1
Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC. Coupled Transmission and Distribution (T&D) Modeling Transmission and distribu.on are operated by different en..es Increasing penetra.on of DER, increasing deployment of automa.on devices needs coupled T&D modeling Proposed global power flow model by masterslavespliBng method Coupled T&D system dynamics simulator PETSc + Socket communica.on + GridLabD MODERNIZING FUTURE ELECTRIC POWER DISTRIBUTION GRIDS Modeling, Analysis, and Implementations under New Challenges Chen Chen, Ning Kang, Shrirang G. Abhyankar, Ravindra Singh, Xiaonan Lu, Jianhui Wang Energy Systems Division, Argonne National Laboratory Electric Power Distribution Grid 101 Components in power distribu.on grids Current distribu.on system opera.on principles Power flows from transmission system (via substa.on) to serve load Design in loop topology, operate in radial topology Oneway power flow Kirchhoff voltage and current laws Distribu.on u.li.es’ objec.ves Maintain voltage within range Protect distribu.on assets from faults Ensure reliability of service Minimize electrical losses New Challenges from Grid Modernization Changes from passive to a more ac.ve and complex distribu.on grid Growing penetra.on of distributed energy resources (DER): twoway power flow Growing customer expecta.on for service reliability and power quality BeVer opera.ng efficiency with exis.ng grid assets Impact of new type of loads Challenges to distribu.on u.li.es Distribu.on automa.on More monitor & control with smart grid Advanced technologies integrated Advanced Distribution Management Systems (ADMS) Integra.on of DER to DMS via DER management system (DERMS) Integra.on with OMS, advanced metering infrastructure (AMI), GIS Provide advanced distribu.on applica.ons – expansion from distribu.on SCADA system References [1] J. Wang, X. Lu, C. Chen, “Guidelines for Implemen.ng Advanced Distribu.on Management System – Requirement for DMS Integra.on with DERMS and Microgrids”, ANL Technical Report, August 2015. [2] Z. Li, J. Wang, H. Sun, Q. Guo, “Transmission Con.ngency Analysis Based on Integrated Transmission and Distribu.on Power Flow in Smart Grid”, IEEE Transac5ons on Power Systems, Vol. 30, No. 6, pp. 3356 3367, November 2015. [3] J. Wang, “Advanced Distribu.on Management Systems for Grid Moderniza.on Importance of DMS for Distribu.on Grid Moderniza.on”, ANL Technical Report, September 2015. [4] J. Wang, “Advanced Distribu.on Management Systems for Grid Moderniza.on – DMS Func.ons”, ANL Technical Report, September 2015. [5] J. Wang, X. Lu, J. T. Reilly, S. Mar.no, “Advanced Distribu.on Management Systems for Grid Moderniza.on – HighLevel Use Cases for DMS”, ANL Technical Report, February 2016. [6] N. Kang and M. J. Mousavi, “Leveraging substa.on automa.on for faulted segment iden.fica.on,” IEEE PES General Mee5ng 2014, Washington D.C., July 2014. [7] N. Kang, M.J. Mousavi, and J. Stoupis “Leveraging Substa.on Automa.on for Distribu.on Systems” EPRI Smart Distribu5on and Power Quality Conference and Exhibi5on, CharloVe, Jun 2014. Distribution System Faulted Segment Identification Mo.va.on Most distribu.on circuit faults are cleared by noncommunica.ng fuses Once the fuse blows, hundreds of customers lose electricity Usually takes the crew hours to iden.fy the faulted segment to restore service Our Solu.on An automated solu.on that determines the faulted segment in real .me Feeder head relay triggers upon a fault and starts recording fault data Substa.on computer receives fault data, calculates the faulted segment, and sends out email no.fica.on to operators and repair crew Projects These related projects are sponsored by DOE Office of Electricity Delivery and Energy Reliability (OE), Office of Energy Efficiency and Renewable Energy (EERE), and the Grid Moderniza.on Laboratory Consor.um (GMLC). Substa.on Voltage regulator Transformer 800 806 808 812 814 810 802 850 818 824 826 816 820 822 828 830 854 856 852 832 888 890 838 862 840 836 860 834 842 844 846 848 864 858 Example: IEEE 34-node test feeder Pole & Capacitor bank Sub. (IED) AFS FSI Faulted Area 1 Faulted Area 2 Distributed Renewables Distributed Generators Distributed Storage Controllable Loads Electric Vehicles ADMS integra.on structure Typical applica.ons Topology processor Intelligent alarm processing Online power flow Shortcircuit analysis State es.ma.on Fault loca.on, isola.on, and service restora.on Volt/VAR op.miza.on Op.mal network reconfigura.on Switch order management Emergency load shedding Shortterm load forecas.ng Grid moderniza.on (source: IEEE) ( ) ( ) 0 T T B B T B B G x ,x G x ,x y = = ( ) 0 D B D G x ,x = State variables Injections from DPS to TPS Power flow equations x: y: G: TPS (Transmission Power System) DPS (Distribution Power System) Set of boundary buses that connect DPS feeders T: D: B: G1 G2 G3 T1 T3 T2 1 4 6 5 9 8 7 2 3 GLD GLD GLD TS PETSc code DS GridLabD Structure of coupled T&D dynamics simulator (above) An example of coupled T&D simula.on (right)

MODERNIZING FUTURE ELECTRIC POWER DISTRIBUTION GRIDS

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Coupled Transmission and Distribution (T&D) Modeling §  Transmission  and  distribu.on  are  operated  by  different  en..es  §  Increasing  penetra.on  of  DER,  increasing  deployment  of  automa.on  

devices  needs  coupled  T&D  modeling  §  Proposed  global  power  flow  model  by  master-­‐slave-­‐spliBng  method  

 §  Coupled  T&D  system  dynamics  simulator  −  PETSc  +  Socket  communica.on  +  GridLab-­‐D  

MODERNIZING FUTURE ELECTRIC POWER DISTRIBUTION GRIDS Modeling, Analysis, and Implementations under New Challenges

Chen Chen, Ning Kang, Shrirang G. Abhyankar, Ravindra Singh, Xiaonan Lu, Jianhui Wang Energy Systems Division, Argonne National Laboratory

Electric Power Distribution Grid 101 §  Components  in  power  distribu.on  grids  

§  Current  distribu.on  system  opera.on  principles  −  Power  flows  from  transmission  system  (via  substa.on)  to  serve  load    −  Design  in  loop  topology,  operate  in  radial  topology  −  One-­‐way  power  flow  −  Kirchhoff  voltage  and  current  laws  

§  Distribu.on  u.li.es’  objec.ves  −  Maintain  voltage  within  range  −  Protect  distribu.on  assets  from  faults  −  Ensure  reliability  of  service  −  Minimize  electrical  losses

New Challenges from Grid Modernization §  Changes  from  passive  to  a  more  ac.ve  and  complex  distribu.on  grid  −  Growing  penetra.on  of  distributed  energy  resources  (DER):  two-­‐way  power  flow  

−  Growing  customer  expecta.on  for  service  reliability  and  power  quality  −  BeVer  opera.ng  efficiency  with  exis.ng  grid  assets  −  Impact  of  new  type  of  loads  

§  Challenges  to  distribu.on  u.li.es  −  Distribu.on  automa.on  −  More  monitor  &  control  with  smart  grid  −  Advanced  technologies  integrated  

Advanced Distribution Management Systems (ADMS) §  Integra.on  of  DER  to  DMS  via  DER  management  system  (DERMS)  §  Integra.on  with  OMS,  advanced  metering  infrastructure  (AMI),  GIS    §  Provide  advanced  distribu.on  applica.ons  –  expansion  from  distribu.on  

SCADA  system  

References [1]  J.  Wang,  X.  Lu,  C.  Chen,  “Guidelines  for  Implemen.ng  Advanced  Distribu.on  Management  System  –  Requirement  for  DMS  Integra.on  with  DERMS  and  Microgrids”,  ANL  Technical  Report,  August  2015.  [2]  Z.  Li,  J.  Wang,  H.  Sun,  Q.  Guo,  “Transmission  Con.ngency  Analysis  Based  on  Integrated  Transmission  and  Distribu.on  Power  Flow  in  Smart  Grid”,  IEEE  Transac5ons  on  Power  Systems,  Vol.  30,  No.  6,  pp.  3356  -­‐  3367,  November  2015.  [3]  J.  Wang,  “Advanced  Distribu.on  Management  Systems  for  Grid  Moderniza.on  -­‐  Importance  of  DMS  for  Distribu.on  Grid  Moderniza.on”,  ANL  Technical  Report,  September  2015.  [4]  J.  Wang,  “Advanced  Distribu.on  Management  Systems  for  Grid  Moderniza.on  –  DMS  Func.ons”,  ANL  Technical  Report,  September  2015.  [5]  J.  Wang,  X.  Lu,  J.  T.  Reilly,  S.  Mar.no,  “Advanced  Distribu.on  Management  Systems  for  Grid  Moderniza.on  –  High-­‐Level  Use  Cases  for  DMS”,  ANL  Technical  Report,  February  2016.  [6]  N.  Kang  and  M.  J.  Mousavi,  “Leveraging  substa.on  automa.on  for  faulted  segment  iden.fica.on,”  IEEE  PES  General  Mee5ng  2014,  Washington  D.C.,  July  2014.  [7]  N.  Kang,  M.J.  Mousavi,  and  J.  Stoupis    “Leveraging  Substa.on  Automa.on  for  Distribu.on  Systems”  EPRI  Smart  Distribu5on  and  Power  Quality  Conference  and  Exhibi5on,  CharloVe,  Jun  2014.  

Distribution System Faulted Segment Identification §  Mo.va.on  −  Most  distribu.on  circuit  faults  are  cleared  by  non-­‐communica.ng  fuses  −  Once  the  fuse  blows,  hundreds  of  customers  lose  electricity  −  Usually  takes  the  crew  hours  to  iden.fy  the  faulted  segment  to  restore  service  

§  Our  Solu.on  −  An  automated  solu.on  that  determines  the  faulted  segment  in  real  .me  −  Feeder  head  relay  triggers  upon  a  fault  and  starts  recording  fault  data  −  Substa.on  computer  receives  fault  data,  calculates  the  faulted  segment,  and  

sends  out  email  no.fica.on  to  operators  and  repair  crew    

Projects These  related  projects  are  sponsored  by  DOE  Office  of  Electricity  Delivery  and  Energy  Reliability  (OE),  Office  of  Energy  Efficiency  and  Renewable  Energy  (EERE),  and  the  Grid  Moderniza.on  Laboratory  Consor.um  (GMLC).  

Substa.on   Voltage  regulator   Transformer  

800

806 808 812 814

810

802 850

818

824 826

816

820

822

828 830 854 856

852

832888 890

838

862

840836860834

842

844

846

848

864

858

 

Example: IEEE 34-node test feeder

Pole  &  Capacitor  bank  

Sub. (IED)

AFSFSI

Faulted Area 1

Faulted Area 2

Distributed  Renewables   Distributed  Generators   Distributed  Storage   Controllable  Loads  

Electric  Vehicles  

ADMS  integra.on  structure  

Typical  applica.ons  -­‐  Topology  processor  -­‐  Intelligent  alarm  

processing  -­‐  On-­‐line  power  flow  -­‐  Short-­‐circuit  analysis  -­‐  State  es.ma.on  -­‐  Fault  loca.on,  isola.on,  

and  service  restora.on  -­‐  Volt/VAR  op.miza.on  -­‐  Op.mal  network  

reconfigura.on  -­‐  Switch  order  

management  -­‐  Emergency  load  shedding  -­‐  Short-­‐term  load  

forecas.ng  

Grid  moderniza.on  (source:  IEEE)  

( )( )

0T T B

B T B B

G x , x

G x , x y

⎧ =⎪⎨

=⎪⎩

( ) 0D B DG x ,x =

State variables Injections from DPS to TPS Power flow equations

x: y: G:

TPS (Transmission Power System) DPS (Distribution Power System) Set of boundary buses that connect DPS feeders

T: D: B:

CommunicationMultiple Instances of GLD - A Sample System

G1

G2 G3

T1

T3T2

1

4

65

987

2 3

GLD

GLDGLD

Figure : 9-bus Test System with three instances of GLD interfaced

S. Abhyankar and K. Balasubramaniam Co-Simulation of Transmission and Distribution System 13 / 22

         TS  PETSc  code  

     DS  GridLab-­‐D  

Structure  of  coupled  T&D  dynamics  simulator  (above)  An  example  of  coupled  T&D  simula.on  (right)