12
Modelling and Simulation of an Inverted Double Pendulum 1.0 Description The inverted Pendulum, is a pendulum which has its mass above its pivot point, it is implemented with pivot point mounted on a cart that can move horizontally and called a CART and POLE (as shown in the diagram below). An inverted Pendulum is inherently unstable and must be actively balanced in order to remain upright by either applying a torque at the pivot or by moving the pivot point horizontally as part of a feedback system. Generally the inverted pendulums are widely used as a benchmark for testing control algorithm; the inverted pendulum is also applied in many industrial and engineering products such as high-precision control of robot arm, stability control of launching rocket, and attitude control of satellite. Fig 1. The Simple pendulum system 1.1 The Article Description: The paper main aim is to show the relationship between controllability and parameters of the system. The paper is based on the modelling of the double pendulum on a cart using Newton’s Laws of motion and linearised on an approximately small angle. However we modelled the using the Lagrange’s Equation hence the difference in the differential equations obtained.

modelling of double inverted pendulum

Embed Size (px)

DESCRIPTION

The material describes the modelling of a double inverted cart pendulum and the simulation of the linear and nonlinear model obtained using Matlab Simulink

Citation preview

Page 1: modelling of double inverted pendulum

Modelling and Simulation of an Inverted Double Pendulum

1.0 Description

The inverted Pendulum, is a pendulum which has its mass above its pivot point, it is

implemented with pivot point mounted on a cart that can move horizontally and called a

CART and POLE (as shown in the diagram below).

An inverted Pendulum is inherently unstable and must be actively balanced in order to remain

upright by either applying a torque at the pivot or by moving the pivot point horizontally as

part of a feedback system.

Generally the inverted pendulums are widely used as a benchmark for testing control

algorithm; the inverted pendulum is also applied in many industrial and engineering products

such as high-precision control of robot arm, stability control of launching rocket, and attitude

control of satellite.

Fig 1. The Simple pendulum system

1.1 The Article Description:

The paper main aim is to show the relationship between controllability and parameters of the

system. The paper is based on the modelling of the double pendulum on a cart using Newton’s

Laws of motion and linearised on an approximately small angle.

However we modelled the using the Lagrange’s Equation hence the difference in the

differential equations obtained.

Page 2: modelling of double inverted pendulum

Fig 2. The Simplified Double Pendulum system

1.2 Modelling and Parameters definition;

M is mass of trolley; 𝒙𝒙 is its displacement; F is the force exerted on trolley; π’Žπ’ŽπŸπŸ and π’Žπ’ŽπŸπŸ are

the mass of left and right rocker; 2π‘³π‘³πŸπŸ and 2π‘³π‘³πŸπŸ are the length of rockers; 𝐽𝐽1 and 𝐽𝐽2 are the

inertia moment of rockers; 𝜽𝜽𝟏𝟏 and 𝜽𝜽𝟐𝟐 are the angle between rockers and the vertical direction.

In the following we derive the differential equations which describe the dynamics of the inverted pendulum system use Lagrange’s equation. Two rockers have similar situation. The kinetic energy of cart is:

𝑇𝑇1 =12𝑀𝑀�̇�π‘₯2

The kinetic energy of the left bob is

𝑇𝑇2 =12π‘šπ‘š1(π‘₯π‘₯1

2Μ‡ + �̇�𝑧12)

where

π‘₯π‘₯1 = π‘₯π‘₯ + 2𝐿𝐿1π‘ π‘ π‘ π‘ π‘ π‘ πœƒπœƒ1, 𝑧𝑧1 = 2𝐿𝐿1π‘π‘π‘π‘π‘ π‘ πœƒπœƒ1

So that

π‘₯π‘₯1Μ‡ = οΏ½Μ‡οΏ½π‘₯ + 2𝐿𝐿1οΏ½Μ‡οΏ½πœƒ1π‘π‘π‘π‘π‘ π‘ πœƒπœƒ1, �̇�𝑧1 = βˆ’2𝐿𝐿1πœƒπœƒ1Μ‡π‘ π‘ π‘ π‘ π‘ π‘ πœƒπœƒ1

The kinetic energy of the right bob is

𝑇𝑇3 =12π‘šπ‘š2(π‘₯π‘₯2

2Μ‡ + �̇�𝑧22)

π‘₯π‘₯2 = π‘₯π‘₯ + 2𝐿𝐿2π‘ π‘ π‘ π‘ π‘ π‘ πœƒπœƒ2, 𝑧𝑧2 = 2𝐿𝐿2π‘π‘π‘π‘π‘ π‘ πœƒπœƒ2

so that

Page 3: modelling of double inverted pendulum

π‘₯π‘₯2Μ‡ = οΏ½Μ‡οΏ½π‘₯ + 2𝐿𝐿2οΏ½Μ‡οΏ½πœƒ2π‘π‘π‘π‘π‘ π‘ πœƒπœƒ2, �̇�𝑧2 = βˆ’2𝐿𝐿2πœƒπœƒ2Μ‡π‘ π‘ π‘ π‘ π‘ π‘ πœƒπœƒ2

Therefore, the total kinetic energy is

𝑇𝑇 = 𝑇𝑇1 + 𝑇𝑇2 + 𝑇𝑇3

=12𝑀𝑀π‘₯π‘₯2Μ‡ +

12π‘šπ‘š1οΏ½οΏ½Μ‡οΏ½π‘₯2 + 4οΏ½Μ‡οΏ½π‘₯οΏ½Μ‡οΏ½πœƒ1𝐿𝐿1π‘π‘π‘π‘π‘ π‘ πœƒπœƒ1 + (2𝐿𝐿1)2οΏ½Μ‡οΏ½πœƒ1

2οΏ½ +12π‘šπ‘š2(οΏ½Μ‡οΏ½π‘₯2 + 2οΏ½Μ‡οΏ½π‘₯οΏ½Μ‡οΏ½πœƒ22𝐿𝐿2π‘π‘π‘π‘π‘ π‘ πœƒπœƒ2+(2𝐿𝐿2)2οΏ½Μ‡οΏ½πœƒ2

2)

The potential energy is equivalent to:

π‘ˆπ‘ˆ = π‘ˆπ‘ˆ1 + π‘ˆπ‘ˆ2 = π‘šπ‘š1𝑔𝑔2𝐿𝐿1π‘π‘π‘π‘π‘ π‘ πœƒπœƒ1 + π‘šπ‘š2𝑔𝑔2𝐿𝐿2π‘π‘π‘π‘π‘ π‘ πœƒπœƒ2

The Lagrange equation

𝐿𝐿 = 𝑇𝑇 βˆ’ π‘ˆπ‘ˆ =

12𝑀𝑀π‘₯π‘₯2Μ‡ + 1

2π‘šπ‘š1οΏ½οΏ½Μ‡οΏ½π‘₯2 + 2οΏ½Μ‡οΏ½π‘₯οΏ½Μ‡οΏ½πœƒ12𝐿𝐿1π‘π‘π‘π‘π‘ π‘ πœƒπœƒ1 + (2𝐿𝐿1)2οΏ½Μ‡οΏ½πœƒ1

2οΏ½ + 12π‘šπ‘š2οΏ½οΏ½Μ‡οΏ½π‘₯2 + 2οΏ½Μ‡οΏ½π‘₯οΏ½Μ‡οΏ½πœƒ22𝐿𝐿2π‘π‘π‘π‘π‘ π‘ πœƒπœƒ2 + (2𝐿𝐿2)2οΏ½Μ‡οΏ½πœƒ2

2οΏ½ βˆ’

π‘šπ‘š1𝑔𝑔2𝐿𝐿1π‘π‘π‘π‘π‘ π‘ πœƒπœƒ1 βˆ’π‘šπ‘š2𝑔𝑔2𝐿𝐿2π‘π‘π‘π‘π‘ π‘ πœƒπœƒ2;

The generalized coordinates are selected as π‘žπ‘ž = [π‘₯π‘₯ πœƒπœƒ1 πœƒπœƒ2]𝑇𝑇 so that Lagrange’s equations are

π‘‘π‘‘π‘‘π‘‘π‘‘π‘‘οΏ½πœ•πœ•πΏπΏπœ•πœ•οΏ½Μ‡οΏ½π‘₯οΏ½ βˆ’

πœ•πœ•πΏπΏπœ•πœ•π‘₯π‘₯

= 𝐹𝐹

𝑑𝑑𝑑𝑑𝑑𝑑 οΏ½

πœ•πœ•πΏπΏπœ•πœ•πœƒπœƒ1Μ‡

οΏ½ βˆ’πœ•πœ•πΏπΏπœ•πœ•πœƒπœƒ1

= 0

𝑑𝑑𝑑𝑑𝑑𝑑 οΏ½

πœ•πœ•πΏπΏπœ•πœ•πœƒπœƒ2Μ‡

οΏ½ βˆ’πœ•πœ•πΏπΏπœ•πœ•πœƒπœƒ2

= 0

1) π‘žπ‘ž = π‘₯π‘₯ πœ•πœ•πΏπΏπœ•πœ•π‘₯π‘₯

= 0;

πœ•πœ•πΏπΏπœ•πœ•οΏ½Μ‡οΏ½π‘₯

= π‘šπ‘š1οΏ½Μ‡οΏ½π‘₯ + 2π‘šπ‘š1πœƒπœƒ1̇𝐿𝐿1π‘π‘π‘π‘π‘ π‘ πœƒπœƒ1 +π‘šπ‘š2οΏ½Μ‡οΏ½π‘₯ + 2π‘šπ‘š2πœƒπœƒ2̇𝐿𝐿2π‘π‘π‘π‘π‘ π‘ πœƒπœƒ2 +𝑀𝑀�̇�π‘₯

π‘‘π‘‘π‘‘π‘‘π‘‘π‘‘οΏ½πœ•πœ•πΏπΏπœ•πœ•οΏ½Μ‡οΏ½π‘₯οΏ½ =

π‘šπ‘š1�̈�π‘₯ βˆ’ π‘šπ‘š1πœƒπœƒ12Μ‡2𝐿𝐿1π‘ π‘ π‘ π‘ π‘ π‘ πœƒπœƒ1 + 2π‘šπ‘š1𝐿𝐿1πœƒπœƒ1Μˆπ‘π‘π‘π‘π‘ π‘ πœƒπœƒ1 + π‘šπ‘š2�̈�π‘₯ βˆ’ π‘šπ‘š2πœƒπœƒ2

2Μ‡2𝐿𝐿2π‘ π‘ π‘ π‘ π‘ π‘ πœƒπœƒ2 + 2π‘šπ‘š2𝐿𝐿2πœƒπœƒ2Μˆπ‘π‘π‘π‘π‘ π‘ πœƒπœƒ2 + π‘€π‘€οΏ½ΜˆοΏ½π‘₯

π‘‘π‘‘π‘‘π‘‘π‘‘π‘‘οΏ½πœ•πœ•πΏπΏπœ•πœ•οΏ½Μ‡οΏ½π‘₯οΏ½ βˆ’

πœ•πœ•πΏπΏπœ•πœ•π‘₯π‘₯

= 𝐹𝐹

π‘šπ‘š1�̈�π‘₯ βˆ’ π‘šπ‘š1πœƒπœƒ12Μ‡2𝐿𝐿1π‘ π‘ π‘ π‘ π‘ π‘ πœƒπœƒ1 + 2π‘šπ‘š1𝐿𝐿1πœƒπœƒ1Μˆπ‘π‘π‘π‘π‘ π‘ πœƒπœƒ1 + π‘šπ‘š2�̈�π‘₯ βˆ’ π‘šπ‘š2πœƒπœƒ2

2Μ‡2𝐿𝐿2π‘ π‘ π‘ π‘ π‘ π‘ πœƒπœƒ2 + 2π‘šπ‘š2𝐿𝐿2πœƒπœƒ2Μˆπ‘π‘π‘π‘π‘ π‘ πœƒπœƒ2 + π‘€π‘€οΏ½ΜˆοΏ½π‘₯ = 𝐹𝐹

Page 4: modelling of double inverted pendulum

2) π‘žπ‘ž = πœƒπœƒ1

πœ•πœ•πΏπΏπœ•πœ•πœƒπœƒ1

= 2π‘šπ‘š1𝑔𝑔𝐿𝐿1π‘ π‘ π‘ π‘ π‘ π‘ πœƒπœƒ1 βˆ’ 2π‘šπ‘š1οΏ½Μ‡οΏ½π‘₯πœƒπœƒ1Μ‡π‘ π‘ π‘ π‘ π‘ π‘ πœƒπœƒ1

πœ•πœ•πΏπΏπœ•πœ•πœƒπœƒ1Μ‡

= 2π‘šπ‘š1οΏ½Μ‡οΏ½π‘₯𝐿𝐿1π‘π‘π‘π‘π‘ π‘ πœƒπœƒ1 + 4𝐿𝐿12πœƒπœƒ1Μ‡π‘šπ‘š1

𝑑𝑑𝑑𝑑𝑑𝑑 οΏ½

πœ•πœ•πΏπΏπœ•πœ•πœƒπœƒ1Μ‡

οΏ½ = 2π‘šπ‘š1�̈�π‘₯𝐿𝐿1π‘π‘π‘π‘π‘ π‘ πœƒπœƒ1 βˆ’ 2π‘šπ‘š1οΏ½Μ‡οΏ½π‘₯πœƒπœƒ1̇𝐿𝐿1π‘ π‘ π‘ π‘ π‘ π‘ πœƒπœƒ1 + 4𝐿𝐿12πœƒπœƒ1Μˆπ‘šπ‘š1

𝑑𝑑𝑑𝑑𝑑𝑑 οΏ½

πœ•πœ•πΏπΏπœ•πœ•πœƒπœƒ1Μ‡

οΏ½ βˆ’πœ•πœ•πΏπΏπœ•πœ•πœƒπœƒ1Μ‡

= 0

2π‘šπ‘š1�̈�π‘₯𝐿𝐿1π‘π‘π‘π‘π‘ π‘ πœƒπœƒ1 βˆ’ 2π‘šπ‘š1οΏ½Μ‡οΏ½π‘₯πœƒπœƒ1Μ‡πΏπΏπ‘ π‘ π‘ π‘ π‘ π‘ πœƒπœƒ1 + 4𝐿𝐿12πœƒπœƒ1Μˆπ‘šπ‘š1 βˆ’ 2π‘šπ‘š1𝑔𝑔𝐿𝐿1π‘ π‘ π‘ π‘ π‘ π‘ πœƒπœƒ1 + 2π‘šπ‘š1οΏ½Μ‡οΏ½π‘₯πœƒπœƒ1Μ‡π‘ π‘ π‘ π‘ π‘ π‘ πœƒπœƒ1 = 0

2π‘šπ‘š1�̈�π‘₯𝐿𝐿1π‘π‘π‘π‘π‘ π‘ πœƒπœƒ1 + 4𝐿𝐿12πœƒπœƒ1Μˆπ‘šπ‘š1 βˆ’ 2π‘šπ‘š1𝑔𝑔𝐿𝐿1π‘ π‘ π‘ π‘ π‘ π‘ πœƒπœƒ1 = 0

2) π‘žπ‘ž = πœƒπœƒ2 πœ•πœ•πΏπΏπœ•πœ•πœƒπœƒ2

= 2π‘šπ‘š2𝑔𝑔𝐿𝐿2π‘ π‘ π‘ π‘ π‘ π‘ πœƒπœƒ2 βˆ’ 2π‘šπ‘š2οΏ½Μ‡οΏ½π‘₯πœƒπœƒ2Μ‡π‘ π‘ π‘ π‘ π‘ π‘ πœƒπœƒ2

πœ•πœ•πΏπΏπœ•πœ•πœƒπœƒ2Μ‡

= 2π‘šπ‘š2οΏ½Μ‡οΏ½π‘₯𝐿𝐿2π‘π‘π‘π‘π‘ π‘ πœƒπœƒ2 + 4𝐿𝐿22πœƒπœƒ2Μ‡π‘šπ‘š2

𝑑𝑑𝑑𝑑𝑑𝑑 οΏ½

πœ•πœ•πΏπΏπœ•πœ•πœƒπœƒ2Μ‡

οΏ½ = 2π‘šπ‘š2�̈�π‘₯𝐿𝐿2π‘π‘π‘π‘π‘ π‘ πœƒπœƒ2 βˆ’ 2π‘šπ‘š2οΏ½Μ‡οΏ½π‘₯πœƒπœƒ2Μ‡πΏπΏπ‘ π‘ π‘ π‘ π‘ π‘ πœƒπœƒ2 + 4𝐿𝐿22πœƒπœƒ2Μˆπ‘šπ‘š2

𝑑𝑑𝑑𝑑𝑑𝑑 οΏ½

πœ•πœ•πΏπΏπœ•πœ•πœƒπœƒ2Μ‡

οΏ½ βˆ’πœ•πœ•πΏπΏπœ•πœ•πœƒπœƒ2Μ‡

= 0

2π‘šπ‘š2�̈�π‘₯𝐿𝐿2π‘π‘π‘π‘π‘ π‘ πœƒπœƒ2 βˆ’ 2π‘šπ‘š2οΏ½Μ‡οΏ½π‘₯πœƒπœƒ2Μ‡πΏπΏπ‘ π‘ π‘ π‘ π‘ π‘ πœƒπœƒ2 + 4𝐿𝐿22πœƒπœƒ2Μˆπ‘šπ‘š2 βˆ’ 2π‘šπ‘š2𝑔𝑔𝐿𝐿2π‘ π‘ π‘ π‘ π‘ π‘ πœƒπœƒ2 + 2π‘šπ‘š2οΏ½Μ‡οΏ½π‘₯πœƒπœƒ2Μ‡π‘ π‘ π‘ π‘ π‘ π‘ πœƒπœƒ2 = 0

2π‘šπ‘š2�̈�π‘₯𝐿𝐿2π‘π‘π‘π‘π‘ π‘ πœƒπœƒ2 + 4𝐿𝐿22πœƒπœƒ2Μˆπ‘šπ‘š2 βˆ’ 2π‘šπ‘š2𝑔𝑔𝐿𝐿2π‘ π‘ π‘ π‘ π‘ π‘ πœƒπœƒ2 = 0

We derive the nonlinear equation

π‘šπ‘š1�̈�π‘₯ βˆ’ π‘šπ‘š1πœƒπœƒ12Μ‡2𝐿𝐿1π‘ π‘ π‘ π‘ π‘ π‘ πœƒπœƒ1 + 2π‘šπ‘š1𝐿𝐿1πœƒπœƒ1Μˆπ‘π‘π‘π‘π‘ π‘ πœƒπœƒ1 + π‘šπ‘š2�̈�π‘₯ βˆ’ π‘šπ‘š2πœƒπœƒ2

2Μ‡2𝐿𝐿2π‘ π‘ π‘ π‘ π‘ π‘ πœƒπœƒ2 + 2π‘šπ‘š2𝐿𝐿2πœƒπœƒ2Μˆπ‘π‘π‘π‘π‘ π‘ πœƒπœƒ2 + π‘€π‘€οΏ½ΜˆοΏ½π‘₯ = 𝐹𝐹

2π‘šπ‘š1�̈�π‘₯𝐿𝐿1π‘π‘π‘π‘π‘ π‘ πœƒπœƒ1 + 4𝐿𝐿12πœƒπœƒ1Μˆπ‘šπ‘š1 βˆ’ 2π‘šπ‘š1𝑔𝑔𝐿𝐿1π‘ π‘ π‘ π‘ π‘ π‘ πœƒπœƒ1 = 0

2π‘šπ‘š2�̈�π‘₯𝐿𝐿2π‘π‘π‘π‘π‘ π‘ πœƒπœƒ2 + 4𝐿𝐿22πœƒπœƒ2Μˆπ‘šπ‘š2 βˆ’ 2π‘šπ‘š2𝑔𝑔𝐿𝐿2π‘ π‘ π‘ π‘ π‘ π‘ πœƒπœƒ2 = 0

With the parameters defined from the article as below;

𝑀𝑀 = 1.5 ,π‘šπ‘š1 = 0.5,π‘šπ‘š2 = 0.5,𝑔𝑔 = 9.8, 𝐿𝐿1 = 0.8,𝐿𝐿2 = 0.8 substituting these parameters into the

above 3 equations.

π‘šπ‘š1�̈�π‘₯ βˆ’ π‘šπ‘š1πœƒπœƒ12Μ‡2𝐿𝐿1π‘ π‘ π‘ π‘ π‘ π‘ πœƒπœƒ1 + 2π‘šπ‘š1𝐿𝐿1πœƒπœƒ1Μˆπ‘π‘π‘π‘π‘ π‘ πœƒπœƒ1 + π‘šπ‘š2�̈�π‘₯ βˆ’ π‘šπ‘š2πœƒπœƒ2

2Μ‡2𝐿𝐿2π‘ π‘ π‘ π‘ π‘ π‘ πœƒπœƒ2 + 2π‘šπ‘š2𝐿𝐿2πœƒπœƒ2Μˆπ‘π‘π‘π‘π‘ π‘ πœƒπœƒ2 + π‘€π‘€οΏ½ΜˆοΏ½π‘₯ = 𝐹𝐹

2π‘šπ‘š1�̈�π‘₯𝐿𝐿1π‘π‘π‘π‘π‘ π‘ πœƒπœƒ1 + 4𝐿𝐿12πœƒπœƒ1Μˆπ‘šπ‘š1 βˆ’ 2π‘šπ‘š1𝑔𝑔𝐿𝐿1π‘ π‘ π‘ π‘ π‘ π‘ πœƒπœƒ1 = 0

Page 5: modelling of double inverted pendulum

2π‘šπ‘š2�̈�π‘₯𝐿𝐿2π‘π‘π‘π‘π‘ π‘ πœƒπœƒ2 + 4𝐿𝐿22πœƒπœƒ2Μˆπ‘šπ‘š2 βˆ’ 2π‘šπ‘š2𝑔𝑔𝐿𝐿2π‘ π‘ π‘ π‘ π‘ π‘ πœƒπœƒ2 = 0

Simplifying the above equations,

(𝑀𝑀 + π‘šπ‘š1 + π‘šπ‘š2)�̈�π‘₯ βˆ’ π‘šπ‘š1πœƒπœƒ12Μ‡2𝐿𝐿1π‘ π‘ π‘ π‘ π‘ π‘ πœƒπœƒ1 + 2π‘šπ‘š1𝐿𝐿1πœƒπœƒ1Μˆπ‘π‘π‘π‘π‘ π‘ πœƒπœƒ1 βˆ’π‘šπ‘š2πœƒπœƒ2

2Μ‡2𝐿𝐿2π‘ π‘ π‘ π‘ π‘ π‘ πœƒπœƒ2 + 2π‘šπ‘š2𝐿𝐿2πœƒπœƒ2Μˆπ‘π‘π‘π‘π‘ π‘ πœƒπœƒ2 = 𝐹𝐹 ..eqn1

2π‘šπ‘š1�̈�π‘₯𝐿𝐿1π‘π‘π‘π‘π‘ π‘ πœƒπœƒ1 + 4𝐿𝐿12πœƒπœƒ1Μˆπ‘šπ‘š1 βˆ’ 2π‘šπ‘š1𝑔𝑔𝐿𝐿1π‘ π‘ π‘ π‘ π‘ π‘ πœƒπœƒ1 = 0 ..eqn2

2π‘šπ‘š2�̈�π‘₯𝐿𝐿2π‘π‘π‘π‘π‘ π‘ πœƒπœƒ2 + 4𝐿𝐿22πœƒπœƒ2Μˆπ‘šπ‘š2 βˆ’ 2π‘šπ‘š2𝑔𝑔𝐿𝐿2π‘ π‘ π‘ π‘ π‘ π‘ πœƒπœƒ2 = 0 ..eqn3

𝑀𝑀 = 1.5 ,π‘šπ‘š1 = 0.5,π‘šπ‘š2 = 0.5,𝑔𝑔 = 9.8, 𝐿𝐿1 = 0.8,𝐿𝐿2 = 0.8

2.5 �̈�π‘₯ βˆ’ 0.8πœƒπœƒ12Μ‡π‘ π‘ π‘ π‘ π‘ π‘ πœƒπœƒ1 + 0.8πœƒπœƒ1 ̈ π‘π‘π‘π‘π‘ π‘ πœƒπœƒ1 βˆ’ 0.8πœƒπœƒ2

2Μ‡π‘ π‘ π‘ π‘ π‘ π‘ πœƒπœƒ2 + 0.8πœƒπœƒ2Μˆπ‘π‘π‘π‘π‘ π‘ πœƒπœƒ2 = 𝐹𝐹 ..eqn4

0.8�̈�π‘₯π‘π‘π‘π‘π‘ π‘ πœƒπœƒ1 + 1.28πœƒπœƒ1̈ βˆ’ 7.84π‘ π‘ π‘ π‘ π‘ π‘ πœƒπœƒ1 = 0 ..eqn5

0.8�̈�π‘₯π‘π‘π‘π‘π‘ π‘ πœƒπœƒ2 + 1.28πœƒπœƒ2̈ βˆ’ 7.84π‘ π‘ π‘ π‘ π‘ π‘ πœƒπœƒ2 = 0 ..eqn6

�̈�π‘₯ = 0.32πœƒπœƒ12Μ‡π‘ π‘ π‘ π‘ π‘ π‘ πœƒπœƒ1 βˆ’ 0.32πœƒπœƒ1 ̈ π‘π‘π‘π‘π‘ π‘ πœƒπœƒ1 + 0.32πœƒπœƒ2

2Μ‡π‘ π‘ π‘ π‘ π‘ π‘ πœƒπœƒ2 βˆ’ 0.32πœƒπœƒ2Μˆπ‘π‘π‘π‘π‘ π‘ πœƒπœƒ2 + 0.4𝐹𝐹(𝑑𝑑) .eqn7

πœƒπœƒ1̈ = βˆ’0.625�̈�π‘₯π‘π‘π‘π‘π‘ π‘ πœƒπœƒ1 + 6.125π‘ π‘ π‘ π‘ π‘ π‘ πœƒπœƒ1 .eqn8

πœƒπœƒ2̈ = βˆ’0.625�̈�π‘₯π‘π‘π‘π‘π‘ π‘ πœƒπœƒ2 + 6.125π‘ π‘ π‘ π‘ π‘ π‘ πœƒπœƒ2 .eqn9

Using a unit step input as the force F(t).

Page 6: modelling of double inverted pendulum

2.0 SIMULATION RESULTS AND GRAPHS

Fig 3. The Step response of the model (Non-linear model) with different scopes

Page 7: modelling of double inverted pendulum

Fig 4. The Step response of the model displacement (Non-linear model)

Fig 5. The Step response of the model rocker 1 pivot angle (Non-linear model)

Page 8: modelling of double inverted pendulum

Fig 6. The Step response of the model rocker 2 pivot angle (Non-linear model)

Page 9: modelling of double inverted pendulum

Fig 7. The simulation block for model (Non-linear) one scope

Fig 8. The Step response of the model (Non-linear model)

lengend

Step response curve of trolley displacement

Step response curve of the two rocker pivot angle

Page 10: modelling of double inverted pendulum

3.0 Linearization of the Non-linear model

Linearization of the non linear model

�̈�π‘₯ = 0.32πœƒπœƒ12Μ‡π‘ π‘ π‘ π‘ π‘ π‘ πœƒπœƒ1 βˆ’ 0.32πœƒπœƒ1 ̈ π‘π‘π‘π‘π‘ π‘ πœƒπœƒ1 + 0.32πœƒπœƒ2

2Μ‡π‘ π‘ π‘ π‘ π‘ π‘ πœƒπœƒ2 βˆ’ 0.32πœƒπœƒ2Μˆπ‘π‘π‘π‘π‘ π‘ πœƒπœƒ2 + 0.4𝐹𝐹

πœƒπœƒ1̈ = βˆ’0.625�̈�π‘₯π‘π‘π‘π‘π‘ π‘ πœƒπœƒ1 + 6.125π‘ π‘ π‘ π‘ π‘ π‘ πœƒπœƒ1

πœƒπœƒ2̈ = βˆ’0.625�̈�π‘₯π‘π‘π‘π‘π‘ π‘ πœƒπœƒ2 + 6.125π‘ π‘ π‘ π‘ π‘ π‘ πœƒπœƒ2

Linearizing the above model we obtain linear model to be

Sin πœƒπœƒ1 β‰ˆ πœƒπœƒ1, sinπœƒπœƒ2 β‰ˆ πœƒπœƒ2, cosπœƒπœƒ1 = 1, cosπœƒπœƒ2 = 1,

)(4.032.032.0 21 tFx +βˆ†βˆ’βˆ†βˆ’=βˆ† ΞΈΞΈ

11 125.6625.0 ΞΈΞΈ βˆ†+βˆ†βˆ’=βˆ† x

22 125.6625.0 ΞΈΞΈ βˆ†+βˆ†βˆ’=βˆ† x

Assuming that πœƒπœƒ1 π‘Žπ‘Žπ‘ π‘ π‘‘π‘‘ πœƒπœƒ2 is very small, then the linearised model is as below,

)(4.032.032.0 21 tFx +βˆ’βˆ’= ΞΈΞΈ

11 125.6625.0 ΞΈΞΈ +βˆ’= x

22 125.6625.0 ΞΈΞΈ +βˆ’= x

The simulation model of the linear model using simulink

Fig 9. The Simulink of the model (Linear model)

Page 11: modelling of double inverted pendulum

Fig 10. The Step response of the model (Linear model)

lengend

Step response curve of trolley displacement

Step response curve of the two rocker pivot angle

Page 12: modelling of double inverted pendulum

4.0 Discussion on the accuracy of the results

From the results obtained in the simulation of the non-linear and linear model obtained from

our modelling and that of the results of the article, its shows that our model are accurate

representation of the model as the modelled in the article.

As side the difference in the techniques used in the modelling (the use of the Lagrange as

against Newton’s Equation) we obtain an accurate model which can be used in the

verification of the objective of the article.

However if the linearization tent is extended beyond the very small angle for pivot the system

becomes very unstable and hence the pendulum will fall from the inverted position.