19
Modeling in Semiconductor Spintronics, S. K. Saikin, Yu. V. Pershin and V. L. Privman, Sci. Trans. Kazan State Univ. 147, 97-115 (2005)

Modeling in Semiconductor Spintronics, S. K. Saikin, Y. V. Pershin

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Modeling in Semiconductor Spintronics, S. K. Saikin, Y. V. Pershin, V. L. Privman, Sci. Trans. Kazan State Univ. 147, 97-115 (2005)
! "# $ % % & ' ()* +, -. .* /$ ! " 0 0# % * " " / . # * 0# % (1, 0 / # .. . ! . " # #* " .% &23456789 :35;<= >996?? 26=<@A' B # # 0 . C % $ D % E ()F, G * 0 ! #* . " $ ! 0 / . " . $ B " " # % ())1+,* 0# ! # # H $ 0 # % ! (+I* +J, - #. $
% % ! % # $ # (K1, L * * M3>? &))F' # # % ! " # $ # (+, / (+, C" $ . % % " ! % # (F, # $ # (), B " * $ ! # # " )FF N * $% " 0 . % # # (+, G ! " $ ! (), 0 % (, N "
Modeling in Semiconductor Spintronics, S. K. Saikin, Yu. V. Pershin and V. L. Privman, Sci. Trans. Kazan State Univ. 147, 97-115 (2005)
2 σ · B, 3)4
# g∗ ,, g ", ! σ " ! & + ( 3)4 - # ' " # ! % - $ ,- ' # ( " $ # ! $ " # 3 " 4! % 5 " # % ! # - 5 6& ! &" # ! " ! # # # $- 7 " ,, 8 ' 9
HSO =
2
4m2c2


1 (& & 7 & & #.3 .8 45% / ' ' ( ! + * & 9 & 6 ( (( '& , +0
e ∂n↑(↓)
σ↑(↓) = en↑(↓)µ, :



+ , --- " - ./ n * " %&&( 0 " " 1 )) " 2 !) , , -- -- Di Ni τi 34$ $ -- 4) " %&5( . ! ) # 4) * " " $ "), 6 , ) $ %&5(





!"# $%&! ' (")* !* *! %! n&"+ ,"&'%- *% &,# !"# $%&# % &*.& ! *!% ! &'% x = x0 ,/".& ! ""! &0-"1 x = 0 1 -&!, !2( $%&'%( &&3 !- ")1 "!"," &'%,1 "#, ! &'% x0 = −10 1 %"% 0*%) %"&# x
" '# %)&") ,- N2 4τ1 = τ2 D1 = D2 !' N2 !& % ! "&". && !- ") !5 &0-" &&3 !- ") *'&, " $%&- && !5 (" )# 6789 %" "" 2&*%&- -
!" # ! $%&'$(& ) # * + + ! # , * ! + α β (- % . # ! ! / * + ( 0 ! + # 1 +


ρσ = 1


(x,y),(x′,y′)dx ′dy′,
(x,y),(x′,y′) #
(x′, y′) P(x, y, t) $ % $ & # !! ' ! ! (x, y) !! ! t !! # ( ) " ( *( ! ' ! $ + " ) , (x′, y′) (x, y) " ! P′
(x,y),(x′,y′) , )( ) $
- " .!" !!, ! # , ! . ! (x′, y′) (x, y) $ / . ! ! ( ! (" !# $ 0 " ! " ! # , , ) $ 1 " a ) # " # " 234
P′ (x,y),(x′,y′) = P + P⊥ (cos− 1) + a×P sin, 3

: ) " # !. !*, ,* " ! , 0!$ ; !. " ! 23<4" ! ( # 23=" 3>4 ? 239" =4" " ( # . $ @! " ! # ! " ! 2<4$ ? )! ! ) # # ( # , ! . ) # !$ ; " ,* , ," ! ! # # 1/2 ) , $ & . !. #" ! #$ ? * ! , !$
A ! ! ( # ( ) ( ( !(" ! ! ! # ! " $ % ! !. " ! # ? 2=" 394$ ? . ) #
α # β # # Mαβ ! + # , ! - * './)
Ws′s(R,k, t) =
∫ ψ∗(R−r/2, s′)ψ(R + r/2, s) exp (−ikr) d2r, (
ψ(r, s) & ! * & * ( 0 0! 1 2 $ $ 3 σα 4 I ')
W = 1
∂W
∂t +
1
2
{ vj ,
∂W
∂xj
+ ikj [vj ,W ] = StW, /
vj = ∂H/∂pj 2 [A,B] {A,B} # $ 4 '( ./)! * $ & StW 4% ! 8 2 2 4 , 2 # '. .5)!
9 4% # # $ , './)! * $2 $ %4 '.) '( .()! : 2 4# # 4 '.5 ;)!


! " # !
$ # % & # '' ()*+)*,*-./.01* +/).023*,4! 5 '' ! $ # # 6 #! 7 # ! $ 6 (,/8+30-9 .08*4 " ! " 6: 6 6 # ! ; ' ' # # ! ! <!
= # ( # >?@A >?BA4 # ! C # ( 4 # 6 # ! " 6# # '! $ i#
ρi(t+ δt) = exp
F #
Pα = ∑
i
I dV ! J (DD4 (DH4 # ' >?GA
Pα =
∑ i
5 ( ' ) -"1$ 8 9):* -"1* , 0#$ 5 ) , $

9 , # ( "#* ( .#* & ' !"#* , , & !#$



! " #!$ %&'(# )(*+# #! ! ! *+*, ('(!, - ! %$, ('(!, - !"%!+ %!(( (!*! $( " #!$
! " # $ ! % $ &


! " " # ! ! ! $ ! #% &' "( # ! ) %* " " % !$ " + " ! , - " " ! ! "! . # " % " # $ " # " ,++ " " !$ ! !


30
40
50
60
70
80
90
100
110
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20

,
# N = 55000 $ %& tsamp = 1 '()* & + %&$ !& & $ %& !!
0.2
0.4
0.6
0.8
1.0
0.2
0.4
0.6
0.8
1.0
S pi
n po
la riz
at io
5 % 6 "7 7! 8 5 ) ! 9 :+! 6 :! ; 8 <! % ! %$ !
111
Summary
S.K. Saikin, Yu.V. Pershin, V.L. Privman. Modeling in semiconductor spintronics.
In this paper we review theoretical methods utilized to investigate spin dynamics in semi- conductor structures. In particular, we consider drift-diffusion, kinetic transport equation and Monte-Carlo simulation approaches applied for spin transport modelling. Several examples of applications of these modelling techniques are presented.

(URL: http://public.itrs.net/Files/2003ITRS/Home2003.htm)
2. Research needs for novel devices (SRC Edition May 2003)
3. Prinz G. Spin-Polarized Transport // Phys. Today. – 1995. –V. 48, No 4. – P. 58–63.
4. Wolf S.A., Awschalom D.D., Buhrman R.A., Daughton J.M., von Molnar S.,
Roukes M.L., Chtchelkanova A.Y., Treger D.M. Spintronics: a spin-based electronics.
Vision for the future // Science. – 2001. –V. 294. – P. 1488–1495.
5. Das Sarma S. Spintronics // Am. Sci. – 2001. – V. 89. – P. 516–523.
6. Awschalom D.D., Flatte M.E., Samarth N. Spintronics // Sci. Am. – 2002. – V. 286. –
P. 66–73.
7. Akinaga H., Ohno H. Semiconductor spintronics // IEEE Trans. Nanotechnology. –
2002. – No 1. – P. 19–31.
8. Jonker B.T. Progress toward electrical injection of spin-polarized electrons into semicon-
ductors // Proc. of the IEEE. – 2003. – V. 91. – P. 727–740.
9. Zutic I., Fabian J., Das Sarma S. Spintronics: Fundamentals and applications // Rev.
Mod. Phys. – 2004. – V. 76. – P. 323–410.
10. Parkin S., Jiang X., Kaiser C., Panchula A., Roche K., Samant M. Magnetically en-
gineered spintronic sensors and memory // Proc. of the IEEE. – 2003. – V. 91. –
P. 661–680.
11. Fabian J., Zutic I., Das Sarma S. Magnetic bipolar transistor // Appl. Phys. Lett. –
2004. – V. 84. – P. 85–87.
12. Flatte M.E., Yu Z.G., Johnson-Halperin E., Awschalom D.D. Theory of semiconductor
magnetic bipolar transistors // Appl. Phys. Lett. – 2003. – V. 82. – P. 4740–4742.
13. Datta S., Das B. Electronic analog of the electro-optic modulator // Appl. Phys. Lett. –
1990. – V. 56. – P. 665–667.
14. Wang B., Wang J., Guo H. Quantum spin field effect transistor // Phys. Rev. B. –
2003. – V. 67, Art. 092408. – P. 1–4.
15. Schliemann J., Egues J.C., Loss D. Nonballistic spin-field-effect transistor // Phys. Rev.
Lett. – 2003. – V. 90, Art. 146801. – P. 1–4.
16. Egues J.C., Burkard G., Loss D. Datta-Das transistor with enhanced spin control //
Appl. Phys. Lett. – 2003. – V. 82. – P. 2658–2660.
17. Wang X.F., Vasilopoulos P. Influence of subband mixing due to spin-orbit interaction on
the transmission through periodically modulated waveguides // Phys. Rev. B. – 2003. –
V. 68, Art. 035305. – P. 1–8.
18. Hall K.C., Lau W.H., Gundogdu K., Flatte M.E., Boggess T.F. Non-magnetic semicon-
ductor spin transistor // Appl. Phys. Lett. – 2003. – V. 83. – P. 2937–2939.
19. Jonker B.T. Polarized optical emission due to decay or recombination of spin-polarized
injected carriers. – US patent 5874749. – Feb. 23, 1999.
20. Mani R.G., Johnson W.B., Narayanamurti V., Privman V., Zhang Y.-H. Nuclear spin
based memory and logic in quantum Hall semiconductor nanostructures for quantum
computing applications // Physica E. – 2002. – No 12. – P. 152–156.
21. Vrijen R., Yablonovitch E., Wang K., Jiang H.W., Balandin A., Roychowdhury V.,
Mor T., DiVincenzo D. Electron-spin-resonance transistors for quantum computing in
silicon-germanium heterostructures // Phys. Rev. A. – 2000. –V. 62, Art. 012306. –
P. 1–10.
22. Bandyopadhyay S., Cahay M. Proposal for a spintronic femto-Tesla magnetic field sen-
sor // Physica E. – 2005. – No 27. – P. 98–103.
23. Ciuti C., McGuire J.P., Sham L.J. Spin-dependent properties of a two-dimensional elec-
tron gas with ferromagnetic gates // Appl. Phys. Lett. – 2002. – V. 81. – P. 4781–4783.
24. Osipov V.V., Bratkovsky A.M. A class of spin injection-precession ultrafast nanodevices //
Appl. Phys. Lett. – 2004. – V. 84. – P. 2118–212025.
25. Bratkovsky A.M., Osipov V.V. High-frequency spin-valve effect in a ferromagnet-
semiconductor-ferromagnet structure based on precession of the injected spins // Phys.
Rev. Lett. – 2004. – V. 92, Art. 098302. – P. 1–4.
26. D’yakonov M. “Spintronics?” // Future Trends in Microelectronics: The Nano, the Giga,
and the Ultra / Eds. S. Luryi, J. Xu, A. Zaslavsky. – Wiley-IEEE Press, 2004.
27. Bandyopadhyay S., Cahay M. Reexamination of some spintronic field-effect device con-
cepts / Appl. Phys. Lett. – 2004. – V. 85. – P. 1433–1435.
28. Ohno Y., Terauchi R., Adachi T., Matsukura F., Ohno H. Spin relaxation in GaAs (110)
quantum wells // Phys. Rev. Lett. – 1999. – V. 83. – P. 4196–4199.
29. Karimov O.Z., John G.H., Harley R.T., Lau W.H., Flatte M.E., Henini M., Airey R.
High temperature gate control of quantum well spin memory // Phys. Rev. Lett. –
2003. – V. 91, Art. 246601. – P. 1–4.
30. Malajovich I., Berry J.J., Samarth N., Awschalom D.D. Persistent sourcing of coherent
spins for multifunctional semiconductor spintronics // Nature. – 2001. – V. 411. –
P. 770–772.
31. Kikkawa J.M., Awschalom D.D. Lateral drag of spin coherence in gallium arsenide //
Nature. – 1999. – V. 397. – P. 139–141.
32. Rudolph J., Hagele D., Gibbs H.M., Khitrova G., Oestreich M. Laser threshold reduction
in a spintronic device // Appl. Phys. Lett. – 2003. – V. 82. – P. 4516–4518.
33. Lannon J.M.Jr., Dausch D.E., Temple D. High sensitivity polarized-light discriminator
device. – US patent application. – Apr. 24, 2003.
34. Stevens M.J., Smirl A.L., Bhat R.D.R., Najmaie A., Sipe J.E., van Driel H.M. Quantum
interference control of ballistic pure spin currents in semiconductors // Phys. Rev. Lett. –
2003. – V. 90, Art. 136603. – P. 1–4.
35. Landau L.D., Lifshitz E.M. Quantum Mechanics. – Oxford: Butterworth-Heinemann,
1997.
36. Condon E.U., Shortley G.H. The Theory of Atomic Spectra. – Cambridge: Cambridge
University Press, 1953.
37. Dresselhaus G. Spin-orbit coupling effects in zinc blende structures // Phys. Rev. –
1955. – V. 100. – P. 580–586.
113
38. Bychkov Yu., Rashba E.I. Oscillatory effects and the magnetic susceptibility of carriers
in inversion layers // J. Phys. C. – 1984. – No 17. – P. 6039–6045.
39. Gantmakher V.F., Levinson Y.B. Carrier scattering in metals and semiconductors //
Modern Problems in Condensed Matter Science. V. 19 / Ser. eds. V.M. Agranovich,
A.A. Maradudin. – N. Y.: North-Holland, 1987.
40. Yu Z.G., Flatte M.E. Spin diffusion and injection in semiconductor structures: Electric
field effects // Phys. Rev. B. – 2002. – V. 66, Art. 235302. – P. 1–14.
41. Yu Z.G., Flatte M.E. Electric-field dependent spin diffusion and spin injection into semi-
conductors // Phys. Rev. B. – 2002. – V. 66, Art. 201202. – P. 1–4.
42. Zutic I., Fabian J., Das Sarma S. Spin-polarized transport in inhomogeneous magnetic
semiconductors: theory of magnetic/nonmagnetic p− n junctions // Phys. Rev. Lett. –
2002. – V. 88, Art. 066603. – P. 1–4.
43. Pershin Yu.V., Privman V. Focusing of spin polarization in semiconductors by inhomo-
geneous doping // Phys. Rev. Lett. – 2003. – V. 90, Art. 256602. – P. 1–4.
44. Pershin Yu.V., Privman V. Propagation of spin-polarized electrons through interfaces
separating differently doped semiconductor regions // Proc. Conference “IEEE-NANO
2003”. – Monterey, CA: IEEE Press, 2003. – P. 168–170.
45. Martin I. Spin-drift transport and its applications // Phys. Rev. B. – 2003. – V. 67,
Art. 014421. – P. 1–5.
46. Pershin Yu.V. Accumulation of electron spin polarization at semiconductor interfaces //
Phys. Rev. B. – 2003. – V. 68, Art. 233309. – P. 1–4.
47. Saikin S. Drift-diffusion model for spin-polarized transport in a non-degenerate 2DEG
controlled by a spin-orbit interaction // J. Phys.: Condens. Matter. – 2004. – V. 16. –
P. 5071–5081.
48. Culcer D., Sinova J., Sinitsyn N.A., Jungwirth T., MacDonald A.H., Niu Q. Semiclassical
spin transport in spin-orbit-coupled bands // Phys. Rev. Lett. – 2004. – V. 93, Art.
046602. – P. 1–4.
49. Pershin Yu.V. Drift–diffusion approach to spin-polarized transport // Physica E. – 2004. –
No 23. – P. 226–231.
50. Pershin Yu.V. Dynamics of spin relaxation near the edge of two-dimensional electron
gas // Physica E. – 2005. – No 27. – P. 77–81.
51. Burkov A.A., Nunez A.S., MacDonald A.H. Theory of spin-charge-coupled transport in
a two-dimensional electron gas with Rashba spin-orbit interactions // Phys. Rev. B. –
2004. – V. 70, Art. 155308. – P. 1–8.
52. Shafir E., Shen M., Saikin S. Modulation of spin dynamics in a channel of a nonballistic
spin-field effect transistor // Phys. Rev. B. – 2004. – V. 70, Art. 241302(R). – P. 1–4.
53. Saikin S., Shen M., Cheng M.-C. Study of spin-polarized transport properties for spin-
FET design optimization // IEEE Trans. Nanotechnology. – 2004. – No 3. – P. 173–179.
54. Dyakonov M.I., Kachorovskii V.Yu. Spin relaxation of two-dimensional electrons in non-
centrosymmertic semiconductors // Sov. Phys. Semicond. – 1986. – V. 20. – P. 110–112.
55. Bauer G.E.W., Tserkovnyak Y., Huertas-Hernando D., Brataas A. From digital to ana-
logue magnetoelectronics: theory of transport in non-collinear magnetic nanostructures //
Advances in Solid State Physics. V. 43. – Berlin: Springer-Verlag, 2003.
56. Ivchenko E.L., Lyanda-Geller Yu.B., Pikus G.E. Current of thermalized spin-oriented
photocarriers // Sov. Phys. JETP. – 1990. – V. 71. – P. 550–557.
114
57. Takahashi Y., Shizume K., Masuhara N. Spin diffusion in a two-dimensional electron
gas // Phys. Rev. B. – 1999. – V. 60. – P. 4856–4865.
58. Weng M.Q., Wu M.W. Kinetic theory of spin transport in n-type semiconductor quantum
wells // J. Appl. Phys. – 2003. – V. 93. – P. 410–420.
59. Mishchenko E.G., Halperin B.I. Transport equations for a two-dimensional electron gas
with spin-orbit interaction // Phys. Rev. B. – 2003. – V. 68, Art. 045317. – P. 1–6.
60. Bir G.L., Pikus G.E. Symmetry and strain-induced effects in semiconductor. – Keter
Publishing House Jerusalem Ltd., 1974.
61. Carruthers P., Zachariasen F. Quantum collision theory with phase-space distributions //
Rev. Mod. Phys. – 1983. – V. 55. – P. 245–285.
62. Wigner E. On the quantum correction for thermodynamic equilibrium // Phys. Rev. –
1932. – V. 40. – P. 749–759.
63. Weng M.Q., Wu M.W., Jiang L. Hot-electron effect in spin dephasing in n-type GaAs
quantum wells // Phys. Rev. B. – 2004. – V. 69, Art. 245320. – P. 1–9.
64. Hess K. Monte Carlo device simulation: full band and beyond. – Boston: Kluwer Aca-
demic Publishers, 1991.
65. Tomizawa K. Numerical simulation of submicron semiconductor devices. – London,
Boston: Artech House, 1993.
66. Fischetti M.V., Laux S.E. DAMOCLES Theoretical Manual. – IBM, Yorktown Heights,
1995.
67. Bournel A., Dollfus P., Bruno P., Hesto P. Gate-induced spin precession in an
In0.53 Ga0.47 As two dimensional electron gas // Eur. Phys. J. AP. – 1998. – No 4. –
P. 1–4.
68. Saikin S., Shen M., Cheng M.-C., Privman V. Semiclassical Monte Carlo model for in-
plane transport of spin-polarized electrons in III–V heterostructures // J. Appl. Phys. –
2003. – V. 94. – P. 1769–1775.
69. Shen M., Saikin S., Cheng M.-C. Monte Carlo modeling of spin injection through a
Schottky barrier and spin transport in a semiconductor quantum well // J. Appl. Phys. –
2004. – V. 96. – P. 4319–4325.
70. Bournel A., Dollfus P., Bruno P., Hesto P. Spin-dependent transport phenomena in a
HEMT // Physica B. – 1999. – V. 272. – P. 331–334.
71. Kiselev A.A., Kim K.W. Progressive suppression of spin relaxation in two-dimensional
channels of finite width // Phys. Rev. B. – 2000. – V. 61. – P. 13115–13120.
72. Pershin Yu.V., Privman V. Slow spin relaxation in two-dimensional electron systems with
antidots // Phys. Rev. B. – 2004. – V. 69, Art. 073310. – P. 1–4.
73. Pramanik S., Bandyopadhyay S., Cahay M. Spin dephasing in quantum wires // Phys.
Rev. B. – 2003. – V. 68, Art. 075313. – P. 1–10.
74. Pramanik S., Bandyopadhyay S., Cahay M. Decay of spin-polarized hot carrier current
in a quasi-one-dimensional spin-valve structure // Appl. Phys. Lett. – 2004. – V. 84. –
P. 266–268.
75. Pramanik S., Bandyopadhyay S. Spin fluctuations and “spin noise”. – E-print cond-
mat/0312099. – 2003.
76. Bournel A., Dollfus P., Cassan E., Hesto P. Monte Carlo study of spin relaxation in
AlGaAs/GaAs quantum wells // Appl. Phys. Lett. – 2000. – V. 77. – P. 2346–2348.
77. Barry E.A., Kiselev A.A., Kim K.W. Electron spin relaxation under drift in GaAs //
Appl. Phys. Lett. – 2003. – V. 82. – P. 3686–3688

78. Pershin Yu.V. Long-lived spin coherence states // Phys. Rev. B. – 2005. – V. 71, Art.
155317.
79. Pershin Yu.V., Privman V. Spin relaxation of conduction electrons in semiconductors
due to interaction with nuclear spins // Nano Lett. – 2003. – No 3. – P. 695–700.
80. Shen M., Saikin S., Cheng M.-C., Privman V. Monte Carlo modeling of spin FETs
controlled by spin-orbit interaction // Math. Comp. Simul. – 2004. – V. 65. – P. 351–
363.
81. Shen M., Saikin S., Cheng M.-C. Spin injection in spin FETs using a step-doping profile //
IEEE Trans. Nanotechnology. – 2005. – No 4. – P. 40–44.
82. Pershin Yu.V. Spin coherence control by pulsed magnetic fields. – E-print cond-
mat/0310225.
83. D’yakonov M.I., Perel’ V.I. Spin orientation of electronics associated with the interband
absorption of light in semiconductors // Soviet Phys. JETP. – 1971. – V. 33. – P. 1053–
1059.