111
0 UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales ECUACIONES DIFERENCIALES

MODULO Ecuaciones Diferenciales 2 2011

Embed Size (px)

DESCRIPTION

ECUACIONES DIFERENCIALES

Citation preview

Page 1: MODULO Ecuaciones Diferenciales 2 2011

0

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

ECUACIONES

DIFERENCIALES

Page 2: MODULO Ecuaciones Diferenciales 2 2011

1

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA

ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA

PROGRAMA CIENCIAS BÁSICAS

100412 – ECUACIONES DIFERENCIALES

RICARDO GOMEZ NARVAEZ

Director

JUAN JOSE

(Acreditador)

Palmira, agosto 2011

Page 3: MODULO Ecuaciones Diferenciales 2 2011

2

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

ASPECTOS DE PROPIEDAD INTELECTUAL Y VERSIONAMIENTO

El presente módulo fue diseñado en el año 2009 por Carlos Iván Bucheli Chaves

docente de la UNAD, ubicado en el CEAD de San Juan de Pasto, el Autor es

físico-matemático, especialista en docencia universitaria, magíster en enseñanza

problemita y otros. Se ha desempeñado como tutor de la UNAD desde 2001 hasta

la fecha y ha sido catedrático de diversidad Universidades de Pasto.

El presente módulo ha tenido 4 actualizaciones realizadas por su autor Carlos Iván

Bucheli Chaves. Y una quinta actualización que se realiza con los tutores Ricardo

Gómez Cead Palmira y Pablo Pinto (Bogotá).

El material ha sido revisado por la dirección de la Escuela de Ciencias básicas,

Tecnología e Ingeniería: Jorge Eliécer Rondón y por su primer acreditador:

Ricardo Gómez Narváez, los cuales han aportado para la calidad de este material.

Page 4: MODULO Ecuaciones Diferenciales 2 2011

3

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

INTRODUCCIÓN

El curso de ECUACIONES DIFERENCIALES, es una de las temáticas con

mayor grado de importancia en el desarrollo de la educación superior ya que esta

se considera una de las herramientas de mayor utilidad especialmente en el

área de la ingeniería. La estrategia para comprender esta rama de la

matemática, implica interés, dedicación compromiso y sobre todo responsabilidad.

La enseñanza de las ecuaciones diferenciales ha experimentado una gran

evolución, tanto en términos pedagógicos como el contenido. Lo que una vez se

pudo considerar como una colección de métodos, ha avanzado sustancialmente

con el fin de proporcionar a sus investigadores diversos experiencias, que un

reconocido matemático ha denominado conceptualización, exploración y

solución de problemas de dificultad superior.

El curso de Ecuaciones Diferenciales, se ha sometido a diversos cambios

estructurales con el único objetivo de consolidar un material práctico para el

estudiante, este le permitirá instruirse con mayor facilidad y así obtener un

mayor rendimiento académico.

El curso contiene material necesario para un completo aprendizaje de

ecuaciones diferenciales, los ejercicios desarrollados y propuestos no quieren

otros conocimientos de los que se han trabajado a lo largo de la carrera. Se hace

un desarrollo más o menos profundo, y un estudio detallado de las diferentes

ecuaciones a tratar.

En el desarrollo del curso, el estudiante tiene la oportunidad de encontrar las

definiciones de los temas tratados incluidos en tres unidades, así mismos

encontrará ejemplos prácticos por cada tema a tratar como también ejercicios para

resolver. Una característica particular del modulo es la presentación resumida

de los conceptos fundamentales a tener en cuenta en el desarrollo intelectual

Page 5: MODULO Ecuaciones Diferenciales 2 2011

4

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

INDICE DE CONTENIDO

UNIDAD I. ECUACIONES DIFERENCIALES DE PRIMER ORDEN

Capítulo 1: INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES.

Lección 1: Fundamentos generales como apoyo a las ecuaciones diferenciales.

Lección 2: Conceptualización de una ecuación diferencial.

Lección 3: Resolución de una ecuación diferencial.

Lección 4: Clasificación de las ecuaciones diferenciales.

Lección 5: Ejercicios propuestos.

Capítulo 2: ECUACIONES DIFERENCIALES LINEALES DE PRIMER ORDEN.

Lección 6: Ecuaciones con variables separables.

Lección 7: Ecuaciones Homogéneas.

Lección 8: Ecuaciones exactas.

Lección 9: El factor integrante.

Lección10: Ejercicios Propuestos.

Capítulo 3: CAMPOS DE APLICACIÓN DE LAS ECUACIONES LINEALES DE

PRIMER ORDEN.

Lección 11: Trayectorias Ortogonales.

Lección 12: Los campos de fuerza. Una aplicación de las Ecuaciones

diferenciales.

Lección 13: Aplicaciones de familias de curvas y trayectorias ortogonales.

Lección 14: Otras aplicaciones de las ecuaciones diferenciales.

Lección 15: Ejercicios Propuestos.

UNIDAD II. ECUACIONES DIFERENCIALES DE SEGUNDO ORDEN Y DE

ORDEN SUPERIOR

Capítulo 4. ECUACIONES DIFERENCIALES DE SEGUNDO ORDEN.

Lección 16: Ecuaciones diferenciales de segundo orden y métodos de solución.

Lección 17: La Solución General de una ecuación diferencial como Combinación

Lineal de Soluciones Linealmente Independientes.

Lección 18: Ecuaciones diferenciales lineales homogéneas y no homogéneas con

coeficientes Constantes.

Lección 19: Operador para la solución de ecuaciones diferenciales.

Lección 20: Ejercicios Propuestos.

Page 6: MODULO Ecuaciones Diferenciales 2 2011

5

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

Capítulo 5: ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR.

Lección 21: Ecuaciones diferenciales lineales de orden n.

Lección 22: Ecuaciones diferenciales de orden superior con coeficientes

constantes

Lección 23: Ecuación diferencial de orden superior homogénea y no homogénea

con coeficientes constantes.

Lección 24: Métodos generales de solución de las ecuaciones diferenciales de

orden superior.

Lección 25: Ejercicios propuestos.

Capítulo 6: CAMPO DE APLICACIONES DE ECUACIONES DE SEGUNDO

ORDEN Y DE ORDEN SUPERIOR.

Lección 26: Aplicaciones de las ecuaciones diferenciales de segundo orden

Lección 27: Aplicaciones de las ecuaciones diferenciales de orden superior

Lección 28: Ecuaciones diferenciales de Euler.

Lección 29: Ecuaciones diferenciales de Chebyshev y de Bessel .

Lección 30: Ejercicios Propuestos.

UNIDAD III. ESTUDIO DE SERIES Y FUNCIONES ESPECIALES

Capítulo 7: GENERALIDADES DEL ESTUDIO DE SERIES.

Lección 31: Definición de serie matemática.

Lección 32: Clasificación de las series matemáticas.

Lección 33: Técnicas para resolver Ecuaciones Diferenciales mediante series

matemáticas.

Lección 34: Definimos el concepto de punto ordinario y punto singular regular en

una Ecuación diferencial.

Lección 35: Ejercicios Propuestos.

Capítulo 8: SOLUCION DE ECUACIONES DIFERENCIALES MEDIANTE SERIE

DE POTENCIAS.

Lección 36: Estudio de Series De Potencias. Lección 37: Propiedades y Convergencia de las series de potencias. Lección 38: Solución de ecuaciones diferenciales de primer orden mediante Series

de potencias.

Lección 39: Solución de ecuaciones diferenciales de orden superior mediante

Series de potencias.

Lección 40: Ejercicios Propuestos.

Page 7: MODULO Ecuaciones Diferenciales 2 2011

6

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

Capítulo 9: FUNCIONES ESPECIALES Y SERIES MATEMATICAS.

Lección 41: Funciones analíticas.

Lección 42: Series De Taylor.

Lección 43: Solución de ecuaciones diferenciales mediante Series de Taylor.

Lección 44: Series de MacLaurín.

Lección 45: Ejercicios Propuestos.

AUTOEVALUACION DEL CURSO

Page 8: MODULO Ecuaciones Diferenciales 2 2011

7

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

LISTADO DE TABLAS

Pag.

Tabla 1……………………………………………………………........ 40

Tabla 2 …………………………………………………………….… 41

Page 9: MODULO Ecuaciones Diferenciales 2 2011

8

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

LISTADO DE GRÁFICOS

Pag.

1) Gráfica 1 …………………………………………………………… 16

2) Gráfica 2 …………………………………………………………… 46

3) Gráfica 3 …………………………………………………………… 55

4) Gráfica 4 …..………………………………………………………... 55

5) Gráfica 5 ……………………………………………………………. 56

6) Gráfica 6 ……………………………………………………………...56

7) Gráfica 7 ……………………………………………………………..105

8) Gráfica 8 …………………………………………………………….106

Page 10: MODULO Ecuaciones Diferenciales 2 2011

9

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

UNIDAD 1

Nombre de la Unidad ECUACIONES DIFERENCIALES DE PRIMER ORDEN

Introducción Una ecuación diferencial ordinaria de primer orden es una

ecuación de la forma ( , , ') 0F x y y En la que aparecen

una variable independiente, una variable dependiente y una primera derivada. La razón por la cual a las ecuaciones de este tipo se les dice ecuaciones diferenciales ordinarias1 En esta unidad trataremos los siguientes aspectos de mucha Importancia en la ingeniería y sus diferentes proyecciones a la solución de problemas así: estudio de las ecuaciones diferenciales de primer orden, clasificación, tipo, orden, linealidad y métodos de solución para las ecuaciones de variables separadas y homogéneas. Donde los tipos de ecuaciones diferenciales a trabajar principalmente son las exactas y las lineales, veremos sus características, su modo de identificación y la manera de resolver cada una de ellas, dando ejemplos, ejercicios explicativos y aplicaciones para esta unidad.

Justificación Las ecuaciones diferenciales, de primer orden, constituyen uno de los más importantes instrumentos teóricos y a su vez herramienta para la praxis y así interpretar y modelar fenómenos científicos y técnicos de la mayor variedad. Son por eso de especial importancia práctica y teórica para los ingenieros de cualquier rama. El área de los sistemas ha penetrado prácticamente en todas las áreas de la tecnología, porque permite abordar y manejar sistemáticamente aspectos de optimización y logro de comportamientos deseados. El área de los sistemas es transversal y genérica. Transversal por aplicarse a varias áreas de conocimiento: sistemas mecánicos, eléctricos, de procesos, humanos, económicos entre otras áreas, por eso se encuentra todo género de investigadores: ingenieros de todas las disciplinas, economistas, físicos, matemáticos entre otros.

Intencionalidades Formativas

· Reconoce y distingue una ecuación diferencial de primer orden. · Clasifica ecuaciones diferenciales de acuerdo con su tipo, orden y linealidad.

1 es.wikibooks.org/ecuaciones diferenciales

Page 11: MODULO Ecuaciones Diferenciales 2 2011

10

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

· Reconoce la diferencia entre una solución particular y una solución general de la ecuación diferencial. · Define campo de direcciones correspondientes a la ecuación diferencial de primer orden. · Identifica ecuaciones diferenciales de variables separadas y homogéneas. · Emplea el método de separación de variables para resolver ecuaciones diferenciales de primer orden. · Resuelve correctamente ecuaciones diferenciales homogéneas. · Reconoce una ecuación diferencial exacta y las resuelve. · Encuentra el factor integrante para una ecuación diferencial lineal. · Resuelve ecuaciones diferenciales lineales. · Identifica, distingue y resuelve correctamente ecuaciones diferenciales de Bernoulli. · Realiza sustituciones adecuadas para poder resolver ecuaciones diferenciales con tipos ya conocidos empleando sustituciones. · El estudiante plantea problemas correctamente empleando la modelación con ecuaciones diferenciales de primer orden. · Por ultimo, resuelve correctamente ecuaciones diferenciales lineales y cuantifica la importancia de la modelación matemática con ecuaciones diferenciales en la solución de problemas científicos.

Denominación de capítulos

1.1. INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES. 1.2. ECUACIONES DIFERENCIALES LINEALES DE PRIMER ORDEN. 1.3. CAMPOS DE APLICACIÓN DE LAS ECUACIONES LINEALES DE PRIMER ORDEN.

CAPITULO 1: INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES

Introducción Dejaremos de lado las funciones de dos o más variables y comenzaremos con el estudio de ecuaciones diferenciales ordinarias, y así encontraras algunas definiciones importantes que nos permitirán el estudio de diferentes tipos y métodos de solución a la ecuación para luego ubicarlas en el fascinante mundo de las matemáticas como herramienta de aplicación a nivel socioeconómico y científico.

Page 12: MODULO Ecuaciones Diferenciales 2 2011

11

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

Se indican las estrategias que debes seguir para el provecho de la unidad, las mismas están orientadas a explicar los aspectos relacionados con las ecuaciones diferenciales, su estructura y aspectos básicos.

Lección 1: Fundamentos generales como apoyo a las ecuaciones diferenciales. Ver modulo de Calculo diferencial y calculo integral Unad 2010. (Sección que recibirá cambios) Lección 2: Conceptualización de una ecuación diferencial Una ecuación diferencial es una ecuación que contiene derivadas de una o más variables dependientes con respecto a las variables independientes. Son ejemplos de ecuaciones diferenciales las siguientes:

( ) ( ) 7 0f x f x x

3y x

cos( ) 0y x

3 2y y x

5 0y

xx

2

22 3 0

d y dyy

dx dx

2

22

d yx

dx

2

20

d yy

dx

23

2(1 )

d y dy

dx dx

Page 13: MODULO Ecuaciones Diferenciales 2 2011

12

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

5 3

4 36

u u

x x

En los anteriores ejemplos se observa que las ecuaciones cumplen la definición de ecuación diferencial, porque tienen derivadas de diferente orden y tipo (ordinarias y parciales), además en los ejemplos se observan diferentes notaciones de derivada como lo hemos aprendido en el cálculo diferencial. En resumen podemos decir que una ecuación que tiene derivadas se llama ecuación diferencial.

A través de los ejercicios y actividades de esta franja, tendrás la oportunidad de verificar la comprensión del material en el cual las ecuaciones diferenciales parciales son muy importantes y útiles; sin embargo su manejo requiere del conocimiento profundo de las ecuaciones diferenciales ordinarias. Lección 3: Resolución de una ecuación diferencial

Una función y f x se dice que es una solución de una ecuación diferencial

si al sustituir y sus derivadas en la ecuación la reduce a una identidad. Por

ejemplo, derivando y sustituyendo es fácil comprobar que 2   xy e es una

solución de la ecuación diferencial:

Se puede demostrar que toda solución de esta ecuación diferencial es de la forma -2xy Ce , solución general.

Donde C denota cualquier número real.

Derivando la ecuación -2xy Ce derivando

-2x y 2 Ce   

Reemplazando en la ecuación diferencial la función y su respectiva derivada,

efectivamente existe una identidad 2x 2x 2 Ce   2 Ce   

Ejemplo: Averiguar si las funciones dadas son solución de la ecuación diferencial:

a)

2 0dy

ydx

2

20

d yy

dx

y senx

Page 14: MODULO Ecuaciones Diferenciales 2 2011

13

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

b)

2xy e

c) xy 4e

d) xy Ce

Averigüemos:

a) Como:

2

2 – 2 0

d yy sen x sen x sen x

dx

Por tanto,  y sen x no es solución.

b) Como 2 xy e

Por tanto, y = e2x no es solución.

c) Como 4 xy e

( )y sen x

cos( )dy

xdx

2

2( )

d ysen x

dx

dy

dx

2

2

d y

dx

2

2

d y

dx

dy

dx

2

24 xd ye

dx

22 xe

24 xe

2 2 2 4 – 3 0x x xy e e e

Page 15: MODULO Ecuaciones Diferenciales 2 2011

14

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

= - y = 4e-x – 4e-x = 0

Por tanto, 4 xy e es solución.

d) Como xy Ce

Por tanto, xy Ce es solución.

Ejemplo: Solución particular

Para la ecuación diferencial verificar que 3 y Cx es

solución y hallar la solución particular determinada por la condición inicial

y 2 cuando x 3 .

Solución:

Sabemos que 3 y Cx es una solución, ya que

2 3Cx , así que:

Además, la condición inicial y 2 cuando x 3 implica que la Solución

general es 3y Cx y remplazando la condición inicial se tiene:

dy

dx

2

2

d y

dx

3 0dy

x ydx

2 33 x 3 Cx – 3 Cx 0dy

x ydx

dy

dx

2

2

d y

dx

2

2

d y

dx

2

27c

xCe

xCe

– 0 x xy Ce Ce

Page 16: MODULO Ecuaciones Diferenciales 2 2011

15

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

32 C 3

por tanto

Luego concluimos que la solución particular es:

Para determinar una solución particular, el número de condiciones iníciales ha de coincidir con el de constantes arbitrarias en la solución general. Recordemos que la solución de una ecuación diferencial no es una sola función, sino todo un conjunto de funciones (familía de soluciones). Ejemplo:

4

4

yy c es la solución general de

3 0dy

xdx

Derivando y Tenemos: 3dy

xdx

al sustituir en la ecuación diferencial, la convierte

en una identidad 3 3x x

INTERPRETACION GEOMETRICA DE LA SOLUCION DE UNA ECUACION

DIFERENCIAL Geométricamente, la solución general de una ecuación diferencial de primer orden representa una familia de curvas o familia de soluciones, una para cada valor asignado a la constante arbitraria C. El término “condiciones iníciales” proviene de que, con frecuencia, en problemas donde interviene el tiempo, se conoce el valor de la variable dependiente o de

alguna de sus derivadas en el instante inicial t 0 . El problema de valor inicial implica hallar la solución de una ecuación diferencial

sujeta a una condición inicial Y Xo Yo , y es el punto de partida para

encontrar la familia de curvas.

Cabe aclarar que la solución del problema de valor inicial no es una familia de curvas, sino una curva de ellas que cumple las condiciones. Ejemplo:

Al resolver la ecuación diferencial 2dy

xdx

es fácil observar que la solución general

es 2y x c generando una familia de curvas (familia de parábolas) y al dar una

32

27

xy

Page 17: MODULO Ecuaciones Diferenciales 2 2011

16

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

condición inicial se obtiene de esa familia de curvas una única curva, por ejemplo

con la condición inicial y 2 5 tenemos que C 1 por tanto la curva es

2 1y x (veamos la gráfica demostrativa):

Grafica 1

Grafica del programa derive y Editor Matemático Mathtype

Fuente: Esta investigación

Autor: Carlos Buchely

Lección 4: Clasificación de las ecuaciones diferenciales

(Sección donde se hará Cambios)

Ver link ovas Texto. http://www.caribu.byethost8.com/

Lección 5: Ejercicios propuestos

Sistema de Aprendizaje Auto gestionado Asistido sostienen, que el aprendizaje es

para toda la vida y el proceso de aprender también debe llevarse a cabo durante

todo el tiempo que vivamos, además que cada individuo elabora y construye su

aprendizaje y los procesos para lograrlo, de forma singular y de acuerdo a sus

vivencias.

A. Clasificar las ecuaciones diferenciales de acuerdo con su tipo y orden: 1)

Gráfica de color rojo es la única curva que satisface las condiciones iníciales y las otras curvas pertenecen a la familia de curvas solución.

23dy

xy xdx

Page 18: MODULO Ecuaciones Diferenciales 2 2011

17

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

Sol. Ordinaria y de primer orden 2) Sol. Ordinaria y de segundo orden 3) Sol. Ordinaria y de segundo orden 4) Sol. Parcial y de segundo orden. 5) Sol. Ordinaria y de segundo orden. B. Verificar que la función dada es solución de la ecuación diferencial.

1. 1 2 y C cos x C sen x ,

2. 1 2 x xy C e cos x C e senx ,

3. – tu e sen bx ,

C. Hallar la solución particular que pasa por el punto (-4,4)

2 3 y Cx ,

2

22 1

d y dyy

dx dx

2

24 td x dyx e

dt dt

2

2sec( )

u dut

t dt

22

2( ) 3( ) 4 0d y dy

ydx dx

2

2

d yy o

dx

2

22 2 0

d y dyy

dx dx

22

2

u ub

t t

2x( ) 3 0dy

ydx

Page 19: MODULO Ecuaciones Diferenciales 2 2011

18

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

Autoevaluación Capitulo 1

1. En las siguientes ecuaciones diferenciales establece el orden, el tipo y la

linealidad.

2

2

4 0

2 0

8 8 0

y y y

y y

d y dyx

dx dx

y y y y

2. Verifique que la función dada es una solución de la ecuación diferencial.

2

2

3

4 32; 8

12 0;

( ) ; 1

dyy y

dx

x dy xydx yx

dy dyx y y x

dx dx

3. verifique la solución de la ecuación diferencial 1dy x

dx xy

Donde su solución es 2 2(ln( ) )y x x c (como x 0 , no se necesita

de valor absoluto). - Grafique la familia de curvas o familia solución.

- Encuentre una solución particular cuando y 1 4 

Algunos casos importantes de Derivadas n

n― -1

a. y = x

y = nx

b. y = c

y = o

Page 20: MODULO Ecuaciones Diferenciales 2 2011

19

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

s n

cos

n

n

e― -1

c. y = cx

y = ncx

d. y = x

y = x

cos

s ne

e

e

x

― x

e. y = x

y = x

f. y =

y =

1

g

―― ― ―

g. y = lnx

y =x

h. y = fx gx

y = f x x

2

0

g g

g g

― ― ―

― ――

i. y = fx gx

y = f x x + fx x

fxj. y = gx

gx

f x x - fx x y =

[gx]

Page 21: MODULO Ecuaciones Diferenciales 2 2011

20

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

Algunos casos importantes de Integrales - Capitulo 1

1

2

.

. 11

. 0

. 0

cos. s n 0

.

1. s n

1

. sec tan

. cos

. csc

nn

a dx

b dx c nn

ec e dx c n

n

ad a dx c a

Loga

Kxe e Kxdx c K

K

dxf c

x

g e x c

h xdx x c

senKxi Kxdx c

K

j x dx c

-1

nxnx

xx

2

2

= x +c

xx =

=

=

=

=Lnx

=x

=

=

= -ctgx

CAPITULO 2: ECUACIONES DIFERENCIALES LINEALES DE PRIMER ORDEN

Introducción

En este aparte daremos a conocer técnicas para resolver ecuaciones diferenciales ordinarias. Como lo es la solución de ecuaciones por el método de separación de variables, solución de ecuaciones diferenciales homogéneas, solución de ecuaciones exactas y utilización del factor integrante. Entonces se da a conocer los procedimientos respectivos y a su vez ejemplos que afianzaran el aprendizaje.

Page 22: MODULO Ecuaciones Diferenciales 2 2011

21

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

Una ecuación de primer orden y primer grado puede reducirse a la forma:

M d, y dx    N x, y 0

Siendo M y N funciones de X e Y

M x, y dx  N x, y dy K

Siendo una solución de la ecuación. Lección 6: Ecuaciones con variables separables En este aparte comenzamos estudiando técnicas para resolver familias específicas de ecuaciones diferenciales ordinarias.

Como una ecuación diferencial de primer orden que se puede escribir en la forma:

Donde M es una función continua de x solamente, y N una función continua de y solamente. Para este tipo de ecuaciones, todos los términos en x se pueden unir con dx y todos los términos en y con dy, y se obtiene una solución por integración. El procedimiento de resolución se denomina separación de variables. Los pasos necesarios son los siguientes: 1. Expresar la ecuación en forma diferencial: De la siguiente ecuación:

M x dx N y dy  0

Despejando obtenemos:

M x dx N y dy

2. Integrar para obtener la solución general: Despejando obtenemos:

( ) ( ) 0dy

M x N ydx

( ) ( )M x dx N y dy C

( ) ( )M x dx N y dy C

Page 23: MODULO Ecuaciones Diferenciales 2 2011

22

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

Ejemplos de separación: ECUACION DIFERENCIAL EN VARIABLES SEPARABLES

EJEMPLO Hallar la solución general de: Solución: Para empezar, observamos que y = 0 es una solución. Con el fin de

hallar otras soluciones, supongamos y 0 y separamos las variables así:

2 x 4 dy xy dx Forma diferencial

Separar variables Integrando, obtenemos:

2 4

dy xdx

y x

Integrar

2 3 0dy

x ydx

23ydy x dx

( ) cosdy

senx xdx

(tan )dy x dx

21y

dyx

dx

e

1 2

1ydy dx

e x

2( 4)dy

x xydx

2 4

dy xdx

y x

2

1

1( 4)

2Ln y Ln x C

1 2 4C

y e x

Page 24: MODULO Ecuaciones Diferenciales 2 2011

23

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

Como y 0 también es solución, podemos escribir la solución general como:

Solución general Recuerde que en ciertos casos no es posible escribir la solución general en la forma explicita y=f(x), por tanto se puede utilizar la derivación explicita para verificar dicha solución.

Ejemplo: 2 2( 1) 0xxydx e y dy Donde y es diferente de 0

Donde la solución general es 2 2 2ln 2xe y y c .

Ejemplo Por el método de separación de variables encuentre la solución general de la ecuación diferencial y encuentre su solución particular.

2 2y y Con la condición 1/ 2 y si 4x

Solución: Por tanto por separación de variables

2 2dy

ydx

Entonces 2 2

dydx

y

integrando

2 2

dydx

y

se tiene:

2 2ln

2

yx c

Remplazando la condición inicial 4c por tanto la solución

particular es 2 2

ln 42

yx

(solución implícita).

Ejemplo

Hallar la ecuación de una curva que pasa por el punto (2,6) y tiene pendiente 2

y

x

1 2 4C

y e x

2 4y C x

Page 25: MODULO Ecuaciones Diferenciales 2 2011

24

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

Solución: como la interpretación geométrica de la derivada es la pendiente de la

curva entonces 2

dy y

dx x

Separando variables e integrando se llega a

2

dy dx

y x 0y Entonces

1ln y c

x donde

(1/ ) 1/x c xy e ce

como 6 2 y y x 1/26 ce

1/2 6C e por tanto la curva

que se pide es

1/2 1/6. xy e e simplificando

(1/2 1/ )6. xy e

Al trabajar con las constantes en el método de separación de variables dicha constante aparece cuando integramos el lado derecho o sea dx por tanto utilizamos una sola constante C. Lección 7: Ecuaciones Homogéneas

Una función , ,f x y es homogénea de grado n si para un número real n satisface

la siguiente identidad:

( , ) ( , )nf tx ty t f x y

Veamos con ejemplos si la función es homogénea o no.

a) 2 3 2 f x, y x y 4 x 3xy es una función homogénea de grado 3 porque:

,f tx ty = 2 3 2

4 3tx ty tx tx ty

= 3 2 3 3 3 2 4 3t x y t x t xy

= 3 2 3 2 4 3t x y x xy

= 3 , t f x y

Page 26: MODULO Ecuaciones Diferenciales 2 2011

25

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

b) x/yf x, y xe y sen y / x es una función homogénea de grado 1 porque:

c) , 2x y x y no es homogénea porque

, 2 2f tx ty tx t y

2 n 2t x ty t x y

d) 2( , ) 2f x y x xy Es homogénea de grado

2

2 2

( , ) ( ) 2( )( )

( , ) ( 2 )

f tx ty tx tx ty

f tx ty t x xy

e) 3 3( , ) 5f x y x y xy No es homogénea (verificar)

En una mayoría de casos se puede verificar si una función es homogénea si observas el grado de cada término de la función. Como ejemplo a lo anterior veamos ejemplos:

2 2 3( , )f x y x y y x y El grado de los 3 términos es 3 por tanto es

homogénea de grado 3

5( , ) 12f x y x xy Esta función tiene dos términos de grado 5 y 2

respectivamente por tanto no es homogénea. Ahora veamos si una ecuación diferencial es homogéneas.

/( , ) x y tyf tx ty txe tysen

tx

/( )x y yt xe ysen

x

( , )tf x y

Page 27: MODULO Ecuaciones Diferenciales 2 2011

26

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

DEFINICION DE ECUACIONES DIFERENCIALES HOMOGÉNEAS:

Si la ecuación diferencial tiene la forma:

( , ) ( , ) 0M x y dx N x y dy

Y cumple con la propiedad:

( , ) ( , )

( , ) ( , )

n

n

M tx ty t M x y

y

N tx ty t N x y

Se dice que la ecuación diferencial es homogénea siempre y cuando tienen el mismo grado n.

MÉTODO DE SOLUCIÓN DE UNA ECUACIÓN DIFERENCIAL HOMOGÉNEA

Si la ecuación diferencial tiene el mismo grado de homogeneidad se pueden reducir a una ecuación de separación de variables utilizando una sustitución

y ux o ,x vy Donde u y v son variables dependientes.

Si elegimos   y ux entonces

( , ) ( , )[ ] 0

dy udx xdu

M x ux dx N x ux udx xdu

Por homogeneidad del mismo grado

[ (1, ) (1, ) (1, ) 0M u uN u dx xN u du

Y por tanto por homogeneidad la ecuación se transforma a variables separadas y procedemos a resolverla con los procedimientos para separación de variables, explicado con anterioridad en el modulo.

Page 28: MODULO Ecuaciones Diferenciales 2 2011

27

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

Veamos lo anterior con ejemplos: Ejemplo: Resolver la ecuación:

Solución:

Aquí 2M y y

2N x xy . Ambas son homogéneas y de segundo grado

“X” y “ ”Y . Además tenemos.

Haciendo la sustitución y ux , se obtiene:

O sea A fin de de separar las variables, dividimos por ux, esto da:

Integrando se tiene: Pero Luego la solución general es:

2 2( ) 0y dx x xy dy

2 2 dy dyy x xy

dx dx

2

2

dy y

dx xy x

2

1

du ux u

dx u

(1 ) 0udx x u du

(1 )0

du u du

x u

,c u c u

u

Lnx Lnu u C

Lnux C u

ux e e e

ux Ce

yu

x

/y xy Ce

Page 29: MODULO Ecuaciones Diferenciales 2 2011

28

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

El aprendizaje significativo permite al estudiante, tener mayor conciencia sobre lo

que se aprende y de los procesos que utiliza para su consolidación, así como

darse cuenta del arsenal de herramientas disponibles para abordar los retos.

Ecuaciones Homogéneas.

Son de la forma

.y

y fx

Se hace el cambio de la función y(x) por u(x) mediante y=ux, transformándose así

la E.D. en una de variables separadas.

Ejemplo: resolver la ecuación 2 3 3dy

xy y xdx

La ecuación la escribimos 2 3 3( ) 0xy dy y x dx

Como es una ecuación diferencial homogénea de grado 3 sustituimos Y ux por

tanto 2 3 3( ) ( ) (( ) ) 0

dy udx xdu

x ux udx xdu ux x dx

Haciendo distribución y reduciendo la ecuación se tiene:

2 4 3u x du x dx Como 2 1

0,x u du dxx

Integrando 3 3ln 3y x c reemplazando la sustitución Y ux entonces

u y / x  obtenemos 3 3 33 ln 3y x x cx

Ejemplo: Comprueba que la ecuación diferencial

Page 30: MODULO Ecuaciones Diferenciales 2 2011

29

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

( ) 0x y dx xdy

es homogénea de grado 1 y al resolver la ecuación su

resultado es lnx x y cx

Lección 8: Ecuaciones exactas

Si en la ecuación diferencial de la forma M x, y dx N x, y dy 0

El lado izquierdo corresponde a la derivada total de alguna función , f x y la

ecuación diferencial es exacta. Criterio de exactitud Si M y N tienen derivas parciales continuas, entonces la ecuación diferencial

M x, y dx N x, y dy 0 es exacta si y solamente si:

Ejemplos de comprobación para exactitud. a) La ecuación diferencial:

2 2xy x dx yx dy 0

Es exacta porque:

2 2   xy x 2xy     yxy x

b) la ecuación 2( 1) 0y dx xydy no es exacta.

c) la ecuación cos 2 y dx y xsen y dy 0 no es exacta, a pesar de que

difiere de la primera ecuación solamente en un signo.

M N

y x

2M N

xyy x

Page 31: MODULO Ecuaciones Diferenciales 2 2011

30

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

En algunos casos se ve que una ecuación es exacta después de una agrupación adecuada de sus términos. La ecuación así ordenada se puede integrar término a término. Ejemplo: Es exacta porque: Ejemplo: La ecuación es exacta. Ejemplo: Ejemplo: La ecuación también es exacta.

2 2( ) ( ) 0x y dx y x dy

2 2( ) 1 ( )M N

x y y xy y x x

3 4 2 2

3 2

(4 2 ) (3 ) 0

12 2

x xy dx x y x dy

M Nx y x

y x

3 3

3

(3 2 ) 0

3

x x

x

e y x dx e dy

M Ne

y x

(cos cos ) ( ) 0

cos

y y x dx senx xseny dy

M Nseny x

y x

Page 32: MODULO Ecuaciones Diferenciales 2 2011

31

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

Solución de una ecuación diferencial exacta El método de solución de la ecuación diferencial exacta es el siguiente: 1. Verificamos que la ecuación diferencial sea exacta

M N

y x

2. Suponemos que existe una función f tal que

( , )f

M x yx

3. Encontramos f integrando ambos lados de la ecuación con respecto a x y

mantenemos constante y:

( , ) ( , ) ( )f x y M x y dx g y Donde g y es la constante de integración.

4. Ahora derivamos ,f x y con respecto a y por tanto se debe obtener , .N x y

( ( , ) ( ))

( ) ( , ) ( , )

fM x y dx g y

y y

g y N x y M x y dxy

Donde

5. Ahora integrando esta última ecuación obtenemos respecto a y obtenemos

. g y

6. Reemplazamos lo encontrado y tenemos en su totalidad la función a encontrar

,f x y .

Ejemplo: Hallar la solución de la siguiente ecuación diferencial

2 22xy – 3x dx x – 2y dy 0

Solución: La ecuación diferencial dada es exacta, ya que:

Page 33: MODULO Ecuaciones Diferenciales 2 2011

32

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

2 2 2xy 3x 2x x – 2yy x

Podemos obtener la solución general , f x y como sigue:

2( , ) ( , ) (2 3 )f x y M x y dx x dx

Determinamos g y integrando N x, y con respecto a y e igualando las dos

expresiones de f x, y .

Ejemplo: Resolver la ecuación

2

2

20

x xdx dy

y y

Verificando las derivadas 2

2M N x

y x y

Suponemos 2f x

x y

integrando respecto a x tenemos:

M

y

N

x

2 3( , ) ( )f x y x y x g y

2 2

1

( ) ( , )

( ) 2

g y N x y dy

g y x ydy y C

2 3 2

1( , )f x y x y x y C

Page 34: MODULO Ecuaciones Diferenciales 2 2011

33

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

2

( , ) ( )x

f x y g yy

Ahora derivamos respecto a y se tiene:

2

2( )

f xg y

x y

Igualando a N x, y     

2 2

2 2( )

x xg y

y y

Entonces ( ) 0g y por lo tanto ( )g y c donde c es una constante arbitraria.

Reemplazando

2

( , )x

f x y cy

esta es la función solución.

Lección 9: El factor integrante Cuando una ecuación diferencial no es exacta se puede convertir en exacta,

multiplicando por un factor apropiado , ,u x y llamado factor integrante de la

ecuación diferencial. Por ejemplo, si la ecuación diferencial

2 0   y dx x dy Ecuación no exacta

Es multiplicada por el factor integrante , ,u x y x la ecuación resultante

2 2 0 xy dx x dy Es una ecuación exacta

Otro ejemplo: si la ecuación – 0 y dx x dy Ecuación no exacta

Si al multiplicarla por el factor integrante , u x y , la ecuación

resultante:

Es una ecuación exacta. Y luego se resuelve la ecuación de acuerdo a lo explicado anteriormente. Ahora cuando se presenta una ecuación diferencial exacta es necesario encontrar el factor integrante. Cómo encontrarlo?

2

1

y

2

10

xdx dy

y y

Page 35: MODULO Ecuaciones Diferenciales 2 2011

34

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

Si , , 0M x y dx N x y dy no es exacta entonces, se buscará un

factor integrante: Función solo de x, entonces es un factor integrante de la ecuación diferencial. b) Función de solo de y, entonces es un factor integrante de la ecuación diferencial.

Ejemplo La ecuación no es exacta. Sin embargo,

) ( )

M N

y xa si f x

N

( )f x dx

e

( )

M N

y xsi g y

M

( )g y dy

e

3 2 2 2(2 2 ) ( 3 ) 0y y y yxy e xy y dx x y e x y x dy

3 4 28 2 6 1y yMxy e xy e xy

y

4 22 2 3yNxy e xy

x

3 28 8 4yM Nxy e xy

y x

4( )

M N

y xg y

M y

Page 36: MODULO Ecuaciones Diferenciales 2 2011

35

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

Luego: Es un factor Integrante, al reemplazarlo en la ecuación diferencial inicial la ecuación es exacta. EJEMPLO La ecuación es exacta. El factor integrante es Si se introduce en la ecuación se convierte en: Luego la ecuación diferencial es exacta.

4( ) 4

4

1dy

g y dy Lnydxe e ey

22 4

3 2 4(2 2 ) ( 3 ) 0y dy x x x

xe dx x e dydx y y y

3 2 2 2 4 3 2(2 4 2 2 ) 2( ) 0x y x y xy xy y dx y x y x dy

3 2 34 4 4 4 2M

x y x xy xyy

2(2 1)N

xyx

2

M N

y xxy

N

22xdx xe e

2 23 2 2 2 4 3 2(2 4 2 2 ) 2( ) 0x xx y x y xy xy y e dx y x y x e dy

Page 37: MODULO Ecuaciones Diferenciales 2 2011

36

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

Ejemplo 3

2 – 2 0y x dx y dy

Solución: La ecuación no es exacta, ya que , 2 , 0x xM x y y y N x y

Sin embargo como:

( , ) ( , ) 2 01 ( )

( , ) 2

y xM x y N x y yh x

N x y y

xe Es un factor integrante. Multiplicando la ecuación diferencial dada por

xe , obtenemos la ecuación exacta:

2 x x xy e – x e dx 2y e dy 0

Se deja al lector para que los anteriores ejercicios sean resueltos por el método de ecuaciones diferenciales exactas. Lección 10: Ejercicios Propuestos Sistema de Aprendizaje Auto gestionado Asistido sostienen, que el aprendizaje es para toda la vida y el proceso de aprender también debe llevarse a cabo durante todo el tiempo que vivamos, además que cada individuo elabora y construye su aprendizaje y los procesos para lograrlo, de forma singular y de acuerdo a sus vivencias. 1. De a cuerdo a las ecuaciones diferenciales dadas completa los cuadros que se

piden:

( ) 2M

My y x yy

(2 ) 0N

yx

Page 38: MODULO Ecuaciones Diferenciales 2 2011

37

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

1)

2 2 2

2 2 2 20

u u uu

x y x y

2)

6 4 3

6 4 3

d x d x d xx t

dt dt dt

3) ( ) ” x y x y x 24 2 0 4) 1

2

23

ds

rd

ds

dr

5) 2

2

dt

yd ( ) t y sen 0 6)

2

2

dt

yd ( ) y t sen 0

7) 2 xdy

x y xedx

8) x dy y dx 2 2

0

Ecuación

Ordinaria o Parcial

Orden Función incógnita

Variables independientes

1

2 Ordinaria 6 x(t) t

3

4

5

6

7

8

Tabla 1 2. Para las ecuaciones ORDINARIAS responde también a lo siguiente

Ecuación

Lineal ¿SI o NO?

Términos NO lineales

Justificación de la NO linealidad

2 NO ’’’x xiv

Los coeficientes de la cuarta y de la tercera derivada dependen de la variable dependiente

3

5

6

7

8

Page 39: MODULO Ecuaciones Diferenciales 2 2011

38

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

Ecuación Están en forma estándar ¿SI o NO? (si NO lo están ponerlas en esa forma)

Homogénea ¿SI o NO?

Término NO homogéneo

1

2

3

5

8

Tabla 2 3. Por separación de variables resuelva:

2

3

2

1. 3 1

2.

3. 4

1 24.

5. (1 )

6.sec( ) cot( )

dyx

dx

dy x

dx y

xy y

dx y

dy ysenx

dpp p

dt

x dy x y dy

4. Determine si la ecuación diferencial es homogénea y determine el grado

3 2 2

1. ( , )8

x y x yf x y

x y

22. ( , ) ( 1)f x y x y

3. ( , ) cos( )x

f x yx y

4. Resuelva las siguientes ecuaciones diferenciales y encuentre la solución particular.

Page 40: MODULO Ecuaciones Diferenciales 2 2011

39

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

2 3 31. , (1) 2

dyxy y x y

dx

2 2 22. , (0) 1xtdx x dt t x t dt t

5. Determine si es exacta, si es exacta resuelva la ecuación por su método caso contrario si no es exacta, encuentre el factor integrante.

1.(2 ) ( 6 ) 0x y dx x y dy

2.( )( ) ( 2 ) 0x y x y dx x x y dy

2 3 3 2

2

13.( ) 0

1 9

dxx y x y

x dy

4.(3 cos3 3 3) (2 5) 0x x sen x dx y dy

Puedes tomar referencia de http://es.wikipedia.org

METODO DE RESOLUCION

FORMULA GENERAL DE LA INTEGRACION Recordemos Factor integrante solo en función de x.

Si la ecuación diferencial posee un factor integrante respecto a x (es decir, ), entonces se puede encontrar por medio de la fórmula siguiente:

Page 41: MODULO Ecuaciones Diferenciales 2 2011

40

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

Factor integrante solo en función de y.

Si la ecuación diferencial posee un factor integrante respecto a y (es decir, ), entonces se puede encontrar por medio de la fórmula siguiente:

Factor integrante solo en función de x·y. Si la ecuación diferencial posee un factor integrante respecto a x·y (es decir,

), entonces se puede encontrar por medio de la fórmula siguiente:

Donde M * x = M·x Mencionando que:

CAPITULO 3: CAMPOS DE APLICACIÓN DE LAS ECUACIONES LINEALES

DE PRIMER ORDEN

Introducción Antes de entrar de lleno a los campos de aplicación es necesario realizar una nota sobre una herramienta de las matemáticas como lo es las ecuaciones de Bernoulli, ecuación muy utilizada en física y en general las ciencias naturales. Como sabemos una ecuación diferencial lineal de primer orden tiene la forma:

Page 42: MODULO Ecuaciones Diferenciales 2 2011

41

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

( ) ( )

dyP x y Q x

dx

Donde P y Q son funciones continuas, y partiendo de esto no podemos olvidar

que existen ecuaciones aplicativas no lineales que se pueden reducir a lineal como es el caso de las ecuaciones de Bernoulli las cuales tienen la siguiente notación:

( ) ( ) ndy

P x y Q x ydx

Donde esta ecuación será lineal si 0n , pero la ecuación de Bernoulli tiene a n diferente de 0. Realizando procesos matemáticos podemos demostrar (investiga esta demostración) encontramos que la solución de la ecuación de Bernoulli es:

(1 ) ( ) (1 ) ( )1 (1 ) ( )n P x dx n P x dxny e n Q x e dx C

Solución a la ecuación de Bernoulli.

Ejemplo: Solucionar la siguiente ecuación de Bernoulli

2 3xy xy xe y

Solución: 3 U usamos la sustitución 1 4nz y y derivando

34z y y Multiplicando por

2

3

3 4

4 ,

4 4 4 x

y tenemos

y y xy xe

Ahora ya tenemos la ecuación diferencial lineal 2

4 4 xz xz xe donde

4 P x x y además integrando P se tiene la expresión 22x con lo que el

factor integrante para la ecuación diferencial es

22xe y multiplicando por este factor integrante la ecuación diferencial:

Page 43: MODULO Ecuaciones Diferenciales 2 2011

42

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

2 22[ ] 4x xd

ze xedx

Por tanto z = 2 222 x xe Ce sustituyendo el valor de

Z la solución general es 2 24 22 x xy e ce

Trabaja con la ecuación de Bernoulli e investiga sus aplicaciones

Lección 11: Trayectorias Ortogonales. Un problema común en electrostática, termodinámica e hidráulica es hallar la familia de curvas ortogonales toda la familia de curvas de acuerdo al comportamiento del fenómeno. Son ortogonales porque cada curva corta la familia de curvas de la solución del problema diferencial. Por ejemplo en electrostática las líneas de fuerza son ortogonales a las equipotenciales. En termodinámica es el flujo de calor ortogonal a las curvas llamadas isotermas y en hidráulica el flujo de corriente es ortogonal a las curvas potenciales de velocidad. También las curvas ortogonales son encontradas en estudios meteorológicos.

Primero debemos encontrar ( , )dy

f x ydx

para la familia de curvas dada, luego

encontramos 1

( , )

dy

dx f x y

permitiéndonos así encontrar las ortogonales.

Ejemplo: Hallar las ortogonales para la ecuación térmica 2y cx .

Esta familia es un conjunto de curvas parabólicas asimétricas al eje y, derivamos

entonces para encontrar 2dy

cxdx

como la ecuación dada es 2y cx .

Eliminamos c igualando c en las ecuaciones anteriores.

Page 44: MODULO Ecuaciones Diferenciales 2 2011

43

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

2dy y

dx x Ahora para las ortogonales se invierte

2

dy x

dx y

y la solución a esta

ecuación es: 2 21

2x y k que son las curvas ortogonales a las parábolas.

Grafica 2

Grafica del programa derive y Editor Matemático Mathtype

Fuente: Esta investigación

Autor: Carlos Buchely

Lección 12: Los campos de fuerza. Una aplicación de las Ecuaciones diferenciales.

En la física los campos de fuerza son importantes para determinar direcciones y sentido de aplicación, intensidad de la misma y a su vez la magnitud de la fuerza aplicada, esta fuerza en su mayoría de tipo electromagnético. Veamos un ejemplo: Para hallar el campo de fuerzas dado por

2

2 2 2 2

2( , )

y y xf x y i j

x y x y

Determinamos la pendiente del vector , F x y

2

2 2 2

2 2

( )

( )

2 2

y x

x ydy y x

ydx y

x y

Page 45: MODULO Ecuaciones Diferenciales 2 2011

44

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

En forma diferencial es Resolviendo la ecuación

2         1 x xy e Ce es decir, 2 xy x – 1 Ce

Esta función nos muestra varias curvas representativas de esta familia. Si graficáramos la ecuación observamos que el vector fuerza es tangente a la curva

que pasa por , .x y

Plantea tus propios problemas de la física en campos vectoriales y encuentra los campos de fuerza mediante la ayuda de las ecuaciones diferenciales. Lección 13: Aplicaciones de familias de curvas y trayectorias ortogonales Texto http://www.caribu.byethost8.com/ Lección 14: Otras aplicaciones de las ecuaciones diferenciales Como mencionamos anteriormente existe una gran gama de aplicaciones de las ecuaciones diferenciales. En este e material didáctico procederemos a encontrar solamente el modelo matemático (ecuación diferencial) de las aplicaciones y dejaremos al lector para resuelva la ecuación diferencial por procedimientos anteriormente explicados como transferencia en el curso.

Aplicación 1.

Un recipiente contiene 50 litros de una mezcla de 90 y 100 de A liquido y 10 por 10 de liquido B, se vierte este depósito a 4 litros/minuto una segunda mezcla que contiene 50 por 100 y 50 por 100 respectivamente, al mismo tiempo se vacía en el recipiente a razón de 5 litros/minuto. La mezcla total se agita totalmente. Cuánto alcohol queda en el depósito después de 7minutos? Solución: Y= número de litros de B en el depósito en un tiempo t

50 Y Cuando 0 t El número de litros en el instante dado t es 50-t El recipiente pierde 5 litros/minuto entonces

2( ) 2 0y x dx ydy

Page 46: MODULO Ecuaciones Diferenciales 2 2011

45

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

5

( )50

yt

Es la cantidad de litros de B por minuto

Como en el recipiente entran 2 litros de B por minuto entonces la ecuación para determinar cambio de cantidad está dada por la ecuación diferencial

52 ( ) .

50

dyy

dt t

Sugerencia (para resolver la ecuación se debe hacer

( ) 5 / (50 )P t t Y además al hacer 50 t se omite el valor absoluto en la

integral y se reemplazaremos luego la condición inicial 5y cuando 0t

obteniendo la solución general y de esta reemplazamos el valor pedido de

7 t minutos. Aplicación 2. Las ecuaciones diferenciales también son muy utilizadas para modelar el comportamiento de los circuitos eléctricos. Recordemos que en un circuito simple hay una corriente I (amperios), una resistencia r (ohmios), una inductancia L (n henrios) y una fuerza electromotriz constante E (en voltios). Gracias a la ley de Kirchhoff, si se cierra el interruptor W en t=0 la fuerza aplicada es igual a la suma de las caídas de potencial en el resto del circuito por tanto la ecuación diferencial

de la corriente es: dI

L RI Edt

Ejemplo: la siguiente ecuación diferencial del circuito ( / ) (2 )L dI dt RI sen t

donde 2E sen t .

Aplicación 3 Otra aplicación está en la segunda ley de Newton (caída de cuerpos) donde no se desprecia la resistencia del aire al cuerpo. Aquí g=gravedad (constante), m=masa, F=m.a La fuerza hacia abajo es: mg-kv y k es la constante de proporcionalidad. La ecuación diferencial que refleja el comportamiento es:

Page 47: MODULO Ecuaciones Diferenciales 2 2011

46

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

dv

m mg kvdt

dv kv g

dt m

Entonces

Ejemplo: Un avión deja caer un cuerpo de masa m, hallar la velocidad en t tiempo. Suponer que la resistencia del aire es proporcional a la velocidad del cuerpo. S/ recuerde al utilizar la ecuación diferencial hacer b= k/m ya que son constantes y así separar variables. Aplicación 4. En la ingeniería de alimentos, es importante pensar en la conservación de alimentos, el alimento se transforma, siendo este proceso proporcional a la concentración y (t) del alimento sin cambios. Ejemplo: Si sabemos que la concentración es de 1/40 cundo t = 0 y 1/160 tras 2 horas. Hallar la concentración sin cambios a del alimento después de 5 horas.

Aquí por ser cambio proporcional a y t la ecuación es:

dyky

dx Resolvamos esta ecuación por separación de variables y encontremos

c haciendo 1/ 40 y o además encontremos K haciendo 2 1/160y .

Luego proceda a reemplazar la condición t =5 horas. Aplicación 5. En microbiología: Los microorganismos crecen con una rapidez de acuerdo al tamaño, las ecuaciones diferenciales permiten calcular la cantidad de microorganismos en un tiempo t. Entonces la población de microorganismos está en función del tiempo y (t) por

tanto la ecuación diferencial es dy

kydt

Ejemplo: si al comienzo hay 100 microorganismos y después de 5 horas 2000, calcular después de 8 horas.

Aquí 0 100    5 2000 y y , estas serán condiciones iníciales para la

ecuación diferencial. Para encontrar c y k respectivamente c con la primera condición y k con la segunda condición. (Realiza el ejercicio).

Page 48: MODULO Ecuaciones Diferenciales 2 2011

47

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

APLICACIÓN 6. Problema del enfriamiento: La ley de newton establece que la razón de que un objeto se enfrié es proporcional a la diferencia de temperaturas entre objeto y medio ambiente donde T temperatura objeto y Tm temperatura medio. Entonces el

cambio de temperatura es dT

dTm y por tanto la ecuación diferencial es

( )dT

k T Tmdt

donde k es la constante de proporcionalidad donde la ecuación es

lineal. Ejemplo: Un cuerpo es retirado a 500 grados y es colocado en un cuarto a 100 grados; si la temperatura del cuerpo baja hasta 300 grados en una hora, cual es la temperatura al cabo de 6 horas.

Sabemos que 100,  0 500 1 300Tm T y t

100

dTKT

dt

Integramos utilizando el factor integrante kte 75 ktT ce ahora

reemplazamos la condición 0T , para encontrar c, entonces

( ) 75 225 ktT t e si utilizamos 1T encontramos k (Proceda a resolver el

problema con estas indicaciones). Luego encuentre lo buscado 6 .T

Lección 15: Ejercicios Propuestos

1. La concentración de monóxido de carbono a bajos niveles, por ejemplo 0.00012 puede ser perjudicial para los seres humanos.

Encontrar el tiempo en el cual se alcanza esta concentración.

t=1 hr 21 min.

2. Un hombre y su barca pesan 98 N. La fuerza ejercida en la dirección del movimiento es 4.9 kg y la resistencia al movimiento es igual al doble de la velocidad, determinar: la velocidad 20 seg después de que la barca haya empezado a moverse. s/

2.4 / .v m seg

Page 49: MODULO Ecuaciones Diferenciales 2 2011

48

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

3. Un cultivo de hongos crece con rapidez proporcional al tamaño. Si se tiene 1000 y después de 2 horas se tiene 2500. Cuantos hay en 6 horas. S/ 15.625 hongos.

4. Encontrar la corriente I en función del tiempo para un circuito de L = 1, R= 1000000 y fuerza = 1 voltio. S/ 1 amperio si t aumenta.

5. Si un cuerpo es sacado de un horno a 300 grados y se coloca en un recipiente a 75 grados, la temperatura del cuerpo decae a 200 grados en media hora. ¿Cuál es la temperatura a las 3 horas? S/ 81,6 grados.

6. Un cuerpo que pesa 64 néwtones se deja caer desde una altura de 100 metros cuya velocidad inicial es 10 m/s, la resistencia del aire es proporcional a la velocidad del cuerpo. La velocidad limite es de 128 m/s encontrar la posición en un

instante t. s/ 13( ) 128 1534 1534

t

x t e

7. En un recipiente hay 1 libra de sal en 100 galones de agua. Se sabe que la solución salina entra al tanque a razón de 3 galones por minuto, se agita el recipiente y sale la solución en la misma proporción. Que cantidad de sal hay en el recipiente en 2 horas. S/ 9.52 libras.

8. Halle las curvas ortogonales de 2 2x y cx .

Teorema De Bernoulli

Veamos la Segunda Ley de Newton o Ley de Fuerza

En términos matemáticos esta ley se expresa mediante la relación:

http://es.wikipedia

Page 50: MODULO Ecuaciones Diferenciales 2 2011

49

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

ACTIVIDADES DE AUTOEVALUACIÓN DE LA UNIDAD

Hallar la solución general de la ecuación diferencial dada.

1. dy y

dx x 2.

2 2

3

dy x

dx y

Sol:

2 2

2 2

y xC Sol:

13 3

23

xy x C

3. 4.

Sol: 3

22y C x Sol: 1y C x

Hallar la solución particular de la ecuación diferencial que satisface la condición inicial dada. Ecuación diferencial Condición inicial Soluciones:

(2 ) 3dy

x ydx

dyx y

dx

5) 0

6) 0

7) ( 1) 0

8) ln 0

dyy ex

dx

dyx y

dx

dyy x

dx

dyxy x

dx

(0) 4

(1) 4

( 2) 1

(1) 0

y

y

y

1

2 216y X e

13 22

4 163

xy

Page 51: MODULO Ecuaciones Diferenciales 2 2011

50

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

Averiguar si la función es homogénea, y si es así, hallar el grado.

13. 3 2 3 , – 4 f x y x xy y

Sol. La función es homogénea de tercer grado.

14. , 2 f x y ln xy

Sol. La función no es homogénea.

15. f x, y tg x y

Sol. La función no es homogénea.

16. f x, y 2 ln x

y

Sol. La función es homogénea de grado cero.

, ,f tx ty f x y

Resuelva la ecuación diferencial homogénea 17. 18.

1

1x

y

2x

2e

y n X

2

dy x y

dx x

dy x y

dx y

Page 52: MODULO Ecuaciones Diferenciales 2 2011

51

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

Sol:

2

1y

x c nx

Sol: 11

3

1

1

x cy

x

18 Hallar las trayectorias ortogonales de la familia dada y dibújense varios miembros de cada familia, ver figura 3.

a. 2 2  x y C

Sol: Gráfica 3

b. 2 x Cy

Sol: Gráfica 4

Page 53: MODULO Ecuaciones Diferenciales 2 2011

52

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

c.

2 2 2   x y C

Sol: Gráfica . 5

d. 2 2y Cx

Sol: Gráfica 6 Grafica del programa derive y Editor Matemático Mathtype Fuente: Esta investigación Autor: Carlos Buchely

Page 54: MODULO Ecuaciones Diferenciales 2 2011

53

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

19. En las pirámides de inversión La cuantía A de una inversión P se incrementa a un ritmo proporcional al valor de A en el instante t. a) Obtener la ecuación de A como función de t.

Sol:

r t

A c e

b) Si la inversión inicial es de $1000,00 y el interés del 11 por 100, calcular el

capital al cabo de 10 años.

Sol: 1000 r tA e c) Si el interés es del 11 por 100, calcular el tiempo necesario para doblar la

inversión.

Sol: 6,28t

20. La tasa de crecimiento de una población en Colombia en un instante dado es proporcional al tamaño de la población en dicho momento. Si hay 180 después del segundo día del experimento y 300 después del cuarto día. ¿Cuántas había originalmente?

Sol: 65,32Q

Page 55: MODULO Ecuaciones Diferenciales 2 2011

54

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

FUENTES DOCUMENTALES DE LA UNIDAD 1 http://www.caribu.byethost8.com/

Page 56: MODULO Ecuaciones Diferenciales 2 2011

55

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

UNIDAD 2

Nombre de la Unidad ECUACIONES DIFERENCIALES DE SEGUNDO ORDEN Y DE ORDEN SUPERIOR

Introducción En esta unidad estudiaremos las ecuaciones diferenciales de segundo orden con coeficientes constantes y su forma de solución, utilizando una herramienta del álgebra que es la ecuación característica. Además analizaremos y solucionaremos las ecuaciones homogéneas y no homogéneas de segundo orden, determinando así los diferentes casos que se pueden presentar en la ecuación diferencial.

Justificación Las Ecuaciones Diferenciales de segundo orden, tienen una importancia fundamental en la Matemática y para la ingeniería debido a que muchos problemas se representan a través de leyes y relaciones físicas matemáticamente por este tipo de ecuaciones1. El interés en esta unidad es la deducción de las Ecuaciones Diferenciales a partir de situaciones físicas que se presentan en determinados problemas de carácter físico y/o técnico.

Intencionalidades Formativas

- Reconoce una ecuación diferencial con coeficientes constantes. - Asocia a la ecuación diferencial con coeficientes constantes la ecuación característica. - Realiza la diferencia de las soluciones de una ecuación de de segundo orden, con respecto a las raíces de la ecuación característica. - Resuelve correctamente las ecuaciones de segundo orden y orden superior con coeficientes constantes. - Emplea correctamente los métodos para solucionar ecuaciones diferenciales homogéneas de segundo orden y orden superior. - Soluciona ecuaciones diferenciales no homogéneas por el método de coeficientes indeterminados y de variación de parámetros. - Resuelve correctamente ecuaciones diferenciales no homogéneas con coeficientes constantes. - Encuentra el operador anular para una función y lo aplica correctamente en la solución de sistema de ecuaciones. - El estudiante plantea problemas correctamente

1 http://personales.ya.com/casanchi/mat/problediferencial01

Page 57: MODULO Ecuaciones Diferenciales 2 2011

56

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

empleando la modelación con ecuaciones diferenciales. - Por último, resuelve correctamente ecuaciones diferenciales lineales y cuantifica la importancia de la modelación matemática con ecuaciones diferenciales en la solución de problemas científicos.

Denominación de capítulos

2.1. ECUACIONES DIFERENCIALES DE SEGUNDO ORDEN. 2.2. ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR. 2.3. CAMPO DE APLICACIONES DE ECUACIONES DE SEGUNDO ORDEN Y DE ORDEN SUPERIOR.

CAPITULO 1: ECUACIONES DIFERENCIALES DE SEGUNDO ORDEN

Introducción En este aparte estudiaremos las ecuaciones diferenciales de segundo orden con coeficientes constantes y su forma de solución, utilizando una herramienta del álgebra que es la ecuación característica. Además analizaremos y solucionaremos las ecuaciones homogéneas y no homogéneas de segundo orden, determinando así los diferentes casos que se pueden presentar en la ecuación diferencial. Lección 16: Ecuaciones diferenciales de segundo orden y métodos de solución. Es necesario para comenzar con esta lección, tener en claro la notación de una ecuación diferencial de orden n, porque en la lección trabajaremos para aquellas ecuaciones donde n = 2 y así abordar las ecuaciones diferenciales de segundo orden. Definición de Ecuación Diferencial Lineal de Segundo Orden n

Sea 1 2, , , nw w w y f funciones de x con un dominio común. Una ecuación de

la forma:

1 2

1 2 1

n n n

n ny w x y w x y w x y w x y f x

Se llama ecuación diferencial lineal de orden n . Ahora si 0xf se dice

que la ecuación es homogénea; en caso contrario, se llama inhomogénea. De Aquí en adelante nos ocuparemos de este tipo de ecuaciones diferenciales.

Page 58: MODULO Ecuaciones Diferenciales 2 2011

57

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

Ahora la ecuación diferencial de segundo orden es:

1 2y w x y w x y f x

Ejemplos: Son ejemplos de ecuaciones de segundo orden las siguientes.

0126 yyy .

044 yyy

02

2

y

m

k

dt

dy

m

p

dt

yd

0 yy

0232 yyy

0762 yyy

xsenyyy 232

xeyyy 32

Solución General de Ecuaciones Diferenciales de Segundo Orden Para solucionar ecuaciones diferenciales de segundo orden se dan casos característicos para encontrar la solución general. En esta lección solamente daremos a conocer los diferentes casos que se pueden presentar en una ecuación diferencial de segundo orden: 1. Solución general como combinación lineal de soluciones linealmente independientes. Donde la clave es la ecuación característica que se puede asignar a la ecuación diferencial según la estructura de la misma. Recordando que la ecuación diferencial tiene la siguiente forma:

0y ay by

y en general la ecuación cuadrática 02 bamm tiene raíces

Page 59: MODULO Ecuaciones Diferenciales 2 2011

58

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

2

42

1

baam

y 2

42

2

baam

2. Solución de una ecuación mediante coeficientes indeterminados: funcionando

bien si x f está formada por polinomios o funciones cuyas derivadas siguen

un modelo cíclico. 3. Solución por variación de parámetros: Para poder solucionar el problema del anterior método. Procedamos entonces a analizar estos métodos. Lección 17: La Solución General de una ecuación diferencial como Combinación Lineal de Soluciones Linealmente Independientes. Concepto de independencia lineal:

Decimos que las funciones nyyy ,,, 21 son linealmente independientes si la

única solución de la ecuación

02211 nn yCyCyC

Donde 021 nCCC

. En caso contrario, las funciones se dice que son linealmente dependientes.

Ejemplo, las funciones 1y x sen x

e

2

2y x, linealmente independientes.

Porque los únicos valores de 21 CyC para los cuales

2

1 2( ) 0C sen x C x Para todo x

Son 00 21 CyC .

Ejemplo: 1 2, 3y x x y x x

son linealmente dependientes, porque

0321 xCxC presenta

1,3 21 CC.

Page 60: MODULO Ecuaciones Diferenciales 2 2011

59

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

Vemos entonces de aquí en adelante la importancia de la independencia lineal al construir la solución general de una ecuación diferencial lineal homogénea de segundo orden con coeficientes constantes.

La solución general de una ecuación diferencial se presenta como una combinación lineal de soluciones linealmente independientes ENTONCES: Independientes significa que ninguna es múltiplo de la otra.

Si 21 yyyson soluciones linealmente independientes de la ecuación diferencial

0 byyay entonces la solución general es

2211 yCyCy Donde 21 CyC

son las constantes. Pensemos y recordemos la solución de una ecuación diferencial de primer orden con coeficientes constantes por tanto la ecuación diferencial de segundo orden

tiene soluciones de la forma ,mxy e entonces

2,mx mxy me y m e , luego

de hacer un reemplazo nos encontramos con una ecuación característica que nos permitirá encontrar las raíces de la ecuación

02 mxmxmx beameem

02 bammemx

Como mxe nunca se anula,

mxey es una solución si y solamente si

02 bamm Ecuación característica Recuerde que la ecuación característica puede determinarse a partir de su

ecuación diferencial simple sustituyendo y

por 2m ,

ypor m ,

y por 1.

Ejemplo: Encontrar la ecuación característica de la ecuación diferencial

04 yy

La ecuación característica es 042 m donde 2m

Page 61: MODULO Ecuaciones Diferenciales 2 2011

60

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

Entonces

xxmeey 2

12

e

xxmeey 2

22

son soluciones particulares de la ecuación diferencial dada. Además, como estas dos soluciones son linealmente independientes la solución general es

xx eCeCy 2

2

2

1

También podemos decir que a independencia la podemos encontrar basándose en el Wronskiano, pensando en su generalización al caso n soluciones de las ecuaciones lineales de orden n. Definición (Se propone al lector profundizar sobre este aspecto).

Se designa por W[f1, ... , fn] donde fi son funciones para averiguar su

dependencia en función a sus derivadas.

1 2 n

' ' '

1 2 n

1 n

(n 1) (n 1) (n 1)

1 2 n

• • •

• • •

• • • • • • • • • • • •

• • •

f f f

f f f W f , ..., f

f f f

Condición necesaria y suficiente para que 2 soluciones particulares 1( )y x ,

2 ( )y x de la ecuación homogénea L[y] 0 , sean linealmente independientes

en I, es que:

1 2[ ( ), ( )] 0W y x y x x I

x

xo

p( ) d

1 2 oW ( ), ( ) W(x )et t

y x y x

Page 62: MODULO Ecuaciones Diferenciales 2 2011

61

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

Lección 18: Ecuaciones diferenciales lineales homogéneas y no homogéneas con coeficientes Constantes. - Ecuaciones diferenciales lineales homogéneas con coeficientes Constantes. Teniendo en cuenta los apartes anteriores la ecuación diferencial

1 2( ) ( ) ( )y a x y a x y m x es una ecuación de segundo orden, pero es

necesario hacer dos suposiciones: 1. los coeficientes son constantes 2.

m x 0 y por tanto esta será una ecuación diferencial homogénea con

coeficientes constantes. Una ecuación homogénea tiene dos (2) soluciones independientes y por tanto es necesario recordar la solución de una ecuación cuadrática donde se pueden presentar tres casos. Todo lo anterior según la estructura de la ecuación característica (Ver lecciones anteriores). CASOS: 1. Caso 1: Soluciones reales y distintas. 2. Caso 2: Soluciones iguales y reales. 3. Caso 3: Soluciones complejas y conjugadas. Estudiemos ahora cada uno de los casos:

1. Caso 1. Soluciones reales y distintas. Al resolver la ecuación característica se tienen las soluciones m1 y m2 entonces: Solución general es

xmxmeCeCy 22

21

Ejemplo: 16 0y y

La ecuación característica es

2 16 0m Ecuación característica

Así que 4m . Luego 1 4

1

m x xy e e e 2 4

2

m x xy e e son

soluciones particulares de la ecuación diferencial dada. Además, como estas dos soluciones son linealmente independientes, la solución general es

Page 63: MODULO Ecuaciones Diferenciales 2 2011

62

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

4 4

1 2

x xy C e C e

Ejemplo: 6 7 0y y y

La ecuación característica es

2 6 7 0m m Ecuación característica

Así que 1 27, 1m m . Luego 1 7

1

m x xy e e e 2 1

2

m x xy e e

son soluciones particulares de la ecuación diferencial dada. Además, como estas dos soluciones son linealmente independientes, la solución general es

7 1

1 2

x xy C e C e

2. Caso 2. Soluciones iguales y reales. Al resolver la ecuación característica se tienen las soluciones

m m1 m2 entonces: Solución general es

1 2

mx mxy C e C xe

Ejemplo: 044 yyy

La ecuación característica

024422 mmm

tiene dos raíces complejas 2m repetidas. Luego la solución general es

xx xeCeCy 2

2

2

1

Solución general

Ejemplo: 20 100 0y y y

Page 64: MODULO Ecuaciones Diferenciales 2 2011

63

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

La ecuación característica

22 20 100 10 0m m m

tiene dos raíces complejas 10m repetidas. Luego la solución general es

10 10

1 2

x xy C e C xe Solución general

3. Caso 3. Soluciones complejas conjugadas

La ecuación característica tiene Raíces complejas: Si im 1 y

im 2 , entonces la solución general es

1 2cos( ) ( )x xy C e x C e sen x

Ejemplo: Resolver 4 13 0y y

La ecuación característica

2 4 13 0m m Encontrando las raíces

2 3m i Siendo estas raíces complejas conjugadas. La solución general de la ecuación diferencial es:

2 2

1 2cos(3 ) (3 )x xy C e x C e sen x

Ejemplo: Ejemplo: Resolver 6 12 0y y

La ecuación característica

2 6 12 0m m Encontrando las raíces

3 3m i Siendo estas raíces complejas conjugadas.

Page 65: MODULO Ecuaciones Diferenciales 2 2011

64

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

La solución general de la ecuación diferencial es:

3 3

1 2cos( 3 ) ( 3 )x xy C e x C e sen x

Recuerde que para resolver las anteriores ecuaciones diferenciales con condiciones iniciales siempre va a encontrar un sistema de ecuaciones de 2 por 2 para así encontrar las constantes C1 y C2 de la solución general.

Ejemplo: 3 10 0; (0) 1; (0) 10y y y y y

La ecuación característica es

2 3 10 0m m Ecuación característica

Así que 1 25, 2m m . Luego 1 5

1

m x xy e e e 2 2

2

m x xy e e

son soluciones particulares de la ecuación diferencial dada. Además, como estas dos soluciones son linealmente independientes, la solución general es

5 2

1 2

x xy C e C e Ahora con la primera condición y 0 1 se tiene

1 21 c c

Ahora hallamos y y reemplazamos la segunda condición (0) 10y donde

1 210 5 2c c

Con las dos ecuaciones encontradas por las condiciones iniciales se forma el

sistema de ecuaciones y al resolverlo encontramos 1 2

12 5,

7 7c c que son los

valores encontrados para reemplazar en la solución general 5 2

1 2

x xy C e C e

entonces la solución particular es 5 2

1 2

12 5

7 7

x xy e e

Page 66: MODULO Ecuaciones Diferenciales 2 2011

65

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

- Ecuaciones diferenciales lineales no - homogéneas con Coeficientes constantes Ahora trabajemos en la solución de ecuaciones diferenciales de segundo orden no homogéneas con coeficientes constantes y para ello existen los otros dos métodos nombrados con anterioridad en la Lección 1 de este capitulo, donde la solución es una suma de las soluciones de una ecuación homogénea y una particular lo cual se puede dar así:

Si se tiene que xFbyyay es una ecuación diferencial lineal no

homogénea de segundo orden.

1. Hacemos F x 0 para convertir la ecuación a una homogénea con

coeficientes constantes. Esta es la llamada solución Asociada hy

2. Encontramos una solución particular de la ecuación no homogénea. Esta es

la llamada Solución particular py

3. Sumamos los resultados de 1 y 2 y por tanto encontramos la solución

general de la no homogénea: h py y y

`. Por tanto los pasos 1 y 3 no tienen problema, lo verdaderamente nuevo para usted señor lector es como resolver el paso 2. Bueno entonces, manos a la obra: Utilizaremos el método de coeficientes indeterminados donde se debe suponer

que la solución py es una forma general de xF

. Por ejemplo:

1. Si 23xxF , escójase CBxAxy p 2.

2. Si xxexF 4 , escójase xx

p BeAxey .

3. Si xsenxxF 2 , escójase xDxCsenBAxy p 2cos2 .

Entonces, por sustitución, determinamos los coeficientes de esta solución general.

Por tanto py se la puede encontrar con base en ensayos como los anteriores.

Generalizando los ensayos los podemos denotar:

Page 67: MODULO Ecuaciones Diferenciales 2 2011

66

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

si

1

1 1 0( ) ...r r

r rf x d x d x d x d

Entonces ensayar con

1

1 1 0...r r

p r ry c x c x c x c

si

( ) axf x be Entonces ensayar con

ax

py ce

si

( ) cosf x b x csen x Entonces ensayar con

cospy b x csen x

Si alguno de los términos de f x es solución de la homogénea, multiplicamos

por x la solución. Veamos ahora ejemplos: Ejemplo Hallar la solución general de la ecuación

Solución: Para hallar hy resolvemos la ecuación característica:

2m – 2m – 3 m 1 m 3 m 1 y m 3

Entonces la solución 3

1 2

x xC e C e hy = 3

1 2 x xC e C e

Procedemos a encontrar py donde utilizaremos para la

f x 2sen x n x el ensayo

cosx senxpy A B

2

22 3 2

d y dyy senx

dx dx

Page 68: MODULO Ecuaciones Diferenciales 2 2011

67

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

cosd y

p Asenx B xdx

2

2cos

d yp A x Bsenx

dx

Reemplazando en la ecuación se tiene

( 4A 2 )cosx (2A 4 )senx 2sen(x)(-4A-2B)B B

Igualados los coeficientes de cos x y de sen x , que dan lugar al sistema.

4 2 0A B y 2 4 2A B

Donde 1 y 2 / 5 A B

3

h 1 2

1 2y y cos( ) ( )

5 5

x x

py C e C e x sen x

Ejemplo 4 4 2 6y y y x

Entonces por pasos sería así:

1. 4 4 0y y y

La ecuación característica es: 2 4 4 0m m aquí m 2 siendo real e igual

por tanto 2 2

1 2

x x

hy C e C xe

2. para ( ) 2 6f x x probemos con py AX B

Derivando se tiene: , 0y A y , reemplazando en la ecuación diferencial

original se tiene:

4 2,4 4 6A A B

de donde A 1/ 2 y B 1 por tanto

Page 69: MODULO Ecuaciones Diferenciales 2 2011

68

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

1

12

py X

3. La solución general es la suma entonces 2 2

1 2

11

2

x xy C e C xe x

Ejemplo ( )y y y xsen x Realizando los pasos aprendidos

Encontramos lo siguiente

/2

1 2

3 3( cos )

2 2

x

hy e c x c sen x

( ) cos( ) ( ) cos( )

( ) 2cos( ) cos( )

p

p

y Asen x B x Cxsen x Dx x

y sen x x x x

Nota: Se deja al lector, la realización de los procesos para obtener los resultados anteriores. Su solución general es:

/2

1 2

3 3( cos ) ( ) 2cos( ) cos( )

2 2

x

hy e c x c sen x sen x x x x

Otro de los métodos que nombramos anteriormente y que soluciona la dificultad que se presenta al solucionar con métodos anteriores las ecuaciones diferenciales de segundo orden es el método de variación de parámetros donde nos ayuda a

encontrar la solución particular py miremos el camino:

Sea 1 2( ), ( )u x u x soluciones independientes de la ecuación diferencial

característica entonces existe:

1 1 2 2

1 1 2 2

1 1 2 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 0

( ) ( ) ( ) ( ) ( )

py r x u x r x u x

r x u x r x u x

r x u x r x u x g x

Page 70: MODULO Ecuaciones Diferenciales 2 2011

69

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

Ejemplo: csc( ).cot( )y y x x Aquí

2

1 2

1 0,

cos( ) ( )h

m

y c x c sen x

Por tanto 1 2( ) cos( ), ( ) ( )u x x u x sen x ahora

1 1 2 2

1 2

( ) ( ) ( ) ( )

( )cos( ) ( ) ( )

p

p

y r x u x r x u x

y r x x r x sen x

Derivando según la explicación se tiene 1 2( ) cot( ), ( ) cot( )r x x r x x

integrando encontramos los valores que necesitamos 1

2

ln( ( ))

cot( )

r sen x

r x x

Recuerde que aquí no termina el ejercicio solución, debes aplicar la combinación

de h py y que es la solución general. (Termínalo).

Lección 19: Operador para la solución de ecuaciones diferenciales Daremos a conocer ahora la definición de operador diferencial, el cual se emplea para encontrar un anulador de función D. Para nosotros D será es la primera derivada, D3 segunda derivada D3 tercera derivada y así sucesivamente. Por tanto la ecuación diferencial de orden 2 quedaría así:

2

2 1 0 ( )a D y a Dy a y f x

El polinomio en términos de D se llama operador diferencial P D , y si los

coeficientes de este polinomio son constantes entonces:

P D Es factorizable y dichos factores cumplen con la ley conmutativa.

Ahora el operador anulador se define así:

Page 71: MODULO Ecuaciones Diferenciales 2 2011

70

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

Si ( )y f x es una función derivable 2 veces, entonces

2

2 1 0a D a D a si cumple que

2

2 1 0( ) ( ) 0a D a D a f x

Ejemplos:

Función que anula Operador anular 5x

6D

4 37 6 8x x 5D axe D a

x 2D En general

1. nD anula funciones

2 3 41, , , , ,.. .x x x x etc

2. ( )nD a anula funciones 2 3, , , ..ax ax ax axe xe x e x e etc

3. 2 2 2( 2 ( ))nD D anula funciones

2

2

cos , cos , cos ,... ,

, , ,...

x x x

x x x

e x xe x x e x etc

e sen x xe sen x x e sen x etc

Ejemplo: encontrar el operador que anule a ( ) cos(2 )xf x e x Nos remitimos a 3

entonces 1, 2 Reemplazando en 3 se tiene: 2( 2 5). ( ) 0D D f x

Recuerde que el operador es útil para solucionar sistemas de ecuaciones diferenciales, donde la solución de un sistema de ecuaciones diferenciales es un

conjunto de funciones derivables g t , f x , w t , etc., que satisfacen las

ecuaciones. Ejemplo:

2dx

x ydr

dyx

dr

Utilizando operadores D se tiene

D 2 x y 0

x Dy 0  

Page 72: MODULO Ecuaciones Diferenciales 2 2011

71

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

Formándose un sistema de ecuaciones 2 por 2 eliminamos la variable y multiplicando la primera ecuación por D entonces nos queda una ecuación en

términos de x así: 2( 2 1) 0D D x Ahora tenemos que la ecuación característica es

2 22 1 ( 1)m m m

Así mismo eliminamos y tomando la ecuación y multiplicando por D 2 y la

ecuación característica será 2( 2 1) 0D D y ecuación característica es

2 22 1 ( 1)m m m sustituyendo lo anterior podemos demostrar que la solución

del sistema es

1 2

1 2 2

( )

( ) ( )

r r

r r

x r c e c re

y r c c e c re

Lección 20: Ejercicios Propuestos 1. Por el método de variación de parámetros resolver:

a)

1 2

22

1: ln

2

x

x x x x

ey y y

x

sol c e c xe xe xe x

b) 1 2

( )

: cos( ) ( ) cos( )ln(sec )

w w tg x

sol c x c sen x x x tgx

c) 1 2

csc( )cot( )

: cos( ) ( ) cos( )ln( ( )) cos( ) ( )

y y x x

sol c x c sen x x sen x x xsen x

2. Encuentre el operador anulador para

a)

3 2

2 3 2

( ) 5 6

: ( 3)( 2) (5 6 ) 0

t t

t t

f t e te

sol D D e te

b)

2

2 2 2

( ) ( ) cos( )

: ( 2 )( 4 5)( ( ) cos( )) 0

t t

t t

f t e sen t e t

sol D D D D D e sen t e t

3. Encontrar la solución general de las siguientes ecuaciones diferenciales:

Page 73: MODULO Ecuaciones Diferenciales 2 2011

72

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

a)

2 2

2

1 22

1 1

( ) 2 0

1: ln( 1)

2

x y y xy

x xsol c x c

c c

b)

2

1 2

2 ( ) 1

: 2ln(cos( ))2

y y

xsol y c c

c) 2

1 2

4 4 0

: ( )x

y y y

sol y e c x c

d) 1 2

0

: cos( ) ( )

y y

sol y c x c sen x

e) 2

1

1 2

1 10

:

y y yx x

sol c x c x

4. Encontrar la solución particular de las anteriores ecuaciones cuando

(0) 4, (0) 1y y

5. Hallar una solución particular de las siguientes ecuaciones diferenciales no homogéneas:

2

2

2

2 2

) 5 14

1:

9

)4 4 4

1:

2

x

x

p

x

x

p

a y y y e

sol y xe

b y y y e

sol y x e

6. Halle la ecuación diferencial por medio del operador

Page 74: MODULO Ecuaciones Diferenciales 2 2011

73

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

2

2

1 2

1.( 2 1) 3

1: ( ) 3

2

x

x x

D D y e

sol e c x c x e

2

4

1 2

2.( 4 ) cos( )

1: (4 ( ) cos( ))

17

x

D D y x

sol c c e sen x x

Los siguientes conceptos los puedes consultar en:

- www.wikipedia.com - www.monografias.com - enciclopedia virtual Encarta

☻ Recordemos que un operador diferencial es un objeto matemático que permite

☻ La conversión de una función en otra, así el operador derivada convierte

una

☻ Función en una función diferente llamada la función derivada

☻ Recordemos que deben cumplir con la forma y(n) + an−1(t)y(n−1) + · · · + a1(t)y0 + a0(t)y = f (t),

☻ El operador diferencial D, de una función es aquel que se emplea como anulador.

☻ Formula de la ecuación diferencial lineal de segundo orden;

1 2y w x y w x y f x

☻ Formula de la ecuación lineal de segundo orden homogéneo

1 2 0y w x y w x y

☻ Una ecuación diferencial lineal homogénea de segundo orden tiene la forma

L[y] = yn + a1y’+ a2y = 0

☻ Las ecuaciones diferenciales lineales no homogéneas de segundo orden con coeficientes constantes; son de las ecuaciones de la

Forma Yy´´ + by´ + c = k(x)

Page 75: MODULO Ecuaciones Diferenciales 2 2011

74

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

☻ Formula de la ecuación lineal de segundo orden no homogéneo

1 2y w x y w x y f x

☻ Para la solución de la ecuación lineal: se tiene en cuenta la ecuación

característica y sus raíces. CAPITULO 2: ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR Introducción. Ahora en este capítulo nos interesa la s ecuaciones diferenciales cuyo orden

2n . Las ecuaciones diferenciales lineales ordinarias de orden superior tienen

una gran variedad de aplicaciones a muchas situaciones físicas y ricas en consideraciones teóricas como son el teorema de la existencia y unicidad cuya demostración no es fácil de encontrar en libros de esta asignatura por eso y mucho más las ecuaciones diferenciales lineales d orden superior ocupan un lugar muy importante en la teoría matemática. Lección 21: Ecuaciones diferenciales lineales de orden n. Una ecuación diferencial cuya estructura es:

1 2

0 1 2 1

n n n

n na y a x y a x y a x y a x y f x

Se llama ecuación diferencial lineal de grado n . Si 0f x la ecuación recibe el

nombre de ecuación diferencial lineal de grado n homogénea y en caso contrario

será no homogénea. Ejemplo:

1. 4

2 3 6 0y y y y

Lección 22: Ecuaciones diferenciales de orden superior con coeficientes constantes. Una ecuación diferencial lineal de n-ésimo orden en la que todos los coeficientes son constantes reales; es decir que sea de la forma:

1 2

0 1 2 1

n n n

n na y a x y a x y a x y a x y f x

Donde 0 1 2 1, , , , ,n na a a a a son constantes reales

Ejemplo:

Page 76: MODULO Ecuaciones Diferenciales 2 2011

75

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

1. 31

7 2y y y senx

Lección 23: Ecuación diferencial de orden superior homogénea y no homogénea con coeficientes constantes. Ya hemos visto que las ecuaciones diferenciales lineales de orden superior con coeficientes constantes, pueden ser homogénea y no homogénea, todo depende

de quien sea f x , si es idénticamente cero estamos hablando de una ecuación

diferencial lineal con coeficientes constantes homogénea y en caso contrario estamos frente a una ecuación diferencial no homogénea. Ejemplos:

1. 3 55 2 2 e 10tgxy y y y ecuación no homogénea.

2. 5 33 0y y y ecuación homogénea.

Lección 24: Métodos generales de solución de las ecuaciones diferenciales de orden superior. Ver en http://www.caribu.byethost8.com/ Para resolver una ecuación diferencial lineal de orden superior hay que tener en cuenta primero la ecuación diferencial homogénea para la cual se plantea y resuelve la ecuación característica y la naturaleza de sus raíces y luego se

resuelve la ecuación no homogénea y la forma de f x para poder aplicar y

encontrar un operador diferencial anulador. Los métodos de solución son los mismos que para la ecuación diferencial de segundo orden solo hay que hacer unas pequeñas adaptaciones. Lección 25: Ejercicios propuestos.

Resolver las siguientes ecuaciones diferenciales de orden superior:

1. (4) 0y y

sol: 1 2 3 4( ) cos( )x xy c e c e c sen x c x

2. 6 11 6 0y y y y

sol: 2 3

1 2 3

x x xy c e c e c e

Page 77: MODULO Ecuaciones Diferenciales 2 2011

76

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

3. 3 7 5 0y y y y

sol: 1 2 3( (2 ) cos(2 )x xy c e e c sen x c x

Resuelva por el método de coeficientes indeterminados

5. 23 2 2 xy y y e

2

1 2 3

2: ( )

9

x x xxsol y c e c xe c e

6. 24 , (0) 1, (0) 1, (0) 1y y x y y y

Ecuación diferencial lineal de orden n

1 2

0 1 2 1

n n n

n na y a x y a x y a x y a x y f x

Ecuaciones diferenciales de orden superior con coeficientes constantes

1 2

0 1 2 1

n n n

n na y a x y a x y a x y a x y f x

Donde 0 1 2 1, , , , ,n na a a a a son constantes reales

Ecuación diferencial lineal de orden n homogénea

1 2

0 1 2 1 0n n n

n na y a x y a x y a x y a x y

Ecuación diferencial lineal de orden n no homogénea

1 2

0 1 2 1

n n n

n na y a x y a x y a x y a x y f x

Para solucionar una ecuación diferencial lineal de orden n se tiene en cuenta las mismas condiciones que para ecuación de segundo orden donde la naturaleza de las raíces la da la ecuación característica. Cuando la ecuación diferencial de orden n es no homogénea, se resuelve primero la ecuación homogénea y luego se halla

un operador diferencial anulador según sea f x .

Page 78: MODULO Ecuaciones Diferenciales 2 2011

77

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

CAPITULO 3: CAMPO DE APLICACIONES DE ECUACIONES DE SEGUNDO

ORDEN Y DE ORDEN SUPERIOR

Introducción

Las ecuaciones diferenciales lineales de orden superior, tienen una gran variedad

de aplicaciones importantes; en particular, las ecuaciones diferenciales lineales de

segundo orden con coeficientes constantes tienen numerosas aplicaciones tanto

en la física e ingeniería mecánica y electricidad, como son la ecuación diferencial

de las vibraciones de una masa en un resorte, movimiento libre no amortiguado,

movimiento libre amortiguado, movimiento forzado, etc.

Lección 26: Aplicaciones de las ecuaciones diferenciales de segundo orden

Las ecuaciones diferenciales de segundo orden tienen aplicaciones en física en la

ingeniería mecánica y en la electricidad, cuyos problemas se solucionan

planteando y resolviendo una ecuación diferencial de segundo orden. Como:

la ecuación diferencial de las vibraciones de una masa de un resorte

2

2

d x dxm a kx F x

dt dt

movimiento libre amortiguado

2

20

d x dxm a kx

dt dt

Lección 27: Aplicaciones de las ecuaciones diferenciales de orden superior

Las ecuaciones diferenciales de orden superior tienen su aplicación en el campo

de la mecánica celeste, es una herramienta poderosa para los astrofísicos en el

descubrimiento de nuevas formas en el universo. Plantear y solucionar una

ecuación diferencial de orden superior no es fácil, tiene su trabajo.

Lección 28: Ecuaciones diferenciales de Euler

Anteriormente se estudió la forma de solucionar ecuaciones diferenciales de orden

n con coeficientes constantes. Se vio también la forma de de la función

complementaria se puede determinar fácilmente. Sin embargo la ecuación

diferencial lineal de orden n con coeficientes variables es un asunto

completamente diferente, y solo en ciertos casos especiales la función

Page 79: MODULO Ecuaciones Diferenciales 2 2011

78

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

complementaria se puede obtener explícitamente en forma cerrada. Un caso

especial, de considerable importancia práctica, para la que afortunadamente esto

se puede lograr, es la llamada ecuación de Euler (o bien, ecuación

equidimensional). Esta ecuación es de la forma:

11

0 1 1

n nn n

n na x y a x x y a x x y a y f x

Donde 0 1 2 1, , , , ,n na a a a a son constantes reales. Observe la característica

especial de esta ecuación cada término del primer miembro es un múltiplo

constante de una expresión de la forma:

kk

k

d yx

dx

La transformación tx e reduce la ecuación

11

0 1 1

n nn n

n na x y a x x y a x x y a y f x

a una ecuación diferencial lineal con coeficientes constantes.

Ejemplo:

22 3

22 2

d y dyx x y x

dx dx

Al introducir la expresión tx e ; entonces, suponiendo 0x se tiene lnt x y

dy dydt dy

dx dtdx xdt

2 2 2

2 2 2 2 2

1 1 1d y d ydt dy d y dy

dx x dt dx x dt x dt dt

Así se transforma en

23

23 2 td y dy

y edt dt

La cual ya se resuelve por los métodos antes ya vistos.

Page 80: MODULO Ecuaciones Diferenciales 2 2011

79

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

Lección 29: Ecuaciones diferenciales de Chebyshev y de Bessel

La ecuación diferencial 2

2 2 2

20

d y dyx x x p y

dx dx donde p es en parámetro,

se llama ecuación de Bessel de orden p . La ecuación de Bessel y las funciones

de Bessel se presentan en conexión con muchos problemas de la física y la

ingeniería, y existe una amplia literatura que trata la teoría y la aplicación de esta

ecuación y sus soluciones.

Si 0p la ecuación anterior es equivalente:

22

20

d y dyx x xy

dx dx

y se llama ecuación de Bessel de orden cero. Esta ecuación tiene soluciones en

un intervalo 0 x R .

La ecuación de Chebyshev tiene la siguiente estructura:

2 21 0x y xy p y

donde p es una constante real.

Lección 30: Ejercicios Propuestos

Resolver los siguientes problemas:

1. un peso de 12bl está colocado en el extremo inferior de un resorte

suspendido de un techo. el peso se encuentra en reposo en su posición de

equilibrio, el resorte está estirado 1.5 in. Después el peso se empuja hacia

debajo de su posición de equilibrio 2 in y se suelta desde el reposo en

0t . Determine la amplitud, el periodo y la frecuencia del movimiento

resultante, y trace la gráfica del desplazamiento como una función del

tiempo.

2. Un peso de 64 lb. Está unido al extremo inferior de un resorte que esta

suspendido del techo. La constante del resorte es de18lb/pie. El peso se

encuentra en reposo en su posición de equilibrio; después, se desplaza 6 in

hacia debajo de está posición y se suelta en 0t . En este instante se

aplica una fuerza externa expresada matemáticamente por 3cosf t .

Page 81: MODULO Ecuaciones Diferenciales 2 2011

80

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

Suponiendo que no existe amortiguamiento, determine el valor de que da

lugar a una resonancia no amortiguada.

Resolver las siguientes ecuaciones:

1. 2

2

23 3 0

d y dyx x y

dx dx

2. 2

2

212 5 0

d y dyx x y

dx dx

3. 2

2

212 0

d y dyx x y

dx dx

4. 3 2

3 2

3 24 8 8 4ln

d y d y dyx x x y x

dx dx dx

5. 2

3 ln

2

xd yx senx e

dx

6. demuestre que 0 ,J kx donde k es una constante, satisface la ecuación

diferencial

22

20

d y dyx k xy

dx dx

Las ecuaciones diferenciales de segundo orden tienen muchas aplicaciones dentro de la física, la mecánica y la electricidad. Las ecuaciones diferenciales de orden superior tienen muchas aplicaciones dentro de la astrofísica, la mecánica celeste. La ecuación de Euler :

11

0 1 1

n nn n

n na x y a x x y a x x y a y f x

La ecuación de Bessel:

Page 82: MODULO Ecuaciones Diferenciales 2 2011

81

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

22 2 2

20

d y dyx x x p y

dx dx

La ecuación de Bessel de grado cero:

22

20

d y dyx x xy

dx dx

Page 83: MODULO Ecuaciones Diferenciales 2 2011

82

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

ACTIVIDADES DE AUTOEVALUACIÓN DE LA UNIDAD 2

Determinar la solución de cada un de las siguientes ecuaciones diferenciales:

1. 5 7 0y y y

2. 3 11 5 0y y y

3. 3 4 0y y

24. 6 6 3 4xy y y senxtgx e x

5. 12 5 8 1y y y

Determinar la solución de cada un de las siguientes ecuaciones diferenciales:

1. 12 15 6 0y y y

4 32. 12 2 0y y y y

33. 3 14 15 0y y y

24. 23 22 26 22 36 xy y y y e

1

5. 15 16 18 senxy y y e

Resolver las siguientes ecuaciones:

7. 2

2

223 13 0

d y dyx x y

dx dx

8. 2

2

22 45 0

d y dyx x y

dx dx

9. 2

2

211 12 0

d y dyx x y

dx dx

10. 3 2

3 2

3 24 58 8 ln

d y d y dyx x x y x

dx dx dx

11. 2

3

2

d yx senx

dx

Page 84: MODULO Ecuaciones Diferenciales 2 2011

83

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

FUENTES DOCUMENTALES DE LA UNIDAD 2

AYRES, Frank Jr. Calculo diferencial e integral. Teoría y problemas.

Latinoamericana S.A, 1982.

N, Piskunov Cálculo diferencial e integral. Editorial Limusa. Noguera

editores.

TAKEUCHI, RAMIREZ, RUIZ. Ecuaciones Diferenciales. Limusa, Bogotá,

2.000.

Page 85: MODULO Ecuaciones Diferenciales 2 2011

84

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

UNIDAD 3

Nombre de la Unidad ESTUDIO DE SERIES Y FUNCIONES ESPECIALES

Introducción En la presente unidad se abordaran temas claves para la

resolución de ecuaciones diferenciales que implican el

conocimiento desde la definición y clasificación de series

matemáticas, técnicas para resolver ecuaciones

diferenciales mediante series matemáticas, hasta el

estudio de propiedades y convergencia de series de

potencia, complementando con las series de Taylor y

maclaurin como apoyo a la solución de ecuaciones

diferenciales lineales de orden dos o superior.

En complemento con lo anterior y buscando afianzar el

conocimiento se proponen una serie de ejercicios de

acuerdo a las temáticas presentadas los cuales deberán

ser resueltos utilizando los planteamientos expuestos en

cada teoría y que pueden ser complementados con otras

fuentes documentales consultadas por el estudiante. Con

esto se pretende orientar al estudiante en el

reconocimiento, definición y aplicación de los temas

planteados hacia la resolución de ecuaciones

diferenciales.

Justificación El estudio de series y funciones especiales para la

solución de ecuaciones diferenciales es un tema

necesario y que todo estudiante debe realizar para

resolver este tipo de ecuaciones clasificadas en lineales,

de orden dos o superior con coeficientes constantes

buscando la solución que se pueda expresar explícita o

implícitamente en términos de las funciones elementales

llevando a un proceso complejo, en donde las series y

funciones especiales se constituyen como un factor muy

importante en el desarrollo de este tipo de ecuaciones

basado en métodos, gráficos, numéricos y en especial las

series de potencias y las series de Taylor y maclaurin.

Con la adquisición de estos conocimientos el estudiante

contara con una herramienta valiosa a la hora de trabajar

Page 86: MODULO Ecuaciones Diferenciales 2 2011

85

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

con este tipo de ecuaciones buscando de forma mas

efectiva y mejor orientada la solución y aplicación del

conocimiento obtenido en diferentes áreas relacionadas

con este tema.

Intencionalidades Formativas

En esta unidad el estudiante tendrá la oportunidad de adquirir, reconocer, definir y aplicar conocimientos relacionados con procedimientos y técnicas para resolver ecuaciones diferenciales; al brindar conocimientos teóricos y también la posibilidad de aplicación práctica mediante los ejercicios propuestos al final de cada tema en donde al final el estudiante lograra: . Aplica los conceptos básicos de series matemáticas. · Define las series de potencias · Reconoce la diferencia entre la aplicación de las series de potencias para ecuaciones diferenciales de primer orden y Orden superior. · Reconoce funciones y series especiales · Relaciona las funciones y series especiales con las Ecuaciones diferenciales. · Aplica el tema de series y funciones matemáticas para la solución de las ecuaciones diferenciales Buscando de esta manera que el estudiante desarrolle competencias argumentativas y propositivas orientadas a enriquecer el conocimiento en los temas planteados en esta unidad.

Denominación de capítulos

3.1. GENERALIDADES DEL ESTUDIO DE SERIES. 3.2. SOLUCION DE ECUACIONES DIFERENCIALES MEDIANTE SERIE DE POTENCIAS. 3.3. FUNCIONES ESPECIALES Y SERIES MATEMATICAS.

Page 87: MODULO Ecuaciones Diferenciales 2 2011

86

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

CAPITULO 1: GENERALIDADES DEL ESTUDIO DE SERIES

Introducción En esta unidad usaremos las series matemáticas y en especial la serie de potencias para resolver ciertos tipos de ecuaciones diferenciales. Por tanto en las lecciones siguientes se tratan únicamente de efectuar un breve repaso de las series de potencias. Se expondrán los conceptos y propiedades, sin realizar las demostraciones, además se darán a conocer funciones especiales que se expresan mediante ecuaciones diferenciales. (Estos temas serán retomados en un nuevo curso como es el caso del análisis numérico o métodos numéricos, como también matemáticas especiales). Lección 31: Definición de serie matemática http://www.caribu.byethost8.com/ Lección 32: Clasificación de las series matemáticas http://www.caribu.byethost8.com/ Lección 33: Técnicas para resolver Ecuaciones Diferenciales mediante series matemáticas http://www.caribu.byethost8.com/ Lección 34: Definimos el concepto de punto ordinario y punto singular

regular en una Ecuación diferencial.

El punto 0x se llama punto ordinario de la ecuación diferencial

2

0 1 220

d y dya x a x a x y

dx dx si 1 2

0 0

y a x a x

a x a xde la ecuación normalizada

21 2

2

0 0

0a x a xd y dy

x x ydx a x dx a x

son analíticas en 0x . si una de ellas o ambas

no es analítica en 0x entonces 0x se llama punto singular de la ecuación

diferencial.

Ejemplo:

1. 2

2

22 0

d y dyx x y

dx dx aquí x y 2 2x son polinomios y son analíticos

en todo son todos los puntos ordinarios

Page 88: MODULO Ecuaciones Diferenciales 2 2011

87

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

2. 2

2

10

1 1

d y x dyy

dx x dx x x los puntos 0 y 1x x la función no es

analítica, luego son puntos singulares.

Lección 35: Ejercicios Propuestos.

Determine la solución en serie de potencias de x de cada una de las ecuaciones

diferenciales

1. 2

20

d y dyx y

dx dx

2. 2

2

20

d y dyx x y

dx dx

3. 2

3

20

d y dyx x y

dx dx

4. 2

2

2( 1) 0

d y dyx x y

dx dx

5. 2

2

10

1

d y dyx y

dx dx x x

Una serie de potencias en torno al punto x0 es una expresión de la forma:

0 0 1 0 0

0

( ) ... ( ) ...n n

n n

n

c x x c c x x c x x

Una serie de potencias es convergente cuando su n-ésimo término tiende a cero,

cuando n crece indefinidamente.

Solucionar una ecuación diferencial por medio de series infinitas no es más que

buscar un método para solucionar ecuaciones que no se pueden resolver tan

fácilmente.

Las series de potencias se pueden derivar, integrar, dos aspectos fundamentales

para la solución de ecuaciones diferenciales.

Page 89: MODULO Ecuaciones Diferenciales 2 2011

88

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

CAPITULO 2: SOLUCION DE ECUACIONES DIFERENCIALES MEDIANTE

SERIE DE POTENCIAS

Lección 36: Estudio de Series De Potencias.

Se suponen conocidas las series numéricas y también los conceptos fundamentales relativos a las series de potencias.

Definiciones: Una serie de potencias en torno al punto xo es una expresión de la

forma:

0 0 1 0 0

0

( ) ... ( ) ...n n

n n

n

c x x c c x x c x x

Donde los nc son constantes.

- La serie converge en el punto x = a, si converge la serie numérica

0

0

n

n

n

c a x

Es decir, si existe y es finito el límite 0

0

limN

n

nN

n

c a x

, que se designa

suma de la serie en x a .

Caso contrario la serie diverge en x a .

- La serie puede converger para algunos valores de x y no para otros. Siempre

converge para x = ox, siendo oc su suma en dicho punto.

Es necesario dar a conocer un teorema que nos permitirá decir donde converge la serie, este es el llamado teorema de Abel.

Page 90: MODULO Ecuaciones Diferenciales 2 2011

89

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

Teorema de Abel

“Una serie de potencias

0n

n0n xxa

converge siempre para todo valor de

x de un cierto intervalo abierto 0 0I x R,x R y diverge si Rxx 0

.

En los extremos del intervalo puede converger o no. Además en el intervalo la convergencia es absoluta, es decir, que converge en el

intervalo y la serie se puede escribir

0n

n0n xxa

I = intervalo de convergencia. Ahora la tarea es hallar el radio de convergencia de la serie: Es necesario tener en cuenta el siguiente criterio:

Si existe lim nn

na

, entonces

1R

Si existe 1lim n

nn

a

a

, entonces lim n

nn

a

y

1R

(Se entiende que si 0 es R   y si , es R 0 )

Ejemplo 1: averiguar si la serie converge en x 3

0n

nn

3x1n

2

Solución:

Es

a

nn

n

2

1 . Luego 1 2( 1)

lim lim 2( 2)

n

n nn

a n

a n

Luego 1

2R y por tanto la serie converge en

31

23

1

2

,

Page 91: MODULO Ecuaciones Diferenciales 2 2011

90

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

es decir 5 7

,2 2

I

ahora reemplazando

En 5

2x , la serie es

1

10 nn

que diverge por ser la armónica.

En 7

2x , es

1

10

n

n n que converge (armónica alternada)

Ahora resolvamos ecuaciones diferenciales por medio de series. Todas las funciones se pueden expresar como series de potencias, aquellas

Funciones que si se pueden expresar se llaman analíticas.

Lección 37: Propiedades y Convergencia de las series de potencias.

http://www.caribu.byethost8.com/

Lección 38: Solución de ecuaciones diferenciales de primer orden mediante Series de potencias.

No todas las ecuaciones diferenciales se pueden desarrollar por medio de los métodos tradicionales que se han mencionado en las lecciones anteriores, por tanto es necesario recurrir a las series y en especial a las series de potencias.

Debemos recordar que una serie de potencias representa a f(x) en un intervalo de convergencia I, y que podemos derivar la serie de potencias sucesivamente, para

obtener series para f , f , f ", ,f etc .

Paso 1. Se considera la solución como serie. 2

0 1 2 ....y c c x c x Donde las constantes se deben determinar.

0

n

n

n

y c x

Page 92: MODULO Ecuaciones Diferenciales 2 2011

91

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

Paso 2. Derivamos la ecuación anterior

2

1 2 32 3dy

c c X c xdx

=

1

0

n

n

n

y nc x

Paso 3. Sustituimos los resultados anteriores en la ecuación diferencial a solucionar. Paso 4. Comparamos coeficientes de los dos miembros y hallamos los valores C Paso 5. Sustituimos en la solución en serie del paso 1. De tal manera que la serie encontrada es la solución general de la ecuación diferencial dada.

Paso 6. Teniendo una condición inicial encontramos la constante 0c y así

encontramos la solución particular.

Veamos ejemplos tanto para ecuaciones diferenciales lineales como para ecuaciones diferenciales no lineales.

Ejemplo: Hallar la solución general de la ecuación diferencial 02 yy

Paso 1. Se considera la solución como serie.

0

n

n

n

y c x

Paso 2. Derivamos la ecuación anterior

1

0

n

n

n

y nc x

Paso 3. Sustituimos los resultados anteriores en la ecuación diferencial a solucionar.

1

0 0

2 2 0n n

n n

n n

y y nc x c x

Page 93: MODULO Ecuaciones Diferenciales 2 2011

92

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

1

0 0

2 0n n

n n

n n

nc x c x

Paso 4. Comparamos coeficientes de los dos miembros y hallamos los valores C

1

0 0

1 2 0n n

n n

n n

n c x c x

Obtenemos la formula de recurrencia 11 2n nn c c de donde

1

2, 0

1

nn

cc n

n

Esta fórmula genera los resultados siguientes en términos de 0c

1 02c c

2

1 02

2 2

2 2

c cc

3 3

2 0 03

2 2 2

3 2 3 3!

c c cc

4 4

3 0 04

2 2 2

4 2 3 4 4!

c c cc

Page 94: MODULO Ecuaciones Diferenciales 2 2011

93

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

02

!

n

n

cc

n

Paso 5. Sustituimos en la solución en serie del paso 1. De tal manera que la serie encontrada es la solución general de la ecuación diferencial dada.

200 0

0 0

2 2

! !

n nn n x

n n

cy x c x c e

n n

Ejemplo: Hallar la solución general de la ecuación diferencial 21y xy x

Paso 1. Se considera la solución como serie.

0

n

n

n

y c x

Paso 2. Derivamos la ecuación anterior

1

0

n

n

n

y nc x

Paso 3. Sustituimos los resultados anteriores en la ecuación diferencial a solucionar.

1 2

0 0

1n n

n n

n n

y xy nc x x c x x

Paso 4. Comparamos coeficientes de los dos miembros y hallamos los valores C

1 1c 0

22

cc 3 1

2( 1 ) / 3

3c c

04

8

cc 5

2

15c

06

48

cc

Page 95: MODULO Ecuaciones Diferenciales 2 2011

94

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

Así sucesivamente, encontraremos los nc

Paso 5. Sustituimos en la solución en serie del paso 1. De tal manera que la serie encontrada es la solución general de la ecuación diferencial dada.

Aquí la daremos a la solución una nueva forma de expresión:

2 3 40 00

2....

2 3 8

c cy c x x x x

Se deja al estudiante encontrar una solución particular para este ejercicio con las

ecuaciones resultantes. Sol. Co 1

Comúnmente este tipo de solución se llama solución alrededor de cero.

Lección 39: Solución de ecuaciones diferenciales de orden superior mediante series de potencias. Para esta lección consideremos el mismo proceso de solución de ecuaciones diferenciales de primer orden.

Ejemplo: Hallar la solución general de la ecuación diferencial 0 yyxy

Paso 1. Se considera la solución como serie.

0

n

n

n

y c x

Paso 2. Derivamos la ecuación anterior

1 2

1 1 2

, , 1n n n

n n n

n n n

y nc x xy nc x y n n c x

Page 96: MODULO Ecuaciones Diferenciales 2 2011

95

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

Paso 3. Sustituimos los resultados anteriores en la ecuación diferencial a solucionar.

2

2 1 1

1 0n n n

n n n

n n n

n n c x nc x c x

2

2 1

1 1n n

n n

n n

n n c x n c x

Paso 4. Comparamos coeficientes de los dos miembros y hallamos los valores C,

pero ajustamos índices sustituyendo n 2 en el primer miembro. (Diferencia clave).

2

2 1

2 1 1n n

n n

n n

n n c x n n x

Se obtiene la formula de recurrencia

2

1, 0

2 1 2

nn n

n cc c n

n n n

Y los coeficientes de la serie solución son

02

2

cc

13

3

cc

2 04

4 2 4

c cc

2 15

5 3 5

c cc

4 06

6 2 4 6

c cc

5 17

7 3 5 7

c cc

0 0

2

1 1

2 4 6 2 2 !

k k

k k

c cc

k k

1

2 1

1

3 5 7 2 1

k

k

cc

k

Page 97: MODULO Ecuaciones Diferenciales 2 2011

96

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

Paso 5. Sustituimos en la solución en serie del paso 1. De tal manera que la serie encontrada es la solución general de la ecuación diferencial dada.

2 4 3 5

0 112 2 4 3 3 5

x x x xy c c x

Utilizando la sumatoria tenemos:

2 2 1

0 1

0 0

1 1

2 ! 3 5 7 2 1

k kk k

kk k

x xy c c

k k

Ejemplo: Hallar la solución general de la ecuación diferencial

2(1 ) 2 2 0t y ty y

Paso 1. Se considera la solución como serie.

0

n

n

n

y c t

Paso 2. Derivamos la ecuación anterior

1 2

1 0 2

, , 1n n n

n n n

n n n

y nc t ty nc t y n n c t

Paso 3. Sustituimos los resultados anteriores en la ecuación diferencial a solucionar.

2 2 1

2 1 0

(1 ) 1 2 2 0n n n

n n n

n n n

t n n c t t nc t c t

Page 98: MODULO Ecuaciones Diferenciales 2 2011

97

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

Paso 4. Comparamos coeficientes de los dos miembros y hallamos los valores C,

pero ajustamos los índices sustituyendo =n 2 en el primer miembro. (Clave

de solución para encontrar las constantes).

1

1 1

2 2n n

n n

n n

t nc t nc t

Se obtiene la formula de recurrencia

2

1

1n n

nc c

n

Dando valores a k de 2, 3,4, 5, 6,7,…se obtienen las constantes o los llamados coeficientes de la serie solución, ellos son:

0nc

Para n impar 4 2 6 0

1,

3c c c c

En general

2 0

1, 1,2,3,4,5,6,7,...

2 1mc c m

m

Para n par.

Paso 5. Sustituimos en la solución en serie del paso 1. De tal manera que la serie encontrada es la solución general de la ecuación diferencial dada.

2

1 0

1

1[1 ]

2 1

m

m

y c t c tm

Lección 40: Ejercicios Propuestos.

Determinar la solución de cada un de las siguientes ecuaciones diferenciales

mediante la aplicación de series:

1. 12 15 6 0y y y

Page 99: MODULO Ecuaciones Diferenciales 2 2011

98

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

4 32. 12 2 0y y y y

33. 3 14 15 0y y y

24. 23 22 26 22 36 xy y y y e

1

5. 15 16 18 senxy y y e

Puedes tomar referencia de http://es.wikipedia.org http://www.terra.es Una serie de potencias alrededor de x=0 es una serie de la forma:

Una serie de potencias alrededor de x=a es una serie de la forma:

En el cual el centro es a, y los coeficientes cn son constantes. Ejemplos

La serie geométrica es una serie de potencias absolutamente convergente si | x | < 1 y divergente si | x | > 1 ó | x | = 1

La serie de potencias es absolutamente convergente para todo

La serie de potencias solamente converge para x = 0

RECORDEMOS

Page 100: MODULO Ecuaciones Diferenciales 2 2011

99

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

En matemáticas, la serie de Taylor de una función f(x) infinitamente derivable (real o compleja) definida en un intervalo abierto (a-r, a+r) se define como la siguiente suma:

Grafica. 7

Sin (x) y aproximaciones de Taylor centradas en 0, con polinomios de grado 1, 3, 5, 7, 9, 11 y 13.

Expresiones analíticas

CAPITULO 3: FUNCIONES ESPECIALES Y SERIES MATEMATICAS

SERIE DE

TAYLOR

Page 101: MODULO Ecuaciones Diferenciales 2 2011

100

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

Introducción. En el presente capitulo se trataran las funciones especiales y series matemáticas ya que son métodos útiles a la hora de resolver ecuaciones diferenciales, para lo cual se abordaran los siguientes temas: funciones analíticas, series de Taylor, soluciones mediante series de Taylor, series de Maclaurin, algunos ejercicios propuestos y conceptos para recordar con el fin de una mejor comprensión y manejo de los mismos. Lección 41: Funciones analíticas. http://www.caribu.byethost8.com/ Lección 42: Series De Taylor.

Grafica. 8 Grafico: TAYLOR (3·x·y + COS(x·y), x, 0, 6)

Grafica del programa derive y Editor Matemático Mathtype Fuente: Esta investigación Autor: Carlos Buchely

El teorema de Taylor establece que, si una función f x posee suficientes

derivadas en un punto a, existen un entorno de a (cuya amplitud no se especifica)

y un polinomio P ( )n x , del grado n que se desee, tales que la diferencia

– nf x P x tiende a cero cuando x a , y lo hace “más rápidamente” que

– .n

x a con algo más de precisión, entonces ( ) ( )

lim 0( )

n

nx a

f x P x

x a

o como

también se dice, – 0 – n

nf x P x x a

Page 102: MODULO Ecuaciones Diferenciales 2 2011

101

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

Importante:

a) Elegido el grado n, el polinomio nP x es único.

b) 0 1 1 ( ;  n nP x f a P x P x ( 1)

1( )( )

( 1)!

nnf a

x an

. Para mayor

precisión requiere calcular sólo un término más, no es necesario recalcular todo. Es necesario tener en cuenta que existen los polinomios de Taylor, el polinomio de Taylor para fracciones algebraicas por ejemplo.

Sea la función racional

3

2

2 3( )

2 1

x xf x

x x

. Se pide un desarrollo de Taylor de

grado 3 en a = 0. Desarrollando la división en potencias se tiene:

2 3 2

1

3 2 0 1 2

1 6 1 3 1 5 6

5 1

6 10

4 12

n

i i

i

x x x x x X Y

Realizando operaciones de comprobación se tiene:

3 3 4 52 3

2 2 2

2 3 3 2 4 12( ) 3 5 6

2 1 1 2 1 2

x x x x x xf x x x x

x x x x x x

El polinomio 2 33 5 6x x x es el polinomio de Taylor

Lección 43: Solución de ecuaciones diferenciales mediante Series de Taylor Como ya tenemos la conceptualización y generalidades de las series de Taylor. Ahora es necesario aprender a resolver ecuaciones diferenciales con condiciones iniciales con la ayuda de las series de potencias y en general con series de Taylor. Para resolver ecuaciones diferenciales.

Un desarrollo en serie de Taylor, en torno al punto x a :

....!3

)()('''

!2

)()(''

!1

)()(')()(

32

ax

ayax

ayax

ayayxy

Page 103: MODULO Ecuaciones Diferenciales 2 2011

102

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

Ahora 1. La función y x tiene derivadas de todos los órdenes.

2. la serie converge.

Si en particular hacemos   ,n na x y x x h entonces la

....6

)('''2

)('')(')()(32

h

xyh

xyhxyxyhxy nnnnn

Si suponemos que y(x) es una solución de la ecuación diferencial de primer orden

’ , ,y f x y y además consideramos solamente dos términos de la serie

anterior, se obtiene la siguiente aproximación:

hxyxfxyhxy nnnn ))(,()()(

Relacionando lo anterior con la equivalencia a la fórmula de Euler.

),(1 nnnn yxhfyy

Si se conservan tres términos de la serie, podemos escribir:

2)('')(')()(

2hxyhxyxyhxy nnnn

Realizando las sustituciones

2

2'''

1

hyhyyy nnnn

Ejemplo.

Usar las series de Taylor para hallar la solución en serie de

2dyy t

dt

Donde

la condición inicial es 1y en 0t . Usaremos los primeros términos de esta

solución en serie para aproximar los valores de y

Solución: Como 0c entonces,

2 30 0

0 02! 3!

y yy y y t t t

Page 104: MODULO Ecuaciones Diferenciales 2 2011

103

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

Como 10 y e 2y y t , derivando se tiene lo siguiente

10 y

2y y t 10 y

12 yyy 1120 y

222 yyyy 4220 y

yyyyy 624 146804 y

245 682 yyyyyy 666322805 y

Por tanto, la aproximación es:

4 5

2 3 4 50 0 0 00 0

2! 3! 4! 5!

y y y yy y y t t t t t

Reemplazando los valores encontrados tenemos

2 3 4 51 4 14 661

2 3 4 5t t t t t

Ahora ya se puede aproximar la solución de y para diferentes intervalos de t. es decir dar valores dentro de un intervalo en la anterior serie (Tema de un nuevo curso). Ejemplo. Usar las series de Taylor para hallar la solución en serie de x0 1,      y0 1,      h 0.1, aplicando la regla obtenemos

Solución:

’’ 2 ’ 2y xy y

10 y

2)1)(1(22 00

'

0 yxy

4)2)(1(22 '

00

''

0 yxy

Page 105: MODULO Ecuaciones Diferenciales 2 2011

104

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

Por lo que la solución particular es:

23.1)2

1.0(4)1.0(21

2

22'''

001 h

yhyyy o

; Ejemplo. Use la fórmula de Taylor de tres términos para obtener la solución particular

de y’ x y – 1 2 , en la cual Y 0 2

Solución: x0 0,      y0 2,      h 0.1,

’’ 2 1 1 ’y x y y

20 y

1)120()1( 22

00

'

0 yxy

4)11)(120(2)1)(1(2 '

000

''

0 yyxy

Se obtiene la solución particular:

1200.2)2

1.0(4)1.0(12

2

22'''

001 h

yhyyy o

Verifica lo anterior, desarrolla ejercicios de ecuaciones diferenciales con

condiciones iniciales. Plantea tus propios ejercicios.

Lección 44: Series de MacLaurín

Es necesario recordar que las series de MacLaurin se relacionan con Taylor con la

propiedad que en Taylor a 0 y estaremos hablando de McLaurin. Entonces Hablemos un poco de la serie de McLaurin

f(x)= f(0)+ f (0)x+f (0)x

2!+...+

f (0)

n!x +R (x)

2 (n)n

n+1

n+1

(n+1)n+1R (x)=

f (z)

(n+1)!x

donde 0 z x.

Page 106: MODULO Ecuaciones Diferenciales 2 2011

105

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

f(x)=f (0)

n!x +R (x)

0

n (n)n

n+1.

0

(n)n 2

(n)n

f (0)

n!x = f(0)+ f (0)x+

f (0)

2!x +....+

f (0)

n!x +...

Esta serie describe a f x cuando coincida con la fórmula de McLaurin si

cumple: 1) Se trabaje en el intervalo de convergencia de la serie.

2)

límn

R (x)= 0n+1 .

Veamos un cuadro de series de Taylor notables tomadas de la web: http://es.wikipedia.org Función exponencial

0

para todo !

nx

n

xe x

n

1

1

( 1)ln(1 ) para 1

nn

n

x x xn

Serie Geométrica

0

1 para 1

1

n

n

x xx

Binomio

0

(1 ) ( , ) para todo 1 y cualquier complejo n

n

x C n x x

Función trigonométrica

2 1

0

( 1)sin para todo

(2 1)!

nn

n

x x xn

Page 107: MODULO Ecuaciones Diferenciales 2 2011

106

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

2

0

( 1)cos para todo

(2 )!

nn

n

x x xn

2 12

1

( 4) (1 4 )tan para

(2 )! 2

n nnn

n

Bx x x

n

22

0

( 1)sec para

(2 )! 2

nnn

n

Ex x x

n

2 1

20

(2 )!arcsin para 1

4 ( !) (2 1)

n

nn

nx x x

n n

2 1

0

( 1)arctan para 1

2 1

nn

n

x x xn

Funciones Hiperbólicas

2 1

0

1sinh para todo

(2 1)!

n

n

x x xn

2

0

1cosh para todo

(2 )!

n

n

x x xn

2 12

1

4 (4 1)tanh para

(2 )! 2

n nnn

n

Bx x x

n

1 2 1

20

( 1) (2 )!sinh para 1

4 ( !) (2 1)

nn

nn

nx x x

n n

1 2 1

0

1tanh para 1

2 1

n

n

x x xn

Esta franja incluye ejercicios propuestos, dirigidas a proveerte de un mecanismo

que te permita determinar el nivel de dominio adquirido con relación a la unidad Nº

dos.

Page 108: MODULO Ecuaciones Diferenciales 2 2011

107

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

Lección 45: Ejercicios Propuestos

1. Mediante series de potencias resolver la ecuación diferencial.

a. 09 yy

b. 04 yy

c. 03 xyy

d. 0 yxy

e. 042 yyx

Soluciones:

3 3

1) x x

oa y c e c e

1) cos(2 ) (2 )ob y c x c sen x

2 2 1

0 1

0 0

( 3) ( 3))

2 ! 1.3.5...(2 1)

k kk k

kk k

c y a x a xk k

2 1

1

0

)2 !(2 1)

k

kk

xd y a

k k

2 4

) (1 ............)8 128

o

x xe y a

2. Usar el teorema de Taylor para hallar solución de la ecuación diferencial con las condiciones iniciales. Donde n es el número de términos a encontrar o aproximar.

a. 2 1 0 0 2, 5y x y y n

b. 2 0 0 1, 0 3, 4y xy y y n

Soluciones:

Page 109: MODULO Ecuaciones Diferenciales 2 2011

108

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

a)

2 3 42 2 10 22

1! 2! 3! 4!

x x x xy

b)

3 43 2 121

1! 3! 4!

x x xy

3. verificar si la serie converge a la función dada.

1,1,

12

1

0

12

xarctgn

x

n

nn

Ecuación diferencial: 0212 yxyx

Soluciones: si converge utilizando la ecuación diferencial. 0212 yxyx

PREPARATE PARA LA EVALUACION FINAL

I. Hallar la solución general de la ecuación diferencial.

1. xx

y

dx

dy 2

2. xeyy 2

3. 02582810 dyyxdxyx

4. 01ln1 dydxyy

5. 22 yxyyx

Page 110: MODULO Ecuaciones Diferenciales 2 2011

109

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

Solución:

1)

3

2 2ln 2y x x x cx

2) 2x xy ce e

3) 2 25

5 8 2 22

x xy x y y c

4) ln(1 ) xy ce

5) 2 22y cx c

II. Hallar la solución general de la ecuación diferencial de segundo orden.

1. xxyy 3 sol:

3

1 2( ) cos( ) 5y c sen x c x x x

2. xyy cos2 sol: 1 2( ) ( ) cos( )y c x sen x c x

3. xxeyyy 22 sol:

3

1 2( )3

xxy c c x e

III. Hallar la familia de trayectorias ortogonales

1. Cxy 2

Page 111: MODULO Ecuaciones Diferenciales 2 2011

110

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA – UNAD ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA CONTENIDO DIDÁCTICO DEL CURSO: 100412 – Ecuaciones Diferenciales

Solución:

Son círculos

2 2 2( )x y k k

IV. Hallar la solución utilizando series para la siguiente ecuación diferencial.

1. 04 yyx

Solución:

0

04

n

nk

xy a

V. Estudia las diferentes aplicaciones de las ecuaciones diferenciales y

realiza una aplicación de interés en alguna área de tu carrera profesional, la

cual estas cursando en la Universidad Nacional Abierta y a distancia UNAD.

Lo importante es que sea de tu creatividad y así realizar la transferencia en el

curso.

Puedes descargar aplicaciones y laboratorios en:

http://www.caribu.byethost8.com/

Regístrate.