36
9/8/2011 Classical Control 1 MM3 Response of Dynamic Systems Readings: Section 3.3 (response & pole locations, p.118-126); Section 3.4 (time-domain specifications, p.126-131) Section 3.6 (numerical simulation, p.138-143)

MM3 Response of Dynamic Systemshomes.et.aau.dk/yang/DE5/CC/mm3.pdf · MM2:ODE Model A general ODE model: SISO, SIMO, MISO, MIMO models Linear system, Time-invance, Linear Time-Invarance

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: MM3 Response of Dynamic Systemshomes.et.aau.dk/yang/DE5/CC/mm3.pdf · MM2:ODE Model A general ODE model: SISO, SIMO, MISO, MIMO models Linear system, Time-invance, Linear Time-Invarance

9/8/2011 Classical Control 1

MM3 Response of Dynamic Systems

Readings: • Section 3.3 (response & pole locations, p.118-126);• Section 3.4 (time-domain specifications, p.126-131)•Section 3.6 (numerical simulation, p.138-143)

Page 2: MM3 Response of Dynamic Systemshomes.et.aau.dk/yang/DE5/CC/mm3.pdf · MM2:ODE Model A general ODE model: SISO, SIMO, MISO, MIMO models Linear system, Time-invance, Linear Time-Invarance

What have we talked in MM2?

• ODE models• Laplace transform• Block diagram transformation

9/8/2011 Classical Control 2

Page 3: MM3 Response of Dynamic Systemshomes.et.aau.dk/yang/DE5/CC/mm3.pdf · MM2:ODE Model A general ODE model: SISO, SIMO, MISO, MIMO models Linear system, Time-invance, Linear Time-Invarance

MM2: ODE Model A general ODE model:

SISO, SIMO, MISO, MIMO models Linear system, Time-invance, Linear Time-Invarance (LTI) Solution of ODE is an explicit description of dynamic behavior Conditions for unique solution of an ODE Solving an ODE:

Time-domain method, e.g., using exponential function Complex-domain method (Laplace transform) Numerical solution – CAD methods, e.g., ode23/ode45

9/8/2011 Classical Control 3

Page 4: MM3 Response of Dynamic Systemshomes.et.aau.dk/yang/DE5/CC/mm3.pdf · MM2:ODE Model A general ODE model: SISO, SIMO, MISO, MIMO models Linear system, Time-invance, Linear Time-Invarance

MM2: Block diagram Rules

9/8/2011 Classical Control 4

Page 5: MM3 Response of Dynamic Systemshomes.et.aau.dk/yang/DE5/CC/mm3.pdf · MM2:ODE Model A general ODE model: SISO, SIMO, MISO, MIMO models Linear system, Time-invance, Linear Time-Invarance

MM2: Simulink Block diagram System build-up

Using TF block Using nonlinear blocks Using math blocks

Creat subsystems Top-down Bottom-up

Usage of ode23 & ode45

9/8/2011 Classical Control 5

Page 6: MM3 Response of Dynamic Systemshomes.et.aau.dk/yang/DE5/CC/mm3.pdf · MM2:ODE Model A general ODE model: SISO, SIMO, MISO, MIMO models Linear system, Time-invance, Linear Time-Invarance

9/8/2011 Classical Control 6

Goals for this lecture (MM3) Time response analysis Typical inputs 1st, 2nd and higher order systems

Performance specification of time response Transient performance Steady-state performance

Numerical simulation of time response

Page 7: MM3 Response of Dynamic Systemshomes.et.aau.dk/yang/DE5/CC/mm3.pdf · MM2:ODE Model A general ODE model: SISO, SIMO, MISO, MIMO models Linear system, Time-invance, Linear Time-Invarance

9/8/2011 Analog and Digital Control 7

d(t)

u(t)

(explicit) Dynamic: y(t)=f(d(t), u(t), y(0))

ODE model TF model

eaa

tm

a

etmm Tv

RK

RKKbJ

...)(

))(()(

1)(

))(()(

)(

22

21

etam

a

a

etm

e

m

etam

t

a

etm

a

t

a

m

KKbsRJsR

sR

KKbsJTSG

KKbsRJsK

sR

KKbsJ

RK

VSG

System Models: ODE/TF

y(t)

)0(,)0( mm

System (dynamic) feature description

Time response!

Page 8: MM3 Response of Dynamic Systemshomes.et.aau.dk/yang/DE5/CC/mm3.pdf · MM2:ODE Model A general ODE model: SISO, SIMO, MISO, MIMO models Linear system, Time-invance, Linear Time-Invarance

9/8/2011 Analog and Digital Control 8

Time Response Calculation (I)

d(t)=0

u(t)

y(t)

ODE model

aa

tm

a

etmm v

RK

RKKbJ

...)(

)0(,)0( mm

),,),0(),0(( feammm TTvf

Page 9: MM3 Response of Dynamic Systemshomes.et.aau.dk/yang/DE5/CC/mm3.pdf · MM2:ODE Model A general ODE model: SISO, SIMO, MISO, MIMO models Linear system, Time-invance, Linear Time-Invarance

9/8/2011 Analog and Digital Control 9

Time Response Calculation (II)

d(t)=0

u(t)

y(t)

TF model

)0(,)0( mm

),,)0(),0(( feammm TTvf

))(()(

etam

t

a

m

KKbsRJsK

VS

Laplace Trans Inv Laplace T.

Page 10: MM3 Response of Dynamic Systemshomes.et.aau.dk/yang/DE5/CC/mm3.pdf · MM2:ODE Model A general ODE model: SISO, SIMO, MISO, MIMO models Linear system, Time-invance, Linear Time-Invarance

9/8/2011 Analog and Digital Control 10

Time Response Calculation (II)

d(t)=0

u(t)

y(t)

TF model

)0(,)0( mm

),,),0(),0(( feammm TTvf

))(()(

etam

t

a

m

KKbsRJsK

VS

Laplace Trans Inv Laplace T.

)()()()()()(

sVsGSsUsGsY

am

Page 11: MM3 Response of Dynamic Systemshomes.et.aau.dk/yang/DE5/CC/mm3.pdf · MM2:ODE Model A general ODE model: SISO, SIMO, MISO, MIMO models Linear system, Time-invance, Linear Time-Invarance

9/8/2011 Analog and Digital Control 11

Time Response Calculation (III)

d(t)=0

u(t)

y(t)

TF model in MatlabNum= [K]; Den=[JR b+ktKf 0]; lsim(tf(Num,Den),u, T,X0)

)0(,)0( mm

))(()(

etam

t

a

m

KKbsRJsK

VS

Page 12: MM3 Response of Dynamic Systemshomes.et.aau.dk/yang/DE5/CC/mm3.pdf · MM2:ODE Model A general ODE model: SISO, SIMO, MISO, MIMO models Linear system, Time-invance, Linear Time-Invarance

Time Response Analysis Objective:

Based on TF model, Can we predict some key features of a dynamic response regarding to some typical input, without detail calculation of the solution? In another word, to get a rough sketch of the dynamic with all key (concerned) features kept

Typical inputs Corresponding responses Key features

Page 13: MM3 Response of Dynamic Systemshomes.et.aau.dk/yang/DE5/CC/mm3.pdf · MM2:ODE Model A general ODE model: SISO, SIMO, MISO, MIMO models Linear system, Time-invance, Linear Time-Invarance

Time Response Analysis – Typical Inputs

Supercomposition principle LTI system Typical representations

9/8/2011 Classical Control 13

Page 14: MM3 Response of Dynamic Systemshomes.et.aau.dk/yang/DE5/CC/mm3.pdf · MM2:ODE Model A general ODE model: SISO, SIMO, MISO, MIMO models Linear system, Time-invance, Linear Time-Invarance

Time Response Analysis – Impulse Signal Impulse signal

Features Convolution integration Approximation

9/8/2011 Classical Control 14

)(*)()()()(

1)(0

0

ttfdtftf

dtt

Page 15: MM3 Response of Dynamic Systemshomes.et.aau.dk/yang/DE5/CC/mm3.pdf · MM2:ODE Model A general ODE model: SISO, SIMO, MISO, MIMO models Linear system, Time-invance, Linear Time-Invarance

Time Response – First-order System (I)

First-order systemExamples: (mm2)

Motor speed controlCruise controlRC cuircuit One-tank level control

9/8/2011 Classical Control 15

tpt ectgketg

scsG

pp

psksG

1

)(or )(

:domain time

:constant time,1:pole,1

)(

1 :constant time,:pole,)(

Page 16: MM3 Response of Dynamic Systemshomes.et.aau.dk/yang/DE5/CC/mm3.pdf · MM2:ODE Model A general ODE model: SISO, SIMO, MISO, MIMO models Linear system, Time-invance, Linear Time-Invarance

Time Response – First-order System (II)

9/8/2011 Classical Control 16

Page 17: MM3 Response of Dynamic Systemshomes.et.aau.dk/yang/DE5/CC/mm3.pdf · MM2:ODE Model A general ODE model: SISO, SIMO, MISO, MIMO models Linear system, Time-invance, Linear Time-Invarance

First-order System - Impulse Response

9/8/2011 Classical Control 17

The coefficients of impulse response can be estimated by free-response

Page 18: MM3 Response of Dynamic Systemshomes.et.aau.dk/yang/DE5/CC/mm3.pdf · MM2:ODE Model A general ODE model: SISO, SIMO, MISO, MIMO models Linear system, Time-invance, Linear Time-Invarance

First-order System - Step Response

9/8/2011 Classical Control 18

Page 19: MM3 Response of Dynamic Systemshomes.et.aau.dk/yang/DE5/CC/mm3.pdf · MM2:ODE Model A general ODE model: SISO, SIMO, MISO, MIMO models Linear system, Time-invance, Linear Time-Invarance

First-order System - Ramp Response

9/8/2011 Classical Control 19Type of systems (mm4)

Page 20: MM3 Response of Dynamic Systemshomes.et.aau.dk/yang/DE5/CC/mm3.pdf · MM2:ODE Model A general ODE model: SISO, SIMO, MISO, MIMO models Linear system, Time-invance, Linear Time-Invarance

Time Response – Second-order System (I)

Second-order system

9/8/2011 Classical Control 20

Page 21: MM3 Response of Dynamic Systemshomes.et.aau.dk/yang/DE5/CC/mm3.pdf · MM2:ODE Model A general ODE model: SISO, SIMO, MISO, MIMO models Linear system, Time-invance, Linear Time-Invarance

Time Response – Second-order System (II)

Second-order system

9/8/2011 Classical Control 21

Page 22: MM3 Response of Dynamic Systemshomes.et.aau.dk/yang/DE5/CC/mm3.pdf · MM2:ODE Model A general ODE model: SISO, SIMO, MISO, MIMO models Linear system, Time-invance, Linear Time-Invarance

Second-order System – Pole (Root) Analysis

Second-order system

9/8/2011 Classical Control 22

Check execise one for MM2 – pendulumModel analysis )

Page 23: MM3 Response of Dynamic Systemshomes.et.aau.dk/yang/DE5/CC/mm3.pdf · MM2:ODE Model A general ODE model: SISO, SIMO, MISO, MIMO models Linear system, Time-invance, Linear Time-Invarance

Second-order System – Impulse Response

9/8/2011 Classical Control 23

The coefficients of impulse response can be estimated by free-response

Page 24: MM3 Response of Dynamic Systemshomes.et.aau.dk/yang/DE5/CC/mm3.pdf · MM2:ODE Model A general ODE model: SISO, SIMO, MISO, MIMO models Linear system, Time-invance, Linear Time-Invarance

Example: Impulse Response Estimation

9/8/2011 Classical Control 24

Page 25: MM3 Response of Dynamic Systemshomes.et.aau.dk/yang/DE5/CC/mm3.pdf · MM2:ODE Model A general ODE model: SISO, SIMO, MISO, MIMO models Linear system, Time-invance, Linear Time-Invarance

Second-order System – Step Response (I)

9/8/2011 Classical Control 25

Page 26: MM3 Response of Dynamic Systemshomes.et.aau.dk/yang/DE5/CC/mm3.pdf · MM2:ODE Model A general ODE model: SISO, SIMO, MISO, MIMO models Linear system, Time-invance, Linear Time-Invarance

Second-order System – Step Response (II)

9/8/2011 Classical Control 26Control specification!

Page 27: MM3 Response of Dynamic Systemshomes.et.aau.dk/yang/DE5/CC/mm3.pdf · MM2:ODE Model A general ODE model: SISO, SIMO, MISO, MIMO models Linear system, Time-invance, Linear Time-Invarance

Second-order System – Ramp Response

9/8/2011 Classical Control 27

Page 28: MM3 Response of Dynamic Systemshomes.et.aau.dk/yang/DE5/CC/mm3.pdf · MM2:ODE Model A general ODE model: SISO, SIMO, MISO, MIMO models Linear system, Time-invance, Linear Time-Invarance

Second-order System – Damping Effect

9/8/2011 Classical Control 28

Page 29: MM3 Response of Dynamic Systemshomes.et.aau.dk/yang/DE5/CC/mm3.pdf · MM2:ODE Model A general ODE model: SISO, SIMO, MISO, MIMO models Linear system, Time-invance, Linear Time-Invarance

Time Response – High-Order System

9/8/2011 Classical Control 29

See page 32-37 of the extra readings for detail explanation

Page 30: MM3 Response of Dynamic Systemshomes.et.aau.dk/yang/DE5/CC/mm3.pdf · MM2:ODE Model A general ODE model: SISO, SIMO, MISO, MIMO models Linear system, Time-invance, Linear Time-Invarance

9/8/2011 Classical Control 30

Goals for this lecture (MM3) Time response analysis Typical inputs 1st, 2nd and higher order systems

Performance specification of time response Transient performance Steady-state performance

Numerical simulation of time response

Page 31: MM3 Response of Dynamic Systemshomes.et.aau.dk/yang/DE5/CC/mm3.pdf · MM2:ODE Model A general ODE model: SISO, SIMO, MISO, MIMO models Linear system, Time-invance, Linear Time-Invarance

Performance Specification Objective: evaluation of control design Platform: based on step response of a typical 2nd-

order system

9/8/2011 Classical Control 31

Page 32: MM3 Response of Dynamic Systemshomes.et.aau.dk/yang/DE5/CC/mm3.pdf · MM2:ODE Model A general ODE model: SISO, SIMO, MISO, MIMO models Linear system, Time-invance, Linear Time-Invarance

Specification – Transient Performance (I)

9/8/2011 Classical Control 32

(See FC 126-131...) Rise time tr

Settling time ts

Overshoot Mp

Peak time tp

Page 33: MM3 Response of Dynamic Systemshomes.et.aau.dk/yang/DE5/CC/mm3.pdf · MM2:ODE Model A general ODE model: SISO, SIMO, MISO, MIMO models Linear system, Time-invance, Linear Time-Invarance

9/8/2011 Classical Control 33

21,

3.0%,355.0%,16

7.0%,5

6.46.4

8.1

ndd

p

p

ns

nr

t

M

t

t

Specification – Transient Performance (II)

Page 34: MM3 Response of Dynamic Systemshomes.et.aau.dk/yang/DE5/CC/mm3.pdf · MM2:ODE Model A general ODE model: SISO, SIMO, MISO, MIMO models Linear system, Time-invance, Linear Time-Invarance

9/8/2011 Classical Control 34

Specification – Steady-state Performance

)(lim)(lim0

ssFtfst

Page 35: MM3 Response of Dynamic Systemshomes.et.aau.dk/yang/DE5/CC/mm3.pdf · MM2:ODE Model A general ODE model: SISO, SIMO, MISO, MIMO models Linear system, Time-invance, Linear Time-Invarance

9/8/2011 Classical Control 35

Goals for this lecture (MM3) Time response analysis Typical inputs 1st, 2nd and higher order systems

Performance specification of time response Transient performance Steady-state performance

Numerical simulation of time response

Page 36: MM3 Response of Dynamic Systemshomes.et.aau.dk/yang/DE5/CC/mm3.pdf · MM2:ODE Model A general ODE model: SISO, SIMO, MISO, MIMO models Linear system, Time-invance, Linear Time-Invarance

9/8/2011 Process Control 36

Numerical Simulation of Time Response Impulse response: impulse(sys) Step response: step(sys) ltiview(sys) Decomposition of transfer function to be a configuration based

on integor and gain elements (in order to simulate initial response in simulink)

EXAMPLE:sys1: Sys2:

num1=[1]; num2=[1 2];den1=[1 2 1]; den2=[1 2 3];impulse(tf(num1,den1),'r',tf(num2,den2),'b')step(tf(num1,den1),'r',tf(num2,den2),'b')