MMAE- Solids

Embed Size (px)

DESCRIPTION

MMAE412 Solid Rockets I Lesson 20

Citation preview

  • 7/21/2019 MMAE- Solids

    1/23

  • 7/21/2019 MMAE- Solids

    2/23

    Lesson 21 2

    Solid Rockets IIObjectives

    Objectives

    Introduce St. Roberts law

    Know how to predict/simulate thrust for asolid motor given the grain geometry

    Know how to do a detailed preliminary solidmotor design

    Reading

    SPAD: Ch. 6.2 & 6.6

    http://www.iit.edu/~armour/
  • 7/21/2019 MMAE- Solids

    3/23

    Lesson 21 3

    Solid Rockets II

    Mass Flow Rate

    or a solid roc!et" the mass flow ratehas the relation

    #prop $ propellant density%!g/m&'

    (burn $ burn surface area %m)

    ' r $ burn rate %m/s'

    %the rate at which the propellant surface isconsumed measured normal tothe surface'

    sec)/(kgrAm burnprop=

    http://www.iit.edu/~armour/http://www.iit.edu/~armour/
  • 7/21/2019 MMAE- Solids

    4/23

    Lesson 21 4

    Solid Rockets II

    St Roberts Law

    *urn rate comes from St Roberts +aw

    ,c $ chamber pressure %-,a' a $ burn rate coefficient %cm/sec/-,a)' n $ burn rate eponent

    a and n are found from eperimental data

    rate is measured at different chamber pressuresdata plotted as the natural log of the burn rate vs thenatural log of the chamber pressure

    yais intercept is the natural log of a and theslope of thebestfit line is n %net slide'

    n

    caPr=

    http://www.iit.edu/~armour/http://www.iit.edu/~armour/
  • 7/21/2019 MMAE- Solids

    5/23

    Solid Rockets II

    St Roberts Law

    http://www.iit.edu/~armour/
  • 7/21/2019 MMAE- Solids

    6/23

    Lesson 21 6

    Solid Rockets II

    Steady State L!"ed #ara!eter Reslt

    rom conservation of mass the total massflow rate in the chamber is constant insteady state

    0hus" m dot of the burning propellant $ mdot

    leaving through the throat So

    Solve for ,c to get12 3.)4%remember ,c$,o'

    n

    c

    ctoutburnpropburn

    aPrwith

    c

    PAmrAm

    =

    ===*

    ( )n

    t

    burnprop

    cA

    cAaP

    =

    11

    *

    http://www.iit.edu/~armour/
  • 7/21/2019 MMAE- Solids

    7/23

    Lesson 21 7

    Solid Rockets IISRM $esi%n #rocess

    -ission 5esign67 and mpayload

    8hoosing finertIsp minitial9 mpropellant :et step; detailed design to determine

    Po & Pa

    grain geometry (e.g. a simple cylindrical port) propellant formulation case outer diameter case material properties insulation properties

    turn thrust & !eight no""le information Predicted #$

    http://www.iit.edu/~armour/
  • 7/21/2019 MMAE- Solids

    8/23

    Lesson 21 8

    Solid Rockets IISRM $esi%n #rocess

    0he following approach wor!s well for constantthrust and Isp over a burn

    If thrust" ,o" and ,a change over time" pic! adesign point with no

  • 7/21/2019 MMAE- Solids

    9/23

    Lesson 21 9

    Solid Rockets IISRM $esi%n #rocess

    =' >se the R,( code to analy

  • 7/21/2019 MMAE- Solids

    10/23

    Lesson 21 10

    Solid Rockets IISRM $esi%n #rocess

    )' 5etermine the propellant graininformation

    /o!+ calculate the initial mass flo! rate

    0gIV

    initial

    finalspe

    mm

    =

    finalinitialprop mmm =

    0gI

    Fmsp

    =

    http://www.iit.edu/~armour/
  • 7/21/2019 MMAE- Solids

    11/23

    Lesson 21 11

    Solid Rockets IISRM $esi%n #rocess

    &' ind the propellant regression rate %StRoberts +aw'

    ?' :ow use the regression rate to get theburn area from the mass flow rate

    c

    n

    b PPaPr = 00 ,

    bprop

    b

    r

    mA

    =

    http://www.iit.edu/~armour/
  • 7/21/2019 MMAE- Solids

    12/23

    Lesson 21 12

    Solid Rockets IISRM $esi%n #rocess

    @' ind the length of the grain

    Know for a cylindrical grain" the burn area is

    rom S,(5" 12n 3.A)

    where Bv$ volumetric loading efficiency %C.DC.4D'

    propv

    prop

    case

    mV

    =

    LrA ib 2

    =

    http://www.iit.edu/~armour/
  • 7/21/2019 MMAE- Solids

    13/23

    Lesson 21 13

    (lso" from S,(5" 12n 3.A& %+/5 usually given'

    his e0uation can e sol*ed for the case internal diameter (assumes the

    domes of the case are spherical)

    1rom this !e can use the gi*en 'D to get

    he length of the cylindrical section of the case is found y

    he length of the propellant grain e0uals the length of the cylindricalsection

    Solid Rockets IISRM $esi%n #rocess

    ( )( )

    += 1/

    46

    3 DLDVcase

    DD

    LL

    =

    DLLcyl =

    cylgrain LL =

    http://www.iit.edu/~armour/
  • 7/21/2019 MMAE- Solids

    14/23

    Lesson 21 14

    Solid Rockets IISRM $esi%n #rocess

    3' ind the inner radius of the cylindricalport

    A' Si

  • 7/21/2019 MMAE- Solids

    15/23

    Lesson 21 15

    Solid Rockets IISRM $esi%n #rocess

    3se the %PA code or stagnation relations to find the

    epansion ratio

    +=

    120

    2

    11

    M

    p

    p

    =

    11

    2

    1

    0

    eexit

    P

    PM

    )1(21

    2

    2

    11

    1

    21 +

    +

    +

    =

    e

    exit

    MM

    http://www.iit.edu/~armour/
  • 7/21/2019 MMAE- Solids

    16/23

  • 7/21/2019 MMAE- Solids

    17/23

    Lesson 21 17

    Solid Rockets IISRM &rn Si!lation

    D' 5etermine the burn time of the motor his is !here the geometry of the port comes into play

    3se a spreadsheet or 7ata to e*aluate ho! the geometry and

    performance *ary o*er time

    Consider an internal cylindrical port as an eample

    t

    %sec'

    ,o

    %pa'

    ri

    %m'

    (b

    %m)'

    rb

    %m/s'

    m dot

    %!g/s'

    0hrust

    %:'

    C ,oo rio )Erio+ a,oon (b# rb m dot

    Isp go

    tF#t.

    .

    .

    t$tburn

    ,o=$mGdot

    cH/(t

    ri=$rioFrb#t

    8ontinueuntil

    ri5/)

    )Eri=+ a,o=n

    (b# rb m dotIsp go

    http://www.iit.edu/~armour/
  • 7/21/2019 MMAE- Solids

    18/23

    Lesson 21 18

    Solid Rockets IISRM $esi%n #rocess

    4' 5etermine the mass of the no

  • 7/21/2019 MMAE- Solids

    19/23

    Lesson 21 19

    Solid Rockets IISRM $esi%n #rocess

    =C' ind masses for the motor case and theinsulation 1irst+ find the urst pressure for the motor case

    !here Pcma maimum epected chamer pressure (Pa)

    's factor of safety

    he thic;ness of the case is (40n. 6.96 in SPAD)

    !here 1tu ultimate tensile strength

    scburst

    fPP max=

    tu

    burstcs

    F

    DPt

    2=

    http://www.iit.edu/~armour/
  • 7/21/2019 MMAE- Solids

    20/23

    Lesson 21 20

    Solid Rockets IISRM $esi%n #rocess

    he mass of the pressure *essel is (40n. 6.99 in SPAD)

    he mass of the thrust s;irt is (40n. 6.95 in SPAD)

    o account for the aft polar oss+ increase the total case

    mass of the thrust s;irt and pressure *essel y 8 in SPAD)

    +=

    D

    LDtm

    cyl

    cscspv 12

    2Dtm cscsskirt =

    )(1.1 skpvcase mmm +=

    http://www.iit.edu/~armour/
  • 7/21/2019 MMAE- Solids

    21/23

    Lesson 21 21

    Solid Rockets IISRM $esi%n #rocess

    1ind the insulation mass

    he eposed !all surface in the motor case is (40n. 6.5< in

    SPAD )

    he mass of the insulation can e found from (40n. 6.86)

    and the thic;ness of the insulation from (40n. 6.52)

    !here All masses are in ;g

    su is a fraction of 8

  • 7/21/2019 MMAE- Solids

    22/23

    Lesson 21 22

    Solid Rockets IISRM $esi%n #rocess

    ==' :ow find the actual 67 using thesemasses

    his #$ should e close to the gi*en re0uirement. ,f not+ there may e some changes needed to the design

    propif

    mmm

    =

    =

    f

    i

    spm

    mgIV ln0

    propskirtpvnozinsulcsi mmmmmmm +++++=

    http://www.iit.edu/~armour/
  • 7/21/2019 MMAE- Solids

    23/23

    23

    Solid Rockets II

    SRM $esi%n #rocess

    -ay have to iterate/redesign as necessaryuntil inert mass" propellant mass meetre2uirements.

    Jood idea to use ideal roc!et e2uation with

    si