Modern Trends in Airframe Structural Design Komarov

Embed Size (px)

Citation preview

  • 7/31/2019 Modern Trends in Airframe Structural Design Komarov

    1/32

    1

    EWADE 2007 Komarov V.A.

    Modern Trends in AirframeStructural Design

    Professor Komarov V.A.Director of Institute AVIKON

    Of Samara State Aerospace University

  • 7/31/2019 Modern Trends in Airframe Structural Design Komarov

    2/32

    2

    EWADE 2007 Komarov V.A.

    Plan of the presentation

    1. General view on the modern structuraldesign problems.

    2. New ideas for improving design process.3. The example of using a new ideas for research aerodynamic and weight

    efficiency of morphing wing.

  • 7/31/2019 Modern Trends in Airframe Structural Design Komarov

    3/32

    3

    EWADE 2007 Komarov V.A.

    Airframe design process

  • 7/31/2019 Modern Trends in Airframe Structural Design Komarov

    4/32

    4

    EWADE 2007 Komarov V.A.

    Time and resource expediture

    The main reason of greater charges of time and resources in sequential designparadigme is use very simple, (insufficiently exact) mathematical models on earlystage of design.

    For reduction of designing time it is suitable use of highly accuracy mathematical modelson early stage design.

  • 7/31/2019 Modern Trends in Airframe Structural Design Komarov

    5/32

    5

    EWADE 2007 Komarov V.A.

    New paradigm for Airframe Structure Design

  • 7/31/2019 Modern Trends in Airframe Structural Design Komarov

    6/32

    6

    EWADE 2007 Komarov V.A.

    The problem of weight estimation in structuraldesign

    1. Choice of structure topology (skeleton design).2. Estimation of structural mass fraction.3. Weight estimation of the wing, fuselage, etc.4. Weight check.

  • 7/31/2019 Modern Trends in Airframe Structural Design Komarov

    7/32

    7

    EWADE 2007 Komarov V.A.

    Choice of structure topology

  • 7/31/2019 Modern Trends in Airframe Structural Design Komarov

    8/32

    8

    EWADE 2007 Komarov V.A.

    Estimation of structural mass fraction

    Definition of flight vehicles takeoff grossweight via equation of existence

    where

    pp f sys st

    pl o mmmm

    mm = 1

    st st

    o

    mm

    m=

  • 7/31/2019 Modern Trends in Airframe Structural Design Komarov

    9/32

    9

    EWADE 2007 Komarov V.A.

    Example of calculation a wing mass fractionvia weight equation

    Typical weight equation (Eger)

    ( )015,0

    5,431

    114

    cos10

    7

    0

    32

    5,175,000

    4

    01st ++

    +

    ++

    = p

    k k

    c p

    mnk m p

    0

    0,05

    0,1

    0,15

    0,2

    0,25

    0,30,35

    0,4 st mm o = 270 000 kgm o = 685 000 kg

    M

    e l v i l l

    L i p t r o t e

    F a r r e n

    T a y e

    D e n t

    K o z l o v s k y

    D r i g g s

    B a d y a g i n

    R a y m e r

    E g e r

    P a t t e r s s o n

    T o r e n b e e k

    S h e j n i n

    A v e r a g e

  • 7/31/2019 Modern Trends in Airframe Structural Design Komarov

    10/32

    10

    EWADE 2007 Komarov V.A.

    Weight Check

    1. Definition of the weight limits for different part of structure before design.

    2. Analyses of weight penalty after design (if necessary).Looking for decrease of structural mass.

  • 7/31/2019 Modern Trends in Airframe Structural Design Komarov

    11/32

    11

    EWADE 2007 Komarov V.A.

    Unconventional flight vehiclesMorphing Wing from TUDelft

    ?= st m ??= st m(http://www.lr.tudelft.nl/live/pagina.jsp?id=fd5540a7-0cfe-44e5-b1bc-c806fa0410b8&lang=en )

  • 7/31/2019 Modern Trends in Airframe Structural Design Komarov

    12/32

    12

    EWADE 2007 Komarov V.A.

    New ideas for improving design process

    1st

    idea. Load-carrying factor Frame

    Thin-wall structure

    3D-structure

    =

    =n

    iii l N G

    1

    =

    =n

    iii S RG

    1

    =V

    eqv dV G

  • 7/31/2019 Modern Trends in Airframe Structural Design Komarov

    13/32

    13

    EWADE 2007 Komarov V.A.

    Definition of structural mass viaload-carrying factor

    Theoretical structural material volume

    Real mass of structure

    or

    G take into account topology, geometry and external loads specific durability of material

    coefficient of full-mass structure, (it depends on design andtechnology perfect)

    G-criteria allows to calculate absolutely mass of unconventionalstructure with high accuracy

    [ ] in

    iii

    n

    i

    iT l F l V ==

    == 11

    N

    [ ] G

    V m T st == G

    m st =

  • 7/31/2019 Modern Trends in Airframe Structural Design Komarov

    14/32

    14

    EWADE 2007 Komarov V.A.

    2nd idea. Size less criteria of load carryingperfection of structure

    Load-carrying factor is proportional to the linear sizes (coordinates of nodals) of structure andvalue of nodal forces (at retaining of the law of distribution of external loading) dimensional quantity

    Sizeless criteria coefficient of load carryingfactor

    where P- specific load L- specific size

    whence ( aerodynamic analogy : )

    P GC K

    =

    PLC G K = qS C Y y=

  • 7/31/2019 Modern Trends in Airframe Structural Design Komarov

    15/32

    15

    EWADE 2007 Komarov V.A.

    Example of simple structures

    C K = 2,00

    l

    a

    c

    b

    d

    a P

    l

    C K = 3,41a P

    b

    d

    a

    c

    h

    C K = 10,00

    l

    a P

    b a

    l

    b a a P

    C K = 1,00

    a) c)

    b )

    d )

  • 7/31/2019 Modern Trends in Airframe Structural Design Komarov

    16/32

    16

    EWADE 2007 Komarov V.A.

    New weight equation for definition of full wingmass and wing mass fraction

    Specific size square of wing in degree -Specific load lift

    whence

    Weight equation :

    S

    S g mnC G o K =

    **

    *

    S g mn

    GC

    o* K

    =

    g mnY = 0

    S g nC m K wing = S g mnC m o K wing =

  • 7/31/2019 Modern Trends in Airframe Structural Design Komarov

    17/32

    17

    EWADE 2007 Komarov V.A.

    Example of structural topology choice

    3,563,032,682,832,752,692,553

    1,981,891,831,811,781,761,682

    2,071,941,841,711,701,681,621

    = 0,4 = 0,5 = 0,6 = 0,4 = 0,5 = 0,6

    Strategy IIStrategy I

    Panel structures

    Membranestructures

    Wing

  • 7/31/2019 Modern Trends in Airframe Structural Design Komarov

    18/32

    18

    EWADE 2007 Komarov V.A.

    Example of morphing wingaerodynamic and weight efficiency research

    Grant CRDF: REO-1386

    2 4

    1

    4

    c t i p = 3

    c

    r o o

    t

    = 4

    2 12

    b /2 = 20

    Axis of symmetry

    6

    2 4

    2 . 1

    9 3 5

    4 . 3

    8 7

    2 . 3

    8 7

    4 . 7

    7 4

    Wing 1a

    Wing 1b

    Wing 2a

    Wing 2b

    Wing 3a

    Wing 3b

  • 7/31/2019 Modern Trends in Airframe Structural Design Komarov

    19/32

    19

    EWADE 2007 Komarov V.A.

    Scheme of wing parts joints

    2

    Inner wing

    Beam Outer wing

    Rolls

    Fuselage joints1

    Rigid connection3

  • 7/31/2019 Modern Trends in Airframe Structural Design Komarov

    20/32

    20

    EWADE 2007 Komarov V.A.

    3 rd idea. Using 3D-model with variable density

    Model

    Traditional material

  • 7/31/2019 Modern Trends in Airframe Structural Design Komarov

    21/32

    21

    EWADE 2007 Komarov V.A.

    .Hypothetic material with variable density

    Algorithm of density distribution optimization

    [ ]

    0

    01

    1.

    2.

    3.

    i

    i

    eqvi

    i

    const

    =

    =

    [ ] [ ] E E

    =

    =

  • 7/31/2019 Modern Trends in Airframe Structural Design Komarov

    22/32

    22

    EWADE 2007 Komarov V.A.

    Test

    3D-model of the wing structure p

    8-layers of 3D-solid finite elementsBoundary conditionsof console

  • 7/31/2019 Modern Trends in Airframe Structural Design Komarov

    23/32

    23

    EWADE 2007 Komarov V.A.

    Comparison of load-carrying factor coefficientcalculations for thin-wall structure and 3D-solid model

    with variable density

    22.50 22.34 22.23 22.16 22.1122.7523.1423.81

    25.05

    28.10

    19.58

    18

    20

    22

    24

    26

    28

    30

    1 2 3 4 5 6 7 8 9 10 11Iteration n

    C K

    solid (8 layers)

    Aspe ct ra tio b /c = 8

    w ing box

    41.15 40.83 40.61 40.45 40.3541.6342.41

    43.7346.11

    51.74

    35.56

    3436384042444648

    5052

    1 2 3 4 5 6 7 8 9 10 11Iteration n

    C K

    s olid (8 laye rs )

    Aspec t ratio b /c = 12

    w ing box

  • 7/31/2019 Modern Trends in Airframe Structural Design Komarov

    24/32

    24

    EWADE 2007 Komarov V.A.

    Wind tunnel model 1

  • 7/31/2019 Modern Trends in Airframe Structural Design Komarov

    25/32

    25

    EWADE 2007 Komarov V.A.

    Wind tunnel model 2with pressure of orifices

  • 7/31/2019 Modern Trends in Airframe Structural Design Komarov

    26/32

    26

    EWADE 2007 Komarov V.A.

    Spanwise load distributions

  • 7/31/2019 Modern Trends in Airframe Structural Design Komarov

    27/32

    27

    EWADE 2007 Komarov V.A.

    3D-model with variable density of material

    X

    Y

    Z

  • 7/31/2019 Modern Trends in Airframe Structural Design Komarov

    28/32

    28

    EWADE 2007 Komarov V.A.

    External loads

  • 7/31/2019 Modern Trends in Airframe Structural Design Komarov

    29/32

    29

    EWADE 2007 Komarov V.A.

    Comparison of weight perfection

    0,000

    5,000

    10,000

    15,000

    20,000

    25,000

    30,000

    35,000

    0 0,25 0,5 0,75 1

    Morph

    Trap

    Morph for uniform loa d dis tribution

    t c

    C K

    d i m e n s

    i o n

    l e s s e q v

    i v a l e n

    t o

    f w

    i n g w e i g

    h

    ge om e trica l pa ra m e te r of te le s cope wing

  • 7/31/2019 Modern Trends in Airframe Structural Design Komarov

    30/32

    30

    EWADE 2007 Komarov V.A.

    Comparison maximum aerodynamic efficiency

    0.000

    5.000

    10.000

    15.000

    20.000

    25.000

    30.000

    35.000

    40.000

    0 0.25 0.5 0.75 1

    Morph

    Trap

    L/D max

    t c

    m a x

    i m u m

    a e r o

    d y n a m

    i c e

    f f i c i e n c

    geome trica l parame ter of teles cope wing

  • 7/31/2019 Modern Trends in Airframe Structural Design Komarov

    31/32

    31

    EWADE 2007 Komarov V.A.

    Pressurized cabin, pressure vesselSpecific volume volume - VSpecific load pressure P

    Some results for reservoirs:

    Spherical

    Cylindrical

    Spherical from CM

    Cylindrical from CM

    V P G

    C K

    =

    23=

    K C

    3= K C

    3= K C

    3= K C

  • 7/31/2019 Modern Trends in Airframe Structural Design Komarov

    32/32

    32

    EWADE 2007 Komarov V.A.

    Conclusion

    Load-carrying factor allows :

    1. To put in according to load-carrying scheme(topology of structure) the certain dimensionlessvalue which defines weight perfection of a design.

    2. To build "weight" formulas for any designs.3. To accumulate the knowledge in convenient form(dimensionless!) for analysis of existing andperspective designs.

    There are 3 new ideas in the lecture, which can be usefulto increase efficiency of early stage design.

    K C