35
Models and Physiology of the Neuron

Models and Physiology of the Neuron

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Models and Physiology of the Neuron

Models  and  Physiology  of  the  Neuron  

Page 2: Models and Physiology of the Neuron

Literature  

•  C.  Koch  -­‐  Biophysics  of  Computa=on  •  P.  Dayan  and  L.F.  AbboB  -­‐  Theore=cal  Neuroscience  •  C.  Koch  and  I.  Segev  (ed.)  Methods  in  Neuronal  Modeling  

•  G.M.  Shepherd,  The  Synap=c  Organiza=on  of  the  Brain    •  S.H.  Strogatz  Nonlinear  Dynamics  and  Chaos  •  E.M.  Izhikevich  Dynamical  Systems  in  Neuroscience  •  J.  Hertz,  A  Krogh,  and  R.G.  Palmer,  Introduc=on  to  the  Theory  of  Neural  Computa=on.    

•  W.  Mass  C.  Bishop,  Pulsed  Neural  Networks    

Page 3: Models and Physiology of the Neuron

Neuron    

•  Ramon  &  Cajal  proposed  the  atomic  theory  of  CNS  in  1908  

Page 4: Models and Physiology of the Neuron

Neuron    •  More  detail  

Page 5: Models and Physiology of the Neuron

Cell  Membrane  

Page 6: Models and Physiology of the Neuron

Cell  Membrane  

Page 7: Models and Physiology of the Neuron

Cell  Membrane  

Page 8: Models and Physiology of the Neuron

Hodgkin  and  Huxley  Model  

Patch  of  cell  membrane.  In  the  model  there  is  a  capacitor  C,  to  represent  the  membrane  capacitance,  a  sodium  conductance  GNa,  potassium  conductance  GK,  and  a  leakage  conductance  GL.  The  membrane  poten=al  V  is  the  poten9al  inside  the  cell  minus  the  poten=al  outside  

Page 9: Models and Physiology of the Neuron

Hodgkin  and  Huxley  Model  

•  Gna  and  Gk  can  be  thought  as  the  gate  opening  probability.  

•  NA  channel  has  two  types  of  gates  (m  and  h)  ,  and  K  just  one.      

Page 10: Models and Physiology of the Neuron

Hodgkin  and  Huxley  Model  

•  Changes  in  conductance  and  HH  variables  during  an  AP  

Page 11: Models and Physiology of the Neuron

Other  Conductance  Models  

•  These  are  the  most  accurate  models  for  neural  excitability  

–  FitzHugh-­‐Nagumo  – Morris-­‐Lecar  –  Hindmarsh-­‐Rose  

The  difficulty  is  that  all  these  models  are  nonlinear  and  have  mul=ple  stable  opera=ng  points  that  depend  on  the  model  parameters    

Page 12: Models and Physiology of the Neuron

Dendri=c  Tree  Models  

•  Cable  theory  can  be  used  to  es=mate  the  conductance  of  the  dendri=c  tree  as    

where  L  is  the  electrotonic  length  of  the  cylinder  which  depends  on  its  length,  diameter,  and  resistance.    

•  A  simple  recursive  algorithm  scales  linearly  with  the  number  of  branches  and  can  be  used  to  calculate  the  effec=ve  conductance  of  the  tree.    

•  Compartment  models  are  more  accurate,  but  computa=onally  more  involved.    

Page 13: Models and Physiology of the Neuron

Synap=c  models  

The  response  of  a  neuron  to  individual  neurotransmiBers  can  be  modeled  as  an  extension  of  the  classical  Hodgkin-­‐Huxley  model  with  both  standard  and  nonstandard  kine=c  currents.    

Four  neurotransmiBers  have  primarily  influence  in  the  CNS.  

 AMPA/kainate  receptors  are  fast  excitatory  mediators  while  NMDA  receptors  mediate  considerably  slower  currents.  Fast  inhibitory  currents  go  through  GABAA  receptors,  while  GABAB  receptors  mediate  by  secondary  G-­‐protein-­‐ac=vated  potassium  channels.  

Page 14: Models and Physiology of the Neuron

14  

A  Wealth  of  Firing  PaBerns  

Page 15: Models and Physiology of the Neuron

15  

Neuron  Models  

 There  are  many  neuron  models  spanning  a  large  range  of  complexity:  

• Conductance  based  Models  

•   Hodgkin-­‐Huxley  •   Compartment/Synap=c  Models  

• Threshold-­‐Fire  Model  

•   Simple  Spiking  Neuron  Model  (integrate  and  fire)  

•     Leaky  Integrate-­‐and-­‐Fire  Model  

Page 16: Models and Physiology of the Neuron

16  

Spiking  Neuron  Model  

 Describe  the  state  of  ith  neuron  by  a  state  variable  ui.  The  neuron  will  fire    at  tk  if  u  reaches  a  threshold  θ. The  set  of  all  firing  =mes  is  

Two  different  processes  contribute  to  u:  

•   The  state  variable  integrates  the  current  over  =me    

• Aeer  firing,  the  variable  is  reset  by  adding  a  nega=ve  number    

•   The  neuron  may  receive  inputs  from  presynap=c  neurons.  The  state  is  increased  (or  decreased)  by    

•   To  make  it  more  accurate  a  refractory  period  can  be  add  

Page 17: Models and Physiology of the Neuron

17  

Spiking  Neuron  Model  

The  problem  is  when  the  neuron  receives  excita=on  below  threshold  that  never  decay!  

Page 18: Models and Physiology of the Neuron

Leaky  Integrate  and  Fire  

•  In  the  leaky  integrate-­‐and-­‐fire  model  a  "leak"  term  is  added  to  the  membrane  poten=al.  The  model  looks  like  

where  Rm  is  the  membrane  resistance.  This  forces  the  input  current  to  exceed  some  threshold  Ith  =  Vth  /  Rm  in  order  to  cause  the  cell  to  fire,  else  it  will  simply  leak  out  any  change  in  poten=al.  The  firing  frequency  thus  looks  like  

which  converges  for  large  input  currents  to  the  previous  leak-­‐free  model  with  refractory  period  

Page 19: Models and Physiology of the Neuron

19  

What  is  the  Neural  Code?  

 Two  basic  hypothesis:  

•   Pulse  Timing  Code  –  the  arrival  of  each  ac=on  poten=al  carries  informa=on  (evidence  from  the  fly’s  eye)    

•   Rate  Code  I  –  Number  of  spikes  in  a  100  –500  msec  window  (evidence  from  motor  neurons).    

•   Rate  Code  II  –  Average  over  a  neural  popula=on.      Very  probably  both  methods  co-­‐exist.    

Page 20: Models and Physiology of the Neuron

20  

Pulse  Timing  Codes  

 Define  spike  train  as:  

Where  δ  is  the  delta  func=on  and  ti  are  the  firing  =mes.  

A  spike  train  contains  only  informa=on  on  the  =mes  the  events  occur.  Informa=on  w.r.t.  s=mulus  my  be  contained  in  the:  

•   Time  to  first  spike  

•   Phase  

•   Correla=on  and  Synchrony  

Page 21: Models and Physiology of the Neuron

21  

Rate  Codes  

Perhaps  the  most  widely  used  quan=fier  of  spike  trains  is  the  “firing  rate”,  which  measures  the  number  of  events  per  unit  =me.    

Several  Measures:  

The  spike-­‐count  rate  is  the  number  (n)  of  spikes  on  a  given  interval  T,  or    

From  the  spike  train,  let  us  count  the  number  of  spikes  within  a  window,  obtaining  the  mean  firing  rate  

Where  nsp  is  the  number  of  spikes.    

Page 22: Models and Physiology of the Neuron

22  

Rate  Codes  

Peri-­‐S9mulus  Time  Histograms  (PSTH)    

Let  us  assume  that  one  s=mulates  repeatedly  the  same  neuron,  collect  the  data  for  each  s=mulus,  and  then  align  the  data.  In  each  trial  we  can  compute  the  spike-­‐count  average,  and  then  average  over  the  trials.  This  is  called  the  trial  average,  denote  here  by  <  r  >,  and  if  we  have  sufficient  trials  one  can  decrease  T1  to  a  rather  small  value,  i.e.  ΔT.  Now  we  can  define  the  firing  rate  r(t)  as    .      

Page 23: Models and Physiology of the Neuron

The  Poisson  Process  •  Define  a  =me  interval  [0,T],  and  assume  we  have  n  points  to  throw  to  

the  =me  interval.  The  ques=on  is:  what  is  the  probability  of  gevng  k  of  these  n  points  land  in  a  given  sub  interval  t0  of  [0,T]?    

•  Assuming  that  the  experiment  of  throwing  each  point  is  independent  of  the  others  and  each  point  we  throw  has  a  probability  p  of  landing  on  the  interval  (p=t0/T),  and  probability  q=1-­‐  p  of  landing  outside,  the  probability  of  k  points  falling  in  t0  is  the  binomial  distribu=on    

•  Taking  limits  for  n  very  large  and  the  interval  very  small,  we  obtain    

•   where  λ=  n/T.  If  the  interval  t0  becomes  infinitesimal  (i.e.  very  very  small)  and  we  are  only  interested  in  the  probability  that  a  single  point  lands  in  the  infinitesimal  interval  t0  (which  becomes  just  a  point  t  in  the  line)  we  can  forget  about  the  exponen=al  and  obtain                                    .  λ  is  called  the  rate  (or  intensity),  and  it  measures  the  “density”  of  points  in  a  macroscopic  interval.  

Page 24: Models and Physiology of the Neuron

The  Poisson  Spike  Train  

•  To  go  from  points  in  the  line  to  spike  trains,  we  define  a  random  process  as  an  index  set  of  random  variables  over  =me.  Specifically,  let                      

     If  ti  are  random  variables  specified  by  the  binomial  probability  law,  this  random  process  is  called  a  Poisson  process.  What  is  interes=ng  in  the  Poisson  process  is  that  both  mean  and  the  autocorrela=on  func=on  are  completely  specified  by  λ.  

Page 25: Models and Physiology of the Neuron

The  Poisson  Spike  Train  

•  Note  that  now  we  have  two  different  ways  of  specifying  the  spike  train:  by  its  =ming  events  or  by  its  rate.    

•  They  describe  the  process  at  two  different  scales    – Timing  methods  – Rate  methods  

•   Note  that  the  rate  assumes  a  model  (memoryless  in  this  case).    

Page 26: Models and Physiology of the Neuron

Signal  Processing  with  Spike  Train  Single  channel  spike  trains  •  Rate  es=ma=on  

τ  controls  the  resolu=on  and  smoothness  

Page 27: Models and Physiology of the Neuron

Signal  Processing  with  Spike  Train  Single  channel  spike  trains  •  Spike  trigger  Average  (what  causes  the  spike?):  Es=mates  the  mean  value  of  the  s=mulus  over  =me  before  a  spike  occurs.  Several  s=muli  are  presented  and  they  are  aligned  with  the  occurrence  of  the  spike.  In  a  formula  this  reads    

     where  the  spike  is  assumed  to  occur  at  ti  and  x(t)  is  the  input  s=mulus  

Page 28: Models and Physiology of the Neuron

Signal  Processing  with  Spike  Train  Single  channel  spike  trains  •  Tuning  curve  (finer  spike  analysis):  If  the  neuron  is  processing  informa=on  from  the  s=mulus,  its  firing  rate  will  change  when  the  s=mulus  changes.  Therefore  count  the  number  of  spikes  during  the  presenta=on  of  the  s=mulus  at  each  angle  and  then  create  a  curve  as  a  func=on  of  the  parameter.  The  Gaussian  tuning  curve  can  be  constructed  as    

       where  rmax  is  the  largest  firing  rate  observed,  θmax  is  the  maximal  angle  used  (normally  nega=ve  and  posi=ve)  and  σ is  the  width  of  the  Gaussian  (T  is  measured  in  Hz)  

Page 29: Models and Physiology of the Neuron

Signal  Processing  with  Spike  Train  Single  channel  spike  trains  •  Tuning  curve  for  motor  system  (spike  impact):  The  subject  is  engaged  in  reaching  a  target  in  a  center  out  task  (normally  the  hand)  to  different  points  arranged  in  a  circle.  Then  the  neuron  firing  rate  is  es=mated  for  each  one  of  the  direc=ons  in  the  circle  using  the  formula  

 The  metric  for  evalua=ng  the  tuning  property  of  a  neuron  is  the  tuning  depth.    

Page 30: Models and Physiology of the Neuron

Signal  Processing  with  Spike  Train  Pairwise  Spike  Train  Analysis  •  Similarity  between  spike  trains:  Crosscorrela=on  is  mostly  zero,  so  place  a  kernel  over  the  spikes,  effec=vely  filtering  the  spike  train  with  a  linear  filter.  Oeen  the  impulse  response  of  a  first  order  linear  system,                                                        where  u(t)  is  the  Heaviside  func=on  (zero  for  nega=ve  =me,  1  for  posi=ve  =me)  and  τ  controls  the  pole  loca=on  or  the  decay  rate  of  the  exponen=al.  This  yields                                                          so  crosscorrela=on  can  be  defined    

       Alterna=vely  we  can  also  measure  the  similarity  over  =me  of  a  given  spike  train  by  compu=ng  the  autocorrela=on  func=on  

Page 31: Models and Physiology of the Neuron

Signal  Processing  with  Spike  Train  Pairwise  Spike  Train  Analysis  

Page 32: Models and Physiology of the Neuron

Signal  Processing  with  Spike  Train  Pairwise  Spike  Train  Analysis  •  Dissimilarity  measures:  dis=nguish  several  different  classes  of  neurons  by  their  firing  paBerns.  Even  though  labels  are  not  available  clustering  can  s=ll  explore  the  structure  of  the  responses.  The  most  widely  used  spike  train  distances  are:    

•  van  Rossum  distance  •  The  Cauchy  Schwarz  distance  •  Victor  Purpura  distance  

Page 33: Models and Physiology of the Neuron

Signal  Processing  with  Spike  Train  Pairwise  Spike  Train  Analysis  •  Van  Rossum:  This  distance  extends  to  spike  trains  the  concept  of  Euclidean  distance,  so  conceptually  we  are  mapping  a  full  spike  train  to  a  point  defined  as    

Page 34: Models and Physiology of the Neuron

Signal  Processing  with  Spike  Train  Pairwise  Spike  Train  Analysis  •  Cauchy-­‐Schwarz  distance:    Another  possible  distance  metric  besides  the  Euclidean  is  the  inner  product  distance  between  pairs  of  vectors  (the  cosine  of  the  angle  between  the  vectors).  This  concept  can  be  generalized  using  the  Cauchy  Schwarz  inequality,  yielding    

Page 35: Models and Physiology of the Neuron

Signal  Processing  with  Spike  Train  Pairwise  Spike  Train  Analysis  •  Victor  Purpura  distance:  evaluate  the  cost  of  transforming  one  spike  train  into  the  other.  So  it  operates  on  the  spike  trains  without  the  filter.  Let  us  define  the  cost  of  moving  a  spike  at  tm  to  tn  as  q|tm  −  tn|,  where  q  is  a  parameter  expressing  how  costly  the  opera=on  is.  The  cost  of  dele=ng  or  inser=ng  a  spike  was  set  to  one.  Let  us  define    

       The  VP  distance  between  spike  trains  Si  and  Sj  is  defined  as  

         where  the  minimiza=on  is  between  the  set  of  all  unitary  opera=ons  c[l]  that  transform  Si  into  Sj.