cd by d ep ressio ns o n isopach m a ps, Th e re fo re,

isopach maps based o n re pea ted ba th\'l11 e tri c sun'Cys

\\'(' re used to mo nit o r \'o lumc tri c c ha ng;es in th e m o ra in a l ba nk caused b l' ide ntificd scdim enta ry proccsses (Figs 2 a nd 4 ),

a C.I. =20m b o 1 , ,

km 1------.,

Margerie Glacier Margerie Glacier

Fig , -I , E \'{/177/)/e oJ It Oll ' sedimen/nI)' /)1'0('('.1' ,1('.1' are mOllllored IIsillg ba/I~) ' 177e / ric /JrojlleJ alld iso/l({ch III a/ls , (a j The Oilier filllil riflhe morailla/ ballk oj' Jlargerie and

Gmlld Pacific Glaciers ill Tan flllel 011 29 J lIne 1990 is

delillealed ~J I lite fl/eII ! ~/ the acllz'e de/Josilioll slope (> 10 j , SlIblllarille conlollrs are Slt OII'1I wi//z all inlerml rif 20m , ( b) ,lfolli/ored c/zallgeJ ill 1II0railla/-ballk geome//)' Jar lite Jieriod 29 J"I.)' 1989 /0 29 J ll ll e /990 are ob/ailled 1I,Iillg all iSO/Hldl ma/) , ,·lggradalioll i:, classified as eilher

dellaic ill origill. ll'here lowlerl illjiolll oJ glacial oll/ll'ash

slrealll,l , or frOIl7 sqllee;.e //)lI sh /JI'oCfsses awa,l' from SlIell SOllr('e.l', Large ;,olles 0/ (o//ol)se ~1 1 mass-ill 0 l' fllleI) !

/no((';"les are .rhOl l 'lI ill Jroll/ oJ .I1argerie alld Grand Pacific (; /({Cier. I , The /ill/i! rif /he /lIorailla/ ballk Oil 29 ] II{JI 1989 is ShOll'lI ~v a dashed line alld !hal oJ 29 Jllll e 1990 kJI a soLid lilll' ,

HUll/er alld olher.l: "forailla/-brlll/'- ,Iedimm/ blldge/,I

DAT A ASSESSMENT

Our d a ta re present a first a ttempt to asscss qu a ntit a ti \'{' ly

th e rela ti\,(, impo rta nce o f' \'a ri o us sedim c nt ,H\' p rocesses

ill bo th d eli \'C ring sedime n t to a nd re l1l O\' ill ~ it f,'o m an in" ch'n a mi call y c h a n~in g m o ra in a l ba nks, Th e erro rs in c lud ed in th ese C's tim a tes , 'a ry d e pending o n th e processes m o ni to red , but a re es tim a ted to be \\-ithin a

factor o ('t\\'O, This is a n acce pta ble le\ 'e l o f' acc urac)' since

o ur goa l \\ 'as to produ ce a n ord e r-o f-m ag'nitud c m od el.

Suspensio n-se ttling ra te's ha lT a na tura l \ 'aria bilit y 0 ['

less th a n 8°/., u s in ~ tra ps \\' ith g rca te r th a n 95 % e fTi cieney Co\\'an, 1988 ), a nd \ \'C acco rdin g '" es tim a te a n e rro r of

\\ ' ithin 10% , J\!. eas ure l11 ents o f d e bri s co ncentra ti o ns in icc

d cmo nstra ted th a t th e d e br is cont e nt \\-ith in a n ice f~t c i es

ca n \'iu )' b\' a fac to r o['as m uch as 1,3 Hunte r a nd o th crs.

1996 ) , whic h g rca th ' e:-; ceed s th c sa mpling a nd a na h-ti ca l er ro rs or 5- 10 'Yo, Beca use o f' na tura l haza rds in thi s em 'iro nm ent , the processes o f bed load du m ping. sq ueeze/ push a nd m ass mOH'm en ts canno t be mo ni to red direc tl y ,

I ndi \' idu a l m easure m c nts m ad e fi'o m bat hym et ri c pro files

arc cst im atecl to be \\'ithin th e 90 % co nfid ence li m it.

H O\\'C\'e r. su bj eCl i\ 'e con to urin g a nd plo ning o f iso pac h maps in('l'ea ses th e like lih ood o f e rror. \\'e es tim a te th a t erro rs m a\- he as hi g h as 20 30'!!.) , \\ 'C ll \\ 'ithin ra nge fo r factor o f t\\'O acc uracy ,

RESULTS

The samplin g d es('l'ibed a bo\'e has produced a d a ta sc t th at a ll o \\ 's us to e\'a lu a te th e mo ra in a l-ba nk sedime nt

budge t. PO\\'e ll 199 1 a nd Hun te r a nd Po \\'e ll 1995 b

ha\'c repo rt ed dra m a ti c ba th ym e tri c cha nges of se\ 'C ra l

tens o f' m e tcrs a nd up to 100 m in a sing le fi e ld season, Suc h c ha nges indi cate th a t sedim e nt yields in G lac ie r Ba:' a rc the hi g hes t d oc um ented ro r bo th g lac ie ri zcd a nd no n­g lac ier ized bas i ns (H a ll e t a nd o th e rs, 1996) ,

\ 'o lum e tri c cha nges in rh e m o ra ina l ba nk (t::"B ) a rc

th e sum o r sedim e nt \ 'o lum es res ultin g ri'o m recyc ling

(R I ), inputs (N ), and resedim c nta ti o n p rocesses (111) ac ti \'l' a t a sit e rC) r a g i\'C n tim e per iod, as ex pressed b\':

t::"B = R I + N - 1II (1 )

\\'here R I co nsists o r scdim ent \ 'o lum es contributed b\'

freezc-recycling (R f l a nd squ cczc / push (RsI, a ncl N is th e 1"()lum ctri c Sllm o f' ca k e dump ing (D d), icc-c lirr m elt-o ut (D II ) ) , bedload dumping (F:Il, plume se ttlin g (~» ) a nd ach 'Cct io n of' a defo rming bed (B d) to \\'a rd s th c g ro u ndi ng

lin e (T a bl es I a nd 2 ) ,

Th e d e bri s contributi o n rro m g lac ie r ice to th e

m o ra in a l ba nk ca n be cl ne rmin ed ass um ing p lu g noli' nea r th e g lac ic r tcrminus, o nce th e d e bri s di s tributi o n is es tim a led a nd th e ice nu :-; ( Q i I has bee n ca lcula ted using :

(2)

\\'here Ut is th e <1\'C rage \'C loc it y nca r the te rminus, 111 is th e g lac ier \\' id th , a nd h, is th e te rm inus thi c kn ess (T a b le 3 ), Th e d ebri s flu :-; (D )!, ) in basa l a nd e ng lac ia l tra nspo rt is

th e produ c t o f th e ice flu :-; (Qji and th c sum 01' th e d ebris

co ncentra ti o ns (e j 0[' eac h ice rac ies \ \'e ig ht ed b~- th e ir

2 13

Page 4: Morainal-bank sedirn.ent budgets and their influence on ...€¦ · aeri al photographs. Thicker moraine co\'crs (0.5- 1 m) fill surrace cre\'asses and form debris ridges and morc-or-Iess

H unter and others : M orainal-bank sediment budgets

Ta ble 2. Sediment budgets Jar 1989- 91 in 1(/ nlyear I

Glacier debris flux : I ce-cliff melt-ou t Calve dumping Iceberg raftin g

Tota l

Glacijluvial sediment flux : Bedload dumping Plume se ttling Plume by-pass

T otal

Subglacial and ice-marginal: F reeze-recycl i ng Squeeze /push tvlass movements D eforming bed

lvl uir lvlargerie Glacier Glacier

0.6 0 .4 0.1 0.4 7.2 9 .3

13 .2 ' 10.1

44.9 144.0 11.0 79.5 6.8 40. 1

62.7 263.6

7.2 0.1 t 2.6 283.7

25 .3 500.0 2.2 2.3

Grand Pacific Glacier

0.5 0. 3 9.6

10.4

6 18 .0 98.4 55 .2

77 1.6

6.2 9 1.5

626.0 1. 3

" 105 3 - I· I An additi ona l 5.3 x m yea r IS dumped on to t l e ice-co n tact del ta.

t Based on sing le sample; treated as minimum estim a te.

fractio nal vo lume (Vj ) of the ice in th e ice cliff, such that:

n

Dg = Qi L Cj 1;) . (3) j = l

D ebris flux es calcul a ted using Equ ation (3) ra nge from 1.0 X 106 to 1. 3 X 106 m3 year 1 (Table 2).

The volume of debris released at the grounding line by melt-out is calculated by determining the melting ra te (R ) using th e W eeks a nd Ca mpbell ( 1973) equatio n:

(4)

a nd recalculating Equations (2) a nd (3) after substituting

Table 3. Glacier paramelers during of/lid)), 1988- 91

Variable Symbol Unit Grand

Average velocity v T erminus veloc ity Vt

Calving speed Vc

G lacier width W

A verage tota l h t

cliff heig h t Adva nce rate X

m year

m yea r

m year m m

- I m year

Pacific Glacier

380" 525"

480 "

1770 54-66

20- 24

Ma/gaie M uir Glacier Glacier

679 1700

810 1700

776 1770 1900 880

90 90

10 0

, Values represent portion of glacier fed only by the Fen"is Tributa ry.

2 14

R for Vt. In Equa tion (4 ), v is the bound a ry-l aye r wa ter ve locity, !::J..T is th e tempera ture difference between th e ice and water a nd I is th e leng th of th e ice cl iffin contac t with water a long th e predom in a nt d irect io n or wa ter fl ow (Syv itski , 1989), either buoya nt upwclling a t Gra nd Pac ific a nd Muir G laciers or longitudin a l currents a t

M argerie G lacier . Buoyant upwelli ng is es tim a ted at 0.03 m s 1 (Mathews a nd Quinl a n, 1975; Powe ll a nd Molnia, 1989), a nd longitudin a l currents a ppear to be a ro und 0 .25 m s I bascd on iceberg-drifting ra tes (H unter , 1994). The ice/wa ter temperature difference was mea­sured a t 2.95°C with thermistors on a remotely controlled

submersibl e (R. D . PO\.yell , unpublish ed d ata) . Based on th ese constra ints, calcu lated ice-cliff melti ng rates are 21 m yea r 1 (Gra nd Pac ifi c G lac ier), 3 1 m year 1 (M a r­geri e Glacier) a nd 20 m yea r- I (Muir G lac ier) . Estim a tes of debris released by melting ra nge rrom 3.0 x 10 1 lo 5 .8 x 104 m3 year I (T ab le 2).

The Oux of ice d ischa rged by ca lving is determined using a con tinuity equation:

Vc = VI - R- X (5)

where Vc is the ca lving speed (Brown a nd others, 1982 )

a nd X is th e cha nge in glac ier leng th (positi ve for

advance: M eier a nd others, 1980) . By repea ting th e ca lculations in Equ a tions (2) a nd (3), this time substitut­ing V e for Vt (Table 3), es timates of icebe rg raft ing a re 7.2 x 10:' lo 9 .6 x 105 m3 yea r I (T a ble 2) .

The supraglac ia l debri s flu x is the product o f glac ier

surface velocity (vd , mora ine widths (wm ) a nd surfi cial debris thi ckn ess (t ). D esp ite th e conspicuous appearance of supraglacia l mo raines, the supraglac ia l flu xes of eac h glac ier were rela ti vely low: 1.4 x 10 I to 4. 1 x 104 m 3

year I (T a ble 2). I ti s ass um ed that a ll of thi s debris is released by grav itat ional processes at tidewate r ice cliffs

by ca lve dumping (Fig. 2).

Fluvia l bedload dumping is calcul ated using isopac h m a ps produced from short-term interva ls ( IOd to abo ut lll1 o nth ) tha t reco rd point-source deposition (Hunter a nd Povl'e ll , 1995b). Use o[ sho rt-term d a ta reduces the poss ibi lity that sig nifi cant a mounts of sediment have been

removed by mass-movemen t processes, so tha t a better

und erstanding of th e magnitud e of cha nge is ac hie, ·ed . Hunter (1994) norll1 a li zed these d ata by ca lcul at ing

a ve rage d a il y accu mul a ti on rates tha t were th en ext ra ­pola ted [o r the 4month melt season (cr. Lawso n, 1993 ) . Bedload dumping was then ca lcu la ted by subtracting the

p lume-se ttling component from morainal-bank depocen­

ters indica ted on iso pach maps (e.g. Fig . 4 ). Suspension­se ttling d a ta in T a ble 2 indicate that plume se ttling onto mo ra in a l banks accounts ror 1.1 x 106 to 9.8 x 106 m 3

year I, a nd bed load dumping ra nges II"om 4.9 x 106 to 1.4 x 107 m3 yea r 1 An add i tional 6.8 x to.) to 5.5 x 106

m3 yea r 1 of sediment is transported beyond th e mora ina l

ba nk a nd d eposited downGord by plum e by-pass . jVlass-movement processes occur episodicall y a nd ca n

remove as mu ch as 0 .8 x 106 to 5.4 x 100 m 3 orsedim ent

within a 10- 2 1 d monitoring interva l a nd 2.5 x 107 m:; in

less than a month. The largest movem ents appear to

occur in June a nd dec rease by a lmost an order of mag ni tude by la te Jul y a nd Aug ust between 1989 a nd 199 1, indi ca ting instability early in the melt scason. It is

Page 5: Morainal-bank sedirn.ent budgets and their influence on ...€¦ · aeri al photographs. Thicker moraine co\'crs (0.5- 1 m) fill surrace cre\'asses and form debris ridges and morc-or-Iess

likely that consid era ble movement of sediment occurred prior to our sampling in June and may continue beyond

th e end of sampling in August. Given these limitations, a conse rva ti\'e es timate of sediment removed by mass­mO\'ement processes may be twice that monito red in the fi eld ,or a bout 2.5 x 106 to6 .3 x 107m3year 1 (T a ble 2).

Sediment transported in a deformabl e bed has bee n roughl y estimated assum ing a 60 cm thi ck deforming

layer (e.g. Humphrey and o thers, 1993) and a linear

velocity profil e (Alley, 1991 a ) . Subglacia l sediments frozen onto basall y d erived icebergs have been observed in front of Gra nd Pacifi c, J ohns Hopkins, M a rgerie, M cBrid e and Muir Glaciers in Glacier Bay, indicating that deformable sediment is present at th e soles of th ese g laciers. In addition, interstadial trees in Muir Inlet exhibit down-va ll ey deform a tion in th eir upper 60- 80 cm , indica tive of su bglacial shea ri ng d u ri ng ove rridi ng . Assuming plug-now conditions a nd average velocity of th e deforming layer of about ha lf of the surface velocity (e.g . Alley, 199 1a), or abo ut 262, 405 and 850myear 1

for Grand Pacific, Margerie a nd Muir Gl aciers, respec­ti vely, we estim a te that 1.3 x 105 to 2.3 x 105 m3 year- 1

of sediment could be transported to the g rounding lines by d eforming laye rs (Table I ) . H owever, if soft-b ed deformation is more locali zed , th e subglacial sediment Ou x will be considerably less.

The processes of freeze-recycling and sq ueeze/push are th e final components of the morainal-bank sys tem that need to be addressed. Hunter a nd others ( 1996 ) es timate th a t the tota l a mount of sedim ent moved by freeze­recycling in Gl ac ier Bay ra nges from 1.0 x 10-} to

- 3 1 7.2 x 10:> m year (Table 2), from measurements of

froz en sediment (th e lowermo t so lid subfacies of Lawson (1979)) carri ed to the fjord surface on basa ll y derived icebergs. Squeeze /push cannot be monitored direc tly, and is th erefore es tima ted by solving Equation ( I ), such that Rs is the onl y unknown. This yields es timates th a t range from 2.6 x 105 to 2.8 X 107 m3 yea r 1 for squeeze/push. Monitoring of th e Margeri e Glacier morainal bank demonstrates tha t, a lthough squeeze/push may be the mos t signifi cant process co ntributing to moraina l-bank d ynamics during the winter, it is overshadowed by mass­mO\'ement removal of sediment in the summer.

DISCUSSION

A process hi erarchy can be es ta blished for th e moraina l­bank environment based on th ese order-of-m agnitud e sedim ent-budge t a nal yses. Firs t-order processes are

g laciflu via l dum pi ng a nd mass mo ve me n ts, wh ich account for the movement of 106 to 107m3year l of sedim ent and a re th e primary controls on morainal-bank growth and coll apse. GlaciOu via l dumping accounts for 50- 80% of th e g lacia l sediment production in a single summer, while mass-movement processes may remove more th an 1.5 tim es the total a nnual sediment produced in yea rs when mOl"a ina l ba nks co ll apse (Table 2) .

Second-order processes in clud e g laciOuvia l plum e se ttling, plume by-pass and ad vec tion by a d eforming bed , which account for 105 to 106 m3year- 1, 7- 29% of the total glacia l sediment yields. Squeeze/push is a lso assigned to second -ord er processes based on the analyses of Grand

Hun/er and others: f'vlorainaL -bank sediment budgets

Pacifi c a nd Muir Glac iers. Freeze-recyc ling, iceberg­raft ing by-pa 's, ca lve dumping and ice-cliff melt-out a re

thi rd-ord er processes, wh ich acco u n t for the loca l redi stribution of 104 to 105 m3 year I « 0. 1% to 9% ) of sediment. Dowd eswell a nd D owd eswell ( \ 989 ) ha\'e obse rved that sedimenta ti on rates fi"om iceberg ra ftin g a re on ly an ord er of magni tude lower th an the total sed imenta tion rates in Spitsbergen. Th e two orders of

magnitude difference observed in Glacier Bay indica tes an increase in the importance ofglaciOu via l ac tivity in the ma ritime clim a te of south eas t Alaska rela ti ve to that in a sub-polar clim a te.

An a na lysis of the behavior of termini in Glacier Bay indica tes that recent advance and retrea t histori es are closely rela ted to sedim ent dynamics. Catastrophic retreat took place in both Muir Inlet and the ma in arm of G lac ier Bay (Fig. I ) foll owing the Neoglacia l maximum (Powell , 1980; Goldthwait, 1987 ). The last phase of retrea t ofM uir Glacier began in the l890s but acce lera ted following the 1899 ea rthqua ke (T a rr a nd Martin , 19 12;

Field , 1947 ), which may have ca used a catas trophic co llapse of its mora in a l bank a nd introd uced its g rounding lin e to deep water.

Qu asi-sta bility and subsequent advance of rvlargerie and Grand Pac ifi c Glaciers in the 20th century coincide with the formation of ice-contact deltas (Hunter and

Powell , 1995a) . Both glac ier. ha ve been adva ncing for nea rly 50 yea rs behind moraina l banks in a way simil a r to the advance o r Crillon Gl acier (Goldthwa it and others, 1963; Powell , 1991 ) and Hubbard Glacier (Mayo , 1988) elsewhere in Alaska. Appa rent ove rriding on th e mora ina l bank by Gra nd Pacifi c Glac ier during the 1970s and ea rl y

1980s resulted in ice advanc ing into deeper wa ter and a n acceleration in g lacier Oow (Hunter and Povvell , 1995a ) . Subsequen t agg radation or g rounding-line sediment has coincided with slowed g lac ier flow (Hunter, 1994) .

Sedim ent d ynamics a re clear ly not th e on ly control on th e behavior of tid ewater termini in Glacier Bay and other parts o f the world. R eid (1892 ) noted th a t termini tended to become pinned at Gord constri c ti ons rela ted to a reducti on in th e cross-sec tiona l a rea exposed to the sea , a notion th a t was supported by Fi eld ( 1947 ) a nd Po. t (1975 ) . H oweve r, Powe ll ( 1980 ) found no sta tisti ca l rel a tionship to support this id ea. R ecent quasi-stability

orthe terminu ofMuir Gl ac ier has coincided with retrea t in to a narrow stretch of Muir Inlet where ice flux can support the ca lving flux (Hunter a nd Powell , 1995b) . R a pid fjord infilling in 1986 following a peri od of quas i­sta bility resulted in grounding-line aggradation to sea level by 1992. Current ly, Muir Glacier terminates as a terres trial glacier a nd is expec ted to adyance since it is no longer ca lving. It is clea r, however , th a t the stability o f tid ewater termini in Glacier Bay can be inOuenced by sedim ent d ynami cs a t the g rounding line. T ermini ca n therefore Ouctuate independen tl y or any cl im a tic forcing .

CONCLUSIONS

D a ta presented in thi s pa pe r sho uld be use ful in e\'a lu a ting models of g lac ier sensiti\'ity to sediment d ynamics (e.g. Alley, 1991b) and eva luat ing process va riations und er different climatic regim es. In Glacier

2 15

Page 6: Morainal-bank sedirn.ent budgets and their influence on ...€¦ · aeri al photographs. Thicker moraine co\'crs (0.5- 1 m) fill surrace cre\'asses and form debris ridges and morc-or-Iess

!-fulller and a/hers : A1oraillaf-b(lIIk sedill/ eIl l blldgels

Bay, g lacinu\ 'ial sediment produ ction is as mu ch as t\\·o orders of magnitude g rea te r than the d ebri s nux and cOllStitutes 8 98% of th e to ta l sediment yie ld s. FILI\·ia l bed load dumping accounts fo r 54-80% orthe glacinuvial sediment production a nd is th e sing le mos t important

process adding sediment to morain a l ba nks. I nteractions

between th e first-order processes of g laciflu\ 'ia l dumping and mass mo\'C ment primari ly determine morainal-bank growth a nd co ll a pse, a nd modera te grouncl ing-l ine water dep th . Thro ug h ach iev ing a clea rer understand ing of ho\\' sed iment dyn a mics innuence th e sta bili ty of glaciers \\'ith

tidewater te rmini , wc ca n be tter assess th e async h ronous

beha\ 'ior o r such glac iers in Al as ka (e.g. l\ [a nn , 1986; ;"1a yo, 1988; Powell , 1991 ) and o th er reg ions. G lacia l sys tems in southeas t Alas ka a re idea l fo r monitoring sedim ent d ynamics and eva luating process re lationships since their g laciflu\ 'ia l sedim ent yiclds a re th e h ig hest

known on Ea rth , be ing linked to d enudation rates on the

order of' 10- 60 mm year 1 (H a lle t and others , \996 ).

ACKNOWLEDGEMENTS

Funcling was prO\'id ecl by DPP 88-22098 to R .D.P. ; th e

Geo logical Society or America, Sigma Xi a nd th e Department or Geology a t :\forthcrn I llinois Uni\'Crsity to L.E.H.; and USACRR EL ror D.E .L. und er th e Work U nit "Predicting R unoITand Sediment Yi eld 11'0 111 Partly G lacierized Basins". Logistica l su pport \I ' as provided by

the National Pa rk Service at G lac ie r Bay National Park and Presen T and J. Luthy, captain of the 1\ J /\ ' . \ ·lInalak.

The authors \\'ish to thank J. A. Dowd eswc ll , J. Strasser, L. Ga llo a nd one a no nymous re\·iewcr for CO l11mcnts that illlpro\'ed th e tex l. Assistance on the g raph ics was provided by L. Pau lson.

REFERENCES

.\Jl c)'. R. B. 199 1a. Dd,) rmin g,bcd o ri g in f,) r so ulh('l'n L"urc lllici c lill

shcels? J. Glaciol .. 371125 l. 67 76.

.\ lIc,. R.B. 1991b. 'cciinH'nl 'u \' processcs m ay ca use fluctualions o r

tid cII'a ter g lacie rs. , / 1111. Glaciol., 15 , 11 9 124.

Broll' n. C. S .. i'd . F. i\lci n a nd ,\ . Pos t. 1982. Caking specd or .\!ask<!

ticl cwrtte r g- Iaric rs. w ith a ppij cali o n to Columbia Glac ie r. l '.s. (,'1'01.

SII/"I'. Pro[ Pap. 1258-(:. Cai. J. I 99<}. Scdiment yidcl> , litllOl" c ies a rc hitcc tulT ancl muclrock

cliaraCLl' ri !-l ti cs in giacimari nc C'1l\·irolllllcll t). (Ph .D. thesis. \i orthcrn

I llino is Lnil'lTsit Y. I

C:O\\'an, E. A. 1988 . cdiment transport a nd deposition in a temperatc

glacia l Qo rd. G lacier Bay. , \ Iaska. Ph .D. th esis. :\o nh ern I llino is

Uni\'Crsit \'. ) Cowan, E. 1\. 1992. l\ I clL\\,<1tcr and tidal c urre nts: ('o lltl'ois on c irc ulation

in a small g lac ia l fj o rd . iCslllarille CoaJlal She/fSci .. 34 (<} ). 38 1 392 .

Do\\'des\\'c11. J. :\ . "nd E . K. Do\\dcs\\e11. 1989. De hri s in icebergs a nd

rates o f g la ci-marinc I.;('cii ITI cntation: o l>s(, I'\ ' a li on ~ f1 'olll Spits bC'r~cn

and a simpk model.]. G'eol .. 9712 1, 22 1 231.

Field . W. 0 .. Jr. 1947. Glac ier recession in \ Iuir Inkt. Glacier Ba,.

f\ IaSka. Cellgr. Rn' .. 37 (3 I. 369 399. Colcith" a il. R . P. 1987. G I" c ial hi story or Glac ier B;" Pa rk a re". III

. \nderson . P . .J. . R. P. Coldlh"ait a nd C. D . :\IcKcnz ie. "d.,. Ob,IfITNI "roce.I.II''> n[glacial del)n.lilioll ill Cl{I(ier Bar. . lia.lt.-a . C o lumbus, 01-1 , Ohio

216

Statc L· ni\'l'rsit \·. BYI'd Po lar R esea rch Cct1lcr. 5 16. (i\ l iscellaneo us

Publi cat ion 236. )

(;oldth\\'ait. R. P .. I. C. :\ l c K e llar and C. Cronk . 1963. Fluctuations o r C rill o n Cbcicr "stcm. so utlt eas t .\ Iaska. I . IllS Bill! .. 8 ( 11.62 7·1.

Cot ticI'. P. 1992. Icc- ral'ting at a tcmpera tl' tidc\\,a ter g lac icr, i\ l cBrici c

Iltl ct. Glacier B"y. Ala ska. i\ I. Sc. th esis, N ort hern Illin o is

Cni\Tl"sil y. l-I a ll ( l, B., L. E, Hunter ancl j. Bogen . 1996. R a tes or eros io n and

scdimcnt c\'ac ua ti on by g lac icrs: a tT\' ie\\' or tlt e ev idence. Global fllld Plallelal) ' Challge. 12. 2 13 233.

l-Iulllphrcy. N .. B. K a mb. :\ 1. Fa hn es tock and 11. Engl'ih"rdt. 1993 . Characll'J'i s tics or thl' bed 01' tit" I,mer Culumbia GlacicT .. \ Iask<!. J. (:fo"hr.\. N I'\'. 98 BI . 837 8·16 .

I-Iunler. L. E. 199~·. Grounding ,line sys tems and g lac ier mass balance or

modern tempe ra le glac iers and th eir effect o n g lac ie r slab ility . ( Ph.D.

thesis. \'onhern Illino is Lni\'Crsity. )

H u ntc r. L. E. a nd R. D. Po\\'c1 !' 1995a. Climatic controls o n g lac ier m ass

",t1ance in Glacier Ba y :\'al io l1al Park and PrescnT. Alaska. 111 Engstrol11. D .. ed. Proceedings 'l/IIie 77,;rrl (;Iaria lJ(~J l SriNI(l' .~I 'IlII)o\iflm.

.\nchorag-c. AK , LT.S. I) r partment of lhe Intcrio r. .'\al io llal Pa rk Set'l'ice. ,1·6 .') I.

Hut1lc r, L. E. and R. D . Pc)\\·cll. 1995b. Elkcts o ri ec ' proxilll a l sediment

clynamics on th e sta bilit\· of' \iuir Glacier. Glacier Ba,', Alaska. III

En,!(st rom. D .. I'd. Proreedillgs oJ Ihe Third (;lacier Br£1' Sriellcf S),III/lOJilllll . ,\Ill'horagc, AK , U .S. Depa rtm ent or the i lllcrior. Natiunal Pa rk Sl·n·irc . 29 37.

1-1 ""tlT. L. E .. R . D. Po\\'e ll and D. E. La \\'soll. 1996. Flu x or debri s transported by irt' at three Al as ka n lid('water g laciers. J . (//([riul., 4 2 1+0 , 110- 122.

Lt\\ 'so n, D. E . 1979. , \ scclimen lo logica l a nah'sis of' the weste rn te rminus

region ol ' th e l\ l a tanuska Glacier .. \ Ia ska . CRREL Rep. 79-9. La\\'so n. D . E. 1991. Glacio l,,·cl ro logic a lld g lacio h\·dra uli c dfccts o n

rLlIlOn~ and sedimellt ;. icld in g lacicr iz('d basins. CRR!:" .. \!o"o,~'" 93-02. :\Iack ic\\' icz, :\ . E .. R. D. Po\\' e ll . P. R. Carlso ll " lid B.F. :\ [ollli". 1 98~.

In lc ri a nl in at('cI ice -prox im a l g- Ia c im a rin e seclimcnts in ~ r uir I llle t,

.\Iasb . . I/ llr. Geol .. 57 I 4 1. 11 3 I<}I .

\ 1<1 nn. D. H. 1986. Rcliahi litv or a fjorcl g lac ie r 's lIuClua ti ons 1'01'

pail'ociim'lIic reco nstructi o lt s. QjllIl. Hes .. 25 ( I ), 10 2·f.

\ Iathe,,·s, .J . B. and . \ . \ '. Quinlan. 1975 . Seaso nal c haracteristics or

"ater masses in i\ l uir fnlet. a Ijord "ith ti c1cwaln g laciers.}. Fi,h . Rl'.I. Horll"l/ CIIII .. 32 , 10 ). 1693 1703.

:\ Ia\·o. L. R. 1988 .. \ ch ·ancc o r I-Iubbard Glacier ""d e losurc or Ru ssc1 1 Fiord .. \ Iaska cll\ 'ironmenta l e ffe c ts a nd hazarcb ill t lt e Ya kutat

area. C.S. (:eol. Sill,/" eire. 10 16 . 4 I G.

\ki e r. ~ l. F. alld 7 olhers. 1980. Pred ict ecl timing "f'the disintegrati o n or th e 10111'1' reach of' Columbi " Glacirr. A laska. C. S. (;eol. SlIn'. O/Jell File He/). 80-582.

Pos t. .\ .1975. Prclimill :lry h yc\ rog- raph y and hi stor ic terminal (,ha ng·cs or Columbia G lacier. Ala ska. C. S. Cral. SIIIT. /-/ rdrnl. III1'l'JI .. lIla.1 HA-

559

Po\\'d l. R. D . 1980. Holocc nc glac ima rine sediment d e pos iti o n b)

t ide\\·<t tcr g la ciers in G lacie r Bay .. \laska. Ph.D. th es is. Ohio Statc

l'ni\'Crsit \". )

PO\\l'i1. R . D . 1981 . !\ model 1'01' scdim entati o n b y tidewater g lacie rs. . 11111 . GI(I(iol., 2 . 129 1 3 ~

1'0\\ dl , R. D. 1 98 ~ . (: Ilide 10 lire glacial gr'olo.~r Ilj. Glacier Br!)'. ,nlllhN"'f"" . lIa.lkfl. r\ll r horag l'l AK, Alaska Gco log ica l Soc ic ty.

Pm,·d!. R. D. 1991. Grounding-line S\'s tc m s as second-o rder contro ls o n

flu ctuat io ns or tidc\\'ater termini or le mperate g laciers. III Anderson.

.J. B. and G . ~ r. ;\shlcy, eds. Glacial II/arille Jfllimelllalioll: /Jaleorlillllllic

.ligllijiwlI(f . Bo uld er, CO. Gcological Soc iet y or America. 75 93.

IGS,\ Specia l Paper 26 1. 1

Po\\'e ll. R.D. a nd B. F. \ Io lni". 1989 . Gl:tcimarinc sedim cntary processes, rac ics and morphology of th e so uth-southeast Ala ska S helf a nd Ijords . .I/ar. Geol.. 85 2 4 . 359- 390 .

R cid , 1-1 . F. 1892. Studies or \ Iuir Glac ie r . . \ '011. Geogr .. ll ag., 4 . 19 8·1.

S,'I'it ski . j. 1'. \ 1. 1989. On th c d e pos itio n o r sediment within g lacier,

influenced fjo rds: ocea nograph ic controls . . l/nr. Geo/.. 85 12 4 L 30 I 329.

T arr. R. S. and L. I- Iartin. 1912. Thc earthquakes at Yakutat Ba \,.

Al as ka . in September. 1899. C.S. (" "01. SIlIT. I'm/ Pal). 69. W ce ks. W . F. and " ' . .1 . C a ll1pbell. 1973. Iccbe rgs as a [iTs h- \\,a lc r

so urce: an app ra isal. ]. Clariol .. 12(65 ).207 233.