107
Archived in http://dspace.nitrkl.ac.in/dspace Mixed Metal Acetylide Complexes PRADEEP MATHUR, SAURAV CHATTERJEE AND VIDYA D. AVASARE Chemistry Department Indian Institute of Technology-Bombay Powai, Bombay 400 076, India Published in Advances in Organometallic Chemistry ,Volume 55 , 2007, Pages 201-277 http://dx.doi.org/10.1016/S0065-3055(07)55004-5

Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

Archived in http://dspace.nitrkl.ac.in/dspace

Mixed Metal Acetylide Complexes PRADEEP MATHUR, SAURAV CHATTERJEE AND VIDYA D. AVASARE

Chemistry Department

Indian Institute of Technology-Bombay

Powai, Bombay 400 076, India

Published in Advances in Organometallic Chemistry ,Volume 55, 2007, Pages 201-277

http://dx.doi.org/10.1016/S0065-3055(07)55004-5

Page 2: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

2

I. Introduction 3

II. Mixed Group 8 Metal Acetylide Complexes 4

III. Mixed Group 10 Metal Acetylide Complexes 13

IV. Mixed Group 11 Metal Acetylide Complexes 15

V. Mixed Group 6 - 9 Metal Acetylide Complexes 19

VI. Mixed Group 10 -12 Metal Acetylide Complexes 71

VII. Other Mixed Metal Acetylide Complexes 79

VIII. Abbreviations 99

References

Page 3: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

3

I INTRODUCTION

Complexes containing C2 hydrocarbyl ligands occupy a very important position in

the development of di-, tri- and polynuclear organometallic chemistry. Recognition that

monovalent anions of alk-1-ynes, [RC≡C]¯ are isoelectronic to cyanide ion and CO

prompted the first preparation of metal alkynyl complexes in 1953.1,2 Since then, a

number of synthetic strategies have been developed and chemistry of metal acetylide

complexes has grown tremendously.3-12 Ability of the alkynyl part (-C≡CR) of the metal

acetylides to bind to metal centres in a variety of bonding modes enables a large number

of acetylide – bridged polynuclear complexes to be synthesised.13-26 The presence of

metal and electron - rich C≡C moiety in acetylide complexes facilitates cluster growth

reactions, and frequently, coupling of acetylide moieties to form polycarbon chains on

cluster frameworks is observed.27-30

In this review, focus is given on mixed – metal acetylide complexes which have

been prepared from metal – acetylide precursor complexes. Particular emphasis is given

on aspects of variation of acetylide bonding on mixed – metal polynuclear frameworks

and on reactivity of the polycoordinated acetylide ligand. Since, we recently reviewed

oxo - incorporated metal acetylide complexes,31 these are excluded from the present

review. A large majority of the acetylide – bridged mixed metal complexes contains

metals of the same group of the Periodic Table and, therefore, we have subdivided the

review based on different groups. Although, several examples exist of mixed – metal

acetylide complexes containing metals from groups 6, 7, 9 and 12, quite surprisingly, we

Page 4: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

4

could not find any example of mixed – metal acetylide complexes containing metals only

from one of these groups.

II MIXED GROUP 8 METAL ACETYLIDE COMPLEXES

Most of the mixed metal acetylide complexes of this particular group are those

associated with Cp, Cp* and carbonyl ligands. A number of synthetic studies have been

carried out for polynuclear C2 complexes derived from ethynyl and diethynediyl iron

complexes. Reaction of the ethynyliron complexes [{(η5-C5R5)Fe(CO)2}-C≡C-H] (R =

H, 1; R = Me, 2) with [Ru3(CO)12] in refluxing benzene affords triruthenium μ-η1,η2,η2-

acetylide cluster compounds [Ru3(CO)9(μ-H) (μ3-η1:η2:η2-C≡C-{(η5-C5R5)Fe(CO)2})]

(R = H, 4; R = Me, 5) (Scheme 1).32 On the other hand, the reaction of the

ethynediyldiiron complex, [{(η5-C5Me5)Fe(CO)2}-C≡C-{(η5-C5Me5)Fe(CO)2}] (3) with

[Ru3(CO)12], gives a complicated mixture of products, from which [Cp*2Fe2Ru2(μ4-

C2)(CO)10] (6) and [Cp*2Fe2Ru6(μ6-C2)(CO)17] (7) have been isolated and characterized

by X-ray crystallography as permetalated ethene and permetalated ethane complexes

respectively (Scheme 2).32 The four metal atoms in 6 form an open-rectangular array

embedded in which is a C2 ligand. Compound 7 is an octanuclear compound with two C2

units above and below a Ru4 plane arranged perpendicular to each other. Two of the

edges of the central Ru4 plane are bridged by Ru(CO)3 groups and the other two by

FeCp* moieties.

Page 5: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

5

Ru3(CO)12

Fe

Ru

Ru

CC

Ru

H

(CO)3

(CO)3

(CO)3

1; R = H 2; R = Me

C CFe H(CO)2

(CO)2

(η5-C5R5)

(η5-C5R5)

4; R = H 5; R = Me

C6H6, 80ºC

Scheme 1.

Ru3(CO)12

Cp* Cp*

OC

FeC

Ru RuC

COC

FeOC

O(CO)3 (CO)3

CC

CRu C

Ru

RuRuRu

Ru

FeCp*

FeCp*

CO

COCO(CO)3

(CO)3

Ru = Ru(CO)2

+

6 7

C CFe Fe(CO)2(η5-C5Me5) (CO)2(η5-C5Me5)

Benzene60 ºC

3

Scheme 2.

On reflux of a THF solution of a mixture of [Fe2(CO)9] and 6, iron-substituted

derivative of 5, complex [Ru2Fe(μ-H)(CO)9(μ3-C≡C-{(η5-C5Me5)Fe(CO)2})] (8) is

formed. Treatment of 6 with CF3SO3H, HBF4.OEt2 or CF3COOH forms an unstable

cationic species 9,which has been characterised solely by spectroscopy, as it readily

converts to [{(η5-C5Me5)Fe(CO)]+ X- (Scheme 3).32

Page 6: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

6

Fe2(CO)9

(CO)3

(CO)3 (CO)3

8

Cp* Cp*

OC

FeC

Ru RuC

COC

FeOC

H

O(CO)2 (CO)2

Cp* Cp*

OC

FeC

Ru RuC

COC

FeOC

O(CO)3 (CO)3

HX

+ +

9a; X = CF3SO39b; X = BF49c; X = CF3COO

+

X

[ Cp*(CO)Fe ] X+

6

Cp*Cp*

OC

FeC

Ru RuC

COC

FeOC

O

(CO)3 (CO)3

(η5-C5Me5)(CO)2

CC

Ru

Ru

Fe

H

Fe

X

Scheme 3.

Thermolysis of the mixed-metal tetranuclear cluster [(μ3-C≡C-{(η5-

C5H5)Fe(CO)2})Ru3(μ-H)(CO)9] (4) affords two products: [CpFeRu6(μ5-C2)(μ5-

C2H)(CO)16] (10) and [Cp2Fe2Ru6(μ6-C2)2(CO)17] (11) (Scheme 4).33 The anion [(μ3-

C≡C-{(η5-C5H5)Fe(CO)2})Ru3(CO)9]- (12) derived from 4 undergoes coupling of the

{(C2)FeRu3} core to give compound 11 and a heptanuclear cluster [Cp2Fe2Ru5(μ5-

C2)2(CO)17] (14), a coordinatively saturated compound with 112 cluster valence electrons

bearing two six-electron donating C2 ligands.

Page 7: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

7

PPh4

[Cp2Fe]PF6 CH2Cl2

KOHPPh4Br

12

Toluene

110 ºC

4

(CO)3

(CO)3

(CO)3

Fe

RuRu

CC

Ru

H

+

(CO)3

(CO)3

(CO)3

Fe

RuRu

CC

Ru

H

(η5-C5H5)(CO)2

(η5-C5H5)(CO)2

(CO)3

(CO)3

C C

Ru Ru

Ru

Ru

Fe

CCC

CpH

Ru

RuO

(CO)310

+ 11

(CO)2

11

+ Fe FeRuRu

Ru

Ru Ru

OC CO

C C

C

C

C

O14

C C

CRuC

Ru

RuRuRuRu

FeCp

FeCp

CO

COCO(CO)3

(CO)3

(CO)2 (CO)2

Ru = Ru(CO)2

Cp Cp

Scheme 4.

Treatment of 6 with R-chloropropionic acid results in an addition reaction

yielding a μ-hydrido μ-carboxylato derivative, [(μ4-C=C)(μ-H)(μ-κ1,κ1-

CH3CHClCOO)Fe2Ru2Cp*2(CO)8] (15). On irradiation of a THF solution of 6, in

presence of diphosphines, [Ph2P(CH2)nPPh2] (n= 1, 2), the substituted products [(μ4-

C=C)Fe2Ru2Cp*2(CO)8{μ-Ph2P(CH2)nPPh2}] (n = 1, 16a; n = 2, 16b) are formed.

Treatment of 16 with HBF4.OEt2 results in protonation at the C=C unit to give the

cationic μ4-C2H complex, [(μ4-C=CH)Fe2Ru2Cp*2(CO)12(dppm)]BF4 (17) which on

reduction with [NEt4] BH4 results in elimination of one of the iron fragments to afford a

Page 8: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

8

trinuclear acetylide cluster, [(μ3-C≡CH)FeRu2Cp*(CO)5(dppm)] (18a). On the other

hand, treatment of 17 with H2SiPh2 leads to hydrogen addition to give the trinuclear μ3-

HC=CH complex [(μ3-HC=CH)(μ-H)FeRu2Cp*(CO)5(dppm)] (18b). Thus, the μ3-

HC=CH ligand in 18b arises from formal hydrogenation of the μ4-C=C ligand in 16a and

the ligand transformations are realized by the flexible coordination capability of the C2

ligand. Cluster expansion of 16a with [Co2(CO)8] gives

[(μ3-C≡CFe(CO)2Cp*)FeRu2CoCp*(CO)12(dppm)] (19) (Scheme 5).34a

Page 9: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

9

6

Cp* Cp*

OC

FeC

Ru RuC

COC

FeOC

O

(CO)3 (CO)3

CH3CH(Cl)COOH

Cp* Cp*

OC

FeC

Ru RuC

COC

FeOC

O O

CHCH3

H

O(CO)2 (CO)2

Cl15

16a

Cp* Cp*

OC

FeC

Ru RuC

COC

FeOC

P PPh2

O(CO)2 (CO)2

Ph2

Co2(CO)8

16b

Cp* Cp*

OC

FeC

Ru RuC

COC

FeOC

P PPh2

O(CO)2 (CO)2

Ph2

Ph2P(CH2)xPPh2

x = 1, 2THF, hν

+

(CO)2

P

Ru(CO)2

FeCp*

CP

Ru

C

Co COC

(CO)2

(CO)

Ph2

Ph2

O

+Cp*FeCo(CO)5

1916a

Cp*Cp*

ORu

Fe

C

C

RuC

COC Fe

P PPh2

H

O(CO)2 (CO)2

Ph2

+ BF4

17

HBF4.OEt2

Cp*O

(CO)2 (CO)2

C FeC

Ru Ru

C

P PPh2

H

Ph2

18a

Cp*

O(CO)2

(CO)2

Ph2

18b

H2SiPh2 THF

Et4NBH4

CH

C

Fe

RuRu

C

P PPh2

H

H

CH2Cl2

C6H6, 70ºC

CH2Cl2

THF

Scheme 5.

Thermal reaction of a THF solution of ethynediyl complex [{Cp2Ru(CO)2}2(μ-

C≡C)] (20) with diiron nonacarbonyl gives [Cp2Fe2Ru2(μ4-C≡C)(μ-CO)(CO)8)] (21)

(Figure 1).34b

Page 10: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

10

CC

Fe

Fe

Ru

C

Ru(CO)2

Cp

Cp

(CO)3

(CO)3

O

21 Figure 1.

Highly conjugated polycarbon–metal systems, the zwitterionic μ-but-2-yn-1-

ylidene-4-ylidyne complex [Ru3(CO)10(μ3-C–C≡C–μ-C)Fe2Cp*2(CO)3] (23) and the

dimerized product with a cumulenic μ-C8 ligand, [(Cp*Fe)4Ru2(CO)13[μ6-C8–C(=O)]

(24a) have been isolated from the reactions of butadiynediyldimetal complex, [{(η5-

C5Me5)Fe(CO)2}–C≡C–C≡C–Fe(η5-C5Me5)(CO)2] (22a) with [Ru3(CO)12] (Scheme 6).

An isostructural C8 complex 24b is obtained on reaction of the Fe-Ru mixed metal

complex [{(η5-C5Me5)Fe(CO)2}–C≡C–C≡C–Ru(η5-C5Me5)(CO)2] (22b) with

[Ru3(CO)12]. A zwitterionic acetylide cluster-type product {(η5-

C5Me5)Fe(CO)2}+[Cp(CO)2Ru(η2-C≡C)–(μ3-C≡C)Fe3(CO)9]- (25) is formed by the

reaction of butadiynediyldimetal complex, [{(η5-C5Me5)Fe(CO)2}–C≡C–C≡C–Ru(η5-

C5H5)(CO)2] (22c) with [Fe2(CO)9] (Figure 2).35a X-ray crystallography reveals a

pentanuclear structure containing a dinuclear μ-η1,η2-acetylide cationic species and a

trinuclear μ3-acetylide anionic species.

Page 11: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

11

Ru3(CO)12

RuC C

RuRu

CFe

Fe

C C CO O

(CO)Cp*

(CO)Cp*

(CO)3

(CO)3 (CO)3

+

(CO)3(CO)3

O

Cp*(CO)

Cp*(CO) CC

CC

Fe

Fe

C C C C

CRu

C

FeCp*(CO)2

FeCp*Ru

O

23

24a

Fe FeC C C CCp* Cp*(CO)2 (CO)222a

(CO)2

Scheme 6.

O

CC

CC

M2

M1

C C C C

CRuC

RuCp*(CO)2

FeCp*Ru

(CO)3(CO)3

O

Cp*(CO)

Cp*(CO)

(CO)2

24b'; M1/M2 = Fe/Ru 24b''; M1/M2 = Ru/Fe

Fe

(CO)3

(CO)3

(CO)3Fe

Fe

C C C

Fe

C RuCp(CO)2

25

Cp* (CO)2+

-

Figure 2.

Thermolytic reaction of a THF solution of [{CpRu(PPh3)2}2{μ-C≡C)n}] (n = 3,

26a; n = 4, 26b) with [Fe2(CO)9] afford the corresponding heterometallic complexes

[Fe3{μ3-CC≡C{Ru(PPh3)Cp}2(CO)9] (27a) and [Fe3{μ3-CC≡C{Ru(PPh3)2Cp}{μ3-

CC≡CC≡C{Ru(PPh3)2Cp}(CO)9] (27b) respectively (Scheme 7).35b

Cp (PPh3)2Ru (C C)n Ru(PPh3)2CpFe2(CO)9

Ru(PPh3)2Cp

C C

(CO)3Fe Fe(CO)3

(C C)n-2CCCp(PPh3)2Ru Fe

(CO)3

26a; n = 326b; n = 4

27a; n = 327b; n = 4

THF, 65 ºC

Scheme 7.

Page 12: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

12

The triosmium acetylide cluster, [Os3(μ-H)(μ3-C≡CMe)(CO)9] (28) reacts with

[Ru3(CO)12] in refluxing hexane to give the tetranuclear [RuOs3(μ4-HC2Me)(CO)12] (29)

(Scheme 8).36a

(CO)3Os Os

Os(CO)3

H

CC

Me

(CO)3Ru3(CO)12

Os(CO)3

(CO)3RuOs

C

Os(CO)3

CMeH

28 29

(CO)3

Scheme 8.

Reaction of a dichloromethane solution of cis-[(dppm)2RuCl2] with trans-

[(dppm)2(Cl)Os(C≡C-p-C6H4-C≡CH)] and NaPF6 gives a vinylidene complex, which

converts to trans-[(dppm)2(Cl)Os(C≡C-p-C6H4-C≡C-Ru(Cl)(dppm)2] (30) on addition of

DBU in the reaction mixture (Scheme 9).36b

i) cis-[(dppm)2RuCl2]2NaPF6, CH2Cl2

PPh2Ph2P

Ph2P PPh2

Ru Clii) DBU

30

C CHCCOs

PPh2

Ph2P

Ph2P

PPh2

Cl C6H4 CCOs

PPh2

Ph2P

Ph2P

PPh2

Cl C6H4 C C

Scheme 9.

On reflux of a benzene solution containing [Fe2M(CO)9(μ3-E)2] (M = Ru; E = S,

Se) (31a, b) and [Fe(η5-C5H4E’CH2C≡CH)2] (E’ = S, 32a; Se, 32b) unusual ferrocenyl

containing heterometal clusters [Fe(η5-C5H4E’CH2C≡CH)(η5-C5H4{Fe2M(CO)8(μ-E)(μ3-

E)(E’CHCCH2)})] (M = Ru, E = Se and E’ = Se, 33a; M = Ru, E = S and E’ = Se, 33b)

are formed (Scheme 10).37 The molecular structure of 33b consists of a butterfly FeRuS2

unit attached to a {FeSeC(H)=CCH2} five-membered ring which is bonded via Se atom

to the C5H4 ring of a {(η5-C5H4)(η5-C5H4SeCH2C≡CH)Fe} unit.

Page 13: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

13

Fe EM

Fe

E

E' CH2 C CH

Fe

E' CH2 C CH

+

Benzene

(CO)3

(CO)3

(CO)3

C C

E'CH2

Fe

E

EFe M(CO)3

HFe

E' CH2 C CH

(CO)2

(CO)3

33a; M = Ru, E = Se, E' = Se

31a; M= Ru, E = S 31b; M= Ru, E = Se 32a; E' = S

32b; E' = Se

33b; M = Ru, E = S, E' = Se

80ºC

Scheme 10.

III MIXED GROUP 10 METAL ACETYLIDE COMPLEXES

Reaction of trans-bis(tri-n-butylphosphine)diethynylnickel (34) with l-alkynes in

the presence of an amine complex of a copper(I) salt as a catalyst gives quantitatively

alkynyl ligand exchange products. In this synthetic method, complex 34 reacts with

appropriate α,ω-diethynyl compounds to afford high molecular weight linear polymers

(35-38) in good yields.38 This procedure provides a convenient route to heterometallic

nickel-platinum-poly-yne polymers (Scheme 11).

Ni

PBu3

PBu3

CC CHHCn + R CC CHHCn R CC CCNiPBu3

PBu3

( ) n/2 + n HC CH

R = Ni

PBu3

PBu3

CC CC , p-C6H4 , Pt

PBu3

PBu3

CC CC , p-C6H4 Pt

PBu3

PBu3

CC CC p-C6H4

3835 36 37

34

Scheme 11.

Page 14: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

14

Formation of heterodinuclear Pt-Pd anionic complexes [(C6F5)2Pt(CCR)2Pd(η3-

C3H5)]- (R = Ph, tBu, SiMe3) (42a-c) and neutral trinuclear complexes [{(η3-

C3H5)Pd}2{Pt(CCR)4}] (R = Ph, tBu, SiMe3) (41a-c) have been reported from the

reactions of anionic substrates 39, [Pt(C≡CR)4]2-or 40, cis-[Pt(C6F5)2(C≡CR)2]2-with

[{Pd (η3-C3H5)Cl}2] complex (Scheme 12).39

40

41a; R = Ph41b; R = tBu

41c; R = SiMe3

39

cis-[Pt(C6F5)2(C CR)2]2 PtF5C6 C CR

C CRF5C6

[{Pd(η3-C3H5)Cl}2]

[{Pd(η3-C3H5)Cl}2]

[Pt(C CR)4]2Pt

RC C C CR

C CRRC C

Pd

Pd

+

+

Pd

42a; R = Ph42b; R = tBu

42c; R = SiMe3

12

Acetone

Acetone

Scheme 12.

The reaction of mononuclear platinum acetylide complexes [cis-Pt(CCR)2L2] (R

= Ph, tBu; L = PPh3) towards cis-[Pd(C6F5)(thf)2] (43) results in the formation of

dimetallic Pt-Pd (R =Ph, 44; R = tBu, 45) complexes (Scheme 13).40

cis-[Pd(C6F5)2(thf)2] cis-[Pt(C CR)2(PPh3)2] PtPh3P C CR

C CRPh3P

44; R = Ph45; R = tBu

+

Pd C6F5F5C6

Acetone

Scheme 13.

Page 15: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

15

IV MIXED GROUP 11 METAL ACETYLIDE COMPLEXES

New aspects of chemistry and bonding have emerged from reactions of the

anionic linear metal acetylide complexes [M(C2Ph)2]- with metal phenylacetylide

polymers [M(C2Ph)]n (M = Cu, Ag, Au). The reactions involve depolymerization,

ethynylation and condensation to form novel clusters. Thus, the homonuclear

[Ag5(C2Ph)6]- and heteronuclear [Au2Cu(C2Ph)4]-, [Au3M2(C2Ph)6]- (M = Cu, Ag),

[Ag6Cu7(C2Ph)14]-, and [AuAg6Cu6(C2Ph)14]- complexes have been obtained. Extension

of ethynylation reactions to neutral complexes resulted in formation of

[Au2Ag2(C2Ph)4(PPh3)2], [Ag2Cu2(C2Ph)4(PPh3)4], [AuAg(C2Ph)2]n, [AuCu(C2Ph)2]n,

and [AgCu(C2Ph)2]n.

Mixed gold-silver and gold-copper phenylacetylide polymers [{AuM(C2Ph)2}n]

(M = Ag, 46; M = Cu, 47) have been made by the reaction of [Au(C2Ph)L] (L = AsPh3,

P(OPh)3) with [{Ag(C2Ph)}n] (48) and [{Cu(C2Ph)}n] (49) respectively. The gold-silver

polymer 46 has also been prepared by the reaction of [AuClPPh3] with [{Ag(C2Ph)}n].41

Another heterometallic gold-silver cluster, [Au2Ag2(C2Ph)4(PPh3)2] (50) has been

prepared by the reaction of [(PPh3)AuC2Ph] and [AgC2Ph]n and also by the reaction of

PPh3 with the polymer [AuAg(C2Ph)2]n (46) (Scheme 14).42 The structure of 50 consists

of a linear arrangement of two phenylacetylide groups about each gold atom, with each

silver atom asymmetrically π-bonded to two triple bonds and one phosphine ligand

(Figure 3).

Page 16: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

16

50

C

C

Ph

Ag

Ag

C

C

Au

C

C

Ph

Ph

C

AuC

Ph

P(Ph)3

(Ph3)P

Figure 3.

Ph3PAuC2Ph + AgC2Ph [AuAg(C2Ph)2PPh3]2

PPh3

[AuAg(C2Ph)2]nPh3PAuCl + 2AgC2Ph

50

46 Scheme 14.

Reaction of [Au2(C2Ph)3]- and [AgC2Ph] gives a gold-silver pentanuclear cluster

[Au3Ag2(C2Ph)6]- (51) (Scheme 15).43

[N(PPh3)2][Au2(C2Ph)3][AgC2Ph]

1/2[N(PPh3)2][Au3Ag2(C2Ph)6] + 1/2[N(PPh3)2][Au(C2Ph)2]

51

Scheme 15.

The pentanuclear cluster [Au3Ag2(C2Ph)6]- (51) has also been obtained from the

reaction between [Ag(C2Ph)2]- and the polymer complex [{AuAg(C2Ph)2}n] (46)

(Scheme 16).44

Page 17: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

17

51

[Au(C2Ph)2]

[Au2Ag(C2Ph)4]

2[Ag(C2Ph)2][AuAg(C2Ph)2]

[Au3Ag2(C2Ph)6]

[Ag(C2Ph)2] [Au(C2Ph)2]

[AuAg(C2Ph)2]

+

+

unstable

2[Au2Ag(C2Ph)4]

[Au(C2Ph)2]

Scheme 16.

Homonuclear silver complex [Ag5(C2Ph)6]- (52) and heteronuclear silver-copper

complex [Ag4Cu(C2Ph)6]- (53) have been obtained by the reactions of silver

phenylacetylide with the linear complex anions [Ag(C2Ph)2]- and [Cu(C2Ph)2]-,

respectively (Figure 4).43

Ag

C

Ag

C

C

Cu

C

C

Ph

Ph

C

Ag C

C

Ag

C

C

Ph

Ph

C

Ph

CPh

52 53

Ag

C

Ag

C

C

Ag

C

C

Ph

Ph

C

Ag C

C

Ag

C

C

Ph

Ph

C

Ph

CPh

Ag

C

Au

C

C

Au

C

C

Ph

PhC

Ag C

C

Ag

C

C

Ph

Ph

C

Ph

CPh

51 Figure 4.

The reaction of [Cu(C2Ph)2]- and [{AuCu(C2Ph)2}n] (47) affords the cluster

[Au2Cu(C2Ph)4]- (54) or [Au3Cu2(C2Ph)6]- (55) depending on the molar ratio of the

reactants. The pentanuclear cluster [NnBu4][Au3Cu2(C2Ph)6] (55) is also obtained by the

reaction of [NnBu4][Au(C2Ph)2] with a mixture of [AuC2Ph]n and [CuC2Ph]n.45 X-ray

structural data for 55 reveals a trigonal bipyramidal arrangement of metal atoms with two

copper atoms in the apical and three gold atoms in the equilateral positions. Each gold

atom is σ-bonded to two acetylide groups in almost linear co-ordination while each

Page 18: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

18

copper atom is asymmetrically π-bonded to three alkyne groups (Figure 5). In contrast,

the reaction of [Cu(C2Ph)2]- and [{AuAg(C2Ph)2}n] (46) gives the expected complex

[Au3Ag2(C2Ph)6]- (51) and the trimetallic [AuAg6Cu6(C2Ph)14]- (56) (Scheme 17).46

2[AuAg(C2Ph)2]

[Au2Ag(C2Ph)4]

[Cu(C2Ph)2]

[AgCu(C2Ph)2]

[Au3Ag2(C2Ph)6]

[Au2Ag2Cu(C2Ph)6]

[AuAg6Cu6(C2Ph)14]

[Au(C2Ph)2]

[Au(C2Ph)2] 6[AgCu(C2Ph)2]+

+

+

+

unstable[Au2Ag2Cu(C2Ph)6]

2[Au2Ag(C2Ph)4]51

56 Scheme 17.

Cu

C

Au

C

C

Au

C

C

Ph

PhC

Cu C

C

Au

C

C

Ph

Ph

C

Ph

CPh

55

Cu

C

C

Au

C

C

Ph

Ph

Au

C

C

C

Ph

CPh

54 Figure 5.

A trimetallic cluster, [Au3AgCu(C2Ph)6]- (57) has been prepared by the reaction

of [Au3Cu2(C2Ph)6]- (55) with a mixture of gold phenylacetylide and silver

phenylacetylide. Complex 57 is also obtained by the addition of [Au3Ag2(C2Ph)6]- (51)

to [{AuCu(C2Ph)2}n] (47) or by the reaction of [Au2Cu(C2Ph)4]- (54) with

[{AuAg(C2Ph)2}n] (46). High nuclearity heterometallic cluster [AuAg6Cu6(C2Ph)14]-

(56) has been synthesized by the reaction of a dichloromethane solution of polymeric

[{Ag(C2Ph)}n], [{Cu(C2Ph)}n] and [Ag(C2Ph)2]-. Other synthetic methods to prepare 56

Page 19: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

19

include reaction of [Au3Cu2(C2Ph)6]- (55) or [Au3Ag2(C2Ph)6]- (51) with a mixture of

[{Ag(C2Ph)}n] and [{Cu(C2Ph)}n].48 Room temperature reaction of the linear complex

[Ag(C2Ph)2]- and a mixture of [{Cu(C2Ph)}n] and [{Ag(C2Ph)}n] in dichloromethane

affords the silver-copper heteronuclear cluster [Ag6Cu7(C2Ph)14]-(57). When

[Cu(C2Ph)2]- or halide ions, X- (X = Cl, Br, I) are treated with [{Ag(C2Ph)}n] and

[{Cu(C2Ph)}n], cluster 57 is obtained.47

An X-ray diffraction study of cluster 57 reveals a 13-atom bimetallic anionic

cluster with two types of Cu atoms, one inside the body of the cluster and six on its

surface. The surface atoms form a distorted trigonal bipyramidal geometry whereas the

internal Cu atom linearly coordinates two C2Ph groups in addition to six Cu-Ag bonding

interactions and three tetranuclear [Ag2Cu2(C2Ph)4] subclusters (Figure 6).49

PhPh

Ph

Ph

Ph

Ph

Ph

Ph

Ph

Ph

Ph

Ph

Ph

Ph

57

C C

CCAg

Cu Cu

Ag

Ag

Cu

Cu

AgCu

AgAg

Cu

CuCC C

CC C

CC

C C

CC

CC

C CCC

CC

CC

CC

Figure 6.

V MIXED GROUP 6 - 9 METAL ACETYLIDE COMPLEXES

The metal acetylides [Cp(CO)2MC≡CR] (58a, M = Fe, R = Ph and 58b-c, M =

Ru, R = Ph, tBu, Me) react with [Co2(CO)8] to form the acetylide-bridged trinuclear

Page 20: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

20

mixed metal complexes [Co2(CO)6-μ-(Cp(CO)2MC≡CR)] (M = Fe and R = Ph, 59;, M =

Ru and R = Ph, tBu, Me, 60a-c) (Figure 7).50

Co(CO)3(CO)3Co

PhC C

Cp(CO)2Fe

Co(CO)3(CO)3Co

RC C

Cp(CO)2Ru

59a60a; R = Ph60b; R = tBu60c; R = Me

Figure 7.

Compounds with a tetrahedral C2Co2 core, [Co2(CO)6(μ-η2,η2-MCCH)] (M =

CpFe(CO)2, 62a; M = Cp*Fe(CO)2, 62b) have been obtained by the interaction of THF

solution of ethynyliron complexes [{CpFe(CO)2}-C≡CH] (61a) and [{Cp*Fe(CO)2}-

C≡CH] (61b) with [Co2(CO)8] respectively. The reaction of the ethynyldiiron complex

[{Cp*Fe(CO)2}-C≡C-{Cp*Fe(CO)2}] (63) with [Co2(CO)8] similarly affords the deep

green adduct [Cp*Fe[Co(CO)2]2(μ-CO)2(μ-η1,η2,η2-CC-Fp*)] (64), which shows

fluxional properties at ambient temperature (Scheme 18).51

HCM C Co2(CO)8

Co Co

62a; M= CpFe(CO)262b; M = Cp*Fe(CO)2

(CO)3 (CO)3

Fe FeCCCo2(CO)8

(CO)2

(CO)2Fe

Co

Co

C C FeCp*

CCO

Cp*

63

64

61a; M= CpFe(CO)261b; M = Cp*Fe(CO)2

(CO)2(CO)2 Cp*Cp*

(CO)2

O

CM C H

THF

THF

Scheme 18.

Photolytic reaction of [(μ-η2,η2-M-C≡C-H)Co2(CO)6] (M = CpFe(CO)2, 62a; M

= Cp*Fe(CO)2, 62b) produces pentanuclear clusters [(η5-C5R5)2Fe2Co3(μ5-CCH)(CO)10]

Page 21: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

21

(R = H, 65a; R = Me, 65b), respectively, via an apparent addition reaction of a (η5-

C5R5)FeCo(CO)n fragment to 62. On the other hand, thermolysis of 62a gives the Fe-

free hexacobalt cluster compound [(μ-CH=CH){(μ3-C)Co3(CO)9}2] (66), whereas when

62b is thermolyzed, the Fe-Co dimer without the C2H ligand, [Cp*Fe(CO)(μ-

CO)2Co(CO)3] (67) is obtained, in addition to the photolysis product 65b. Reduction of

62 with hydrosilanes gives 1,2 disilylethylene and the tetranuclear μ-vinylidene cluster

[(C5R5)FeCo3(μ4-C=CH2)(CO)9] (R = H, 68a; R = Me, 68b) by hydrosilylation and

hydrometallation of the C2H ligand, respectively (Scheme 19).52

65a; R = H65b; R = Me

68a; R = H68b; R = Me

(CO)2 (CO)2

FeC

CH

Co Co

H

Co

CC

(CO)2

(CO)2

(CO)

Fe

CC

Fe

CoCo

H

CoC

C

C

(CO)2

(η5-C5R5)

O

O

O

(η5-C5R5)

(CO)3

O

O(η5-C5R5)

H-SiEt3

Co Co(CO)3 (CO)3

(CO)2

62a; R = H62b; R = Me

C(η5-C5R5)Fe C HC6H6

C6H6

Scheme 19.

Interaction of the trinuclear ethynyl complexes [Co2(CO)6[(μ-(η5-

C5R5)Fe(CO)2C≡CH] (R = H, 62a; R = Me, 62b) with [Fe2(CO)9] results in the

formation of a tetranuclear vinylidene intermediate [Co2Fe(CO)9[μ3-C=C(H)Fe(η5-

C5R5)(CO)2] (69) which undergo thermal decarbonylation to produce the tetranuclear

acetylide clusters [(μ4-C2H)[(η5-C5R5)Fe]FeCo2(CO)10] (70 a,b) (Scheme 20).

Similarly, the addition reaction of [(η5-C5R5)Fe(CO)2C≡CH] (61a,b) to the trimetallic

Page 22: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

22

species RuCO2(CO)11 affords the ruthenium analogue of the vinylidene complex

[Co2Ru(CO)9[μ3-C=C(H)Fe(η5-C5R5)(CO)2] (71a,b), which decarbonylates to [(μ4-

C2H)[(η5-C5R5)Fe]RuCo2(CO)10] (72a,b) (Scheme 21).53

Co Co(CO)3 (CO)3

(CO)2Fe2(CO)9

(CO)3

(CO)3

(CO)2

FeC

C(η5-C5R5)Fe

CoCo

H

(CO)3

62a; R = H62b; R = Me

(CO)3

(CO)3

(CO)CC(η5-C5R5)Fe H

Fe

Co

CoC

(CO)2

O

69; R = H 70a; R = H70b; R = Me

C(η5-C5R5)Fe C H +C6H6

Scheme 20.

(CO)2(η5-C5R5)FeC CHRuCo2(CO)11

C

CRu Co

Co

H(η5-C5R5)Fe

(CO)3

(CO)3

(CO)3

(CO)2

O(CO)2

(CO)2

C(η5-C5R5)Fe HC

CoRu(CO)3Co

C

C

O(CO)

61a; R = H61b; R = Me

71a; R = H71b; R = Me

72a; R = H72b; R = Me

C6H6, 80ºC

Scheme 21.

A formal replacement of (η5-C5Me4Et)Fe(CO) moiety of a triiron μ3,η1,η2,η2-

acetylide cluster compound 73a by an isolobal Co(CO)3 fragment occurs when cluster

73a reacts with [Co2(CO)8] (Scheme 22).54a

Page 23: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

23

(CO)2

(CO)2

(CO)2Fe

Fe

Fe

Fe

CC

C

(η5-C5Me4Et)

O(CO)2

(CO)2

(CO)2Fe

Co

Fe

Fe

CC (η5-C5Me4Et)(η5-C5Me4Et)

(CO)3Co2(CO)8

73a 73b

C6H6

Scheme 22.

The triiron acetylide cluster compound [PPN] [Fe3(CO)9C≡C(OAc)] (74a) [PPN

= (Ph3P)2N+] reacts with [Fe(CO)4]2- at room temperature to produce the metalated

acetylide cluster [PPN]2[Fe3(CO)9C≡CFe(CO)4] (74b). Further metalation of 74b with

excess [Co2(CO)8] produces a hexametallic cluster [PPN] [Fe3Co3(C2)(CO)18] (76). The

reaction proceeds by formation of two intermediate compounds, the dicarbide-containing

cluster compound [PPN]2[Fe4Co2(C2)(CO)18] (75a) and the acetylide [PPN]

[Fe2Co(CO)9CCFe(CO)4] (75b) (Scheme 23).54b

Page 24: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

24

THF

(CO)3

(CO)2

(CO)3 (CO)3

(CO)3

(CO)2

FeFeFe

CC

OAc

(CO)3

(CO)3

(CO)3

FeFe

Fe

CC

Fe(CO)4

(CO)3

(CO)3

(CO)3

FeCo

Fe

CC

Fe(CO)4

(CO)3

(CO)3

(CO)3

O O

(CO)3

(CO)2

(CO)3 (CO)3

(CO)3

(CO)2O O

Fe(CO)42-

Co2(CO)8

Fe2(CO)82-

Co2(CO)8

Co2(CO)8

2

74a

74b

76

75a75b

CCo

Fe

FeC

C

Co

Co

Fe

C

C CFe

Fe

FeC Co

Co

Fe

C

2CH2Cl2CH2Cl2

Co2(CO)8

Scheme 23.

A number of iron-cobalt mixed metal cluster compounds have been obtained by

sequential addition of [Co2(CO)8] and [Fe2(CO)9] to [Cp*Fe(CO)2-C≡C-C≡C-H] (77)

(Scheme 24).55 Their formation involves addition of a metal fragment to the C≡C bonds,

reorganization of the cluster framework, transfer of metal fragments, valence

isomerization of the C4(H) linkage and 1,2-H shift of the C4H ligand.

Page 25: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

25

Co2(CO)8

C CFe C HC

C C

Fe

Fe

Co

C CFe

C C C CFe H

C C CC HC

Co

CoFeFe

C

Cp*(CO)2

Cp*(CO)2

Cp*(CO)2

Cp*(CO)2

79

80 81

82 83

Co2(CO)8

Co Co(CO)3 (CO)3

Fe2(CO)9

(CO)3(CO)3

(CO)3 Co Co(CO)3 (CO)3

Co Co(CO)3 (CO)3

Fe2(CO)9

(CO)3

(CO)3

(CO)3 (CO)3

Cp*(CO)

O

O

(CO)+ (CO)2

(CO)3

(CO)3

(CO)3

Cp*(CO)

O

O

(CO)3

Fe C C C C H

Co Co

C CC

CoFe

FeC

H

C Co

Co

Co

C

Cp*

Cp*Co

H

FeC

CFe

Co

Co CoCo

CC

C

C

C

C

84

O

O O

O Co = Co(CO)2

77

HCC HC C

CoFeCo(CO)3

(CO)3(CO)3

(CO)3

(CO)3

85

Co Co

THF

THF THF

81

82C6H6

80ºC

C6H6

80ºC

C6H6

Scheme 24.

Sequential addition of [Co2(CO)8] and [Fe2(CO)9] to the butadiynediyl iron

complex (78) results in formation of the mixed Fe/Co complexes 86 and 87 and the C4-

bridged Co6 cluster 88 (Scheme 25).55

Page 26: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

26

Cp*(CO)2

86

87

Co2(CO)8

CCFe C FeC

Co Co(CO)3 (CO)3

Fe2(CO)9

(CO)2

(CO)3

CC

CFe

Co

FeCo

CFe

C

C

(CO)3

Co2(CO)8

O

Cp*O

(CO)3 (CO)3

(CO)3

(CO)3

Co

Co

Co

C C C C Co

Co

Co

(CO)3

(CO)3

88

78Fe(CO)2Cp*C CFe C C

Cp*(CO)2 Cp*(CO)2

Cp*(CO)2

THF THF

THF

Scheme 25.

Compound 77 also reacts with [Mo2Cp2(CO)4] at room temperature or with

[CpMoCo(CO)7] at 50 °C to yield mixed metal acetylide complexes 89,

[Cp*Fe(CO)2C4H{Cp2Mo2(CO)4}] and 90, [Cp*Fe(CO)2C4H{CpMoCo(CO)5}]. On

further reaction with [Co2(CO)8], 89 gives 91 (Scheme 26).55

or77

Cp*(CO)2Mo2Cp2(CO)4

CH2Cl2, RT

CpMoCo(CO)7C6H6, 50ºC

CCCFe C H

CpMo MLn(CO)2

89; MLn= MoCp(CO)290; MLn= Co(CO)3

Co2(CO)889

Cp*(CO)

Co

OC

CoFe

C

CCC C H

(CO)2

(CO)2

O

CpMo MoCp(CO)2(CO)2

91

THF

Scheme 26.

Page 27: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

27

Reaction of [Co2(CO)8] with the acetylide complexes,

[M(C≡CC≡CR)(CO)3Cp] (M = Mo, W; R = H, Fe(CO)2Cp) (92a-c) afford simple

adducts (93a-c) containing a Co2(CO)6 group attached to the least sterically-hindered

C≡C triple bond (Scheme 27). In contrast, bis-cluster complexes [{Cp(OC)8Co2M(μ3-

C)}C≡C{(μ3-C)Co2M’(CO)8Cp}] (M = M’ = Mo, W; M = Mo, M’ = W) (95a-c) have

been obtained when [M(C≡CC≡CR)(CO)3Cp] (M = Mo, W; R = M(CO)3Cp (M = Mo,

W), Fe(CO)2Cp) (94a-c) are used to react with [Co2(CO)8] (Scheme 28). Reaction

between [Co2(μ-dppm)(CO)6] and [{W(CO)3Cp}2(μ-C4)] affords [Co2(μ-dppm){μ-

[Cp(OC)3W]C2C≡C[W(CO)3Cp](CO)4] (97).56a

Co2(CO)8

92a; M = Mo; R = H92b; M = W; R = H92c; M = W; R = Fe(CO)2Cp

(CO)3Co Co(CO)3

Cp(CO)3MC

CC C

R

C C C C RCp(CO)3M

93a; M = Mo; R = H93b; M = W; R = H93c; M = W; R = Fe(CO)2Cp

Scheme 27.

Page 28: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

28

Co2(CO)8

94a; M = M' = Mo94b; M = M' = W94c; M = Mo; M' = W

C CCCp(CO)3M C M'(CO)3Cp

C

Cp(CO)2M

Co

(CO)3Co C C C

M'(CO)2Cp

Co

Co(CO)3

(CO)3

(CO)3

C C M'(CO)3CpC CCp(CO)3M

95a; M = M' = Mo95b; M = M' = W95c; M = Mo; M' = W

Co(CO)3(CO)3Co

(CO)3Co Co(CO)396

Scheme 28.

Reaction of a THF solution of [{W(CO)3Cp}2(μ-C8)] and [Co2CO8] gives mono

and di-adducts, [{W(CO)3Cp}2{μ-C8[Co2(CO)6]}] (98a) and [{W(CO)3Cp}2{μ-C8-

[Co2(CO)6]2}] (98b) (Figure 8). Thermolytic reaction between [{W(CO)3Cp}2(μ-C8)]

and [Co2(μ-dppm)(CO)6] under benzene reflux affords [{W(CO)3Cp}2{μ-C8[Co2(μ-

dppm)(CO)4]}] (99a) and two isomeric products, [{W(CO)3Cp}2{μ-C8[Co2(μ-

dppm)(CO)4]2}] (99b) and [{W(CO)3Cp}2{μ-C8[Co2(μ-dppm)(CO)4]2}] (99c) (Figure

9).56b

Page 29: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

29

WC

CC

CC

C

WC

C

Co Co

Cp

Cp(CO)3

(CO)3

(CO)3 (CO)3

Cp(CO)3

Cp(CO)3 CW C

C

Co

Co CC

C Co

Co

WCC

(CO)3

(CO)3

(CO)3

(CO)3

98a 98b Figure 8.

Cp(CO)3

Cp(CO)3 CW C

C

Co

Co CC

C Co

Co

WCC

P

P

P

P (CO)2

(CO)2

(CO)2

(CO)2

99c

Cp

Cp(CO)3

(CO)399b

Ph2

Ph2

Ph2

Ph2

Cp

Cp(CO)3

(CO)3

99aPh2

Ph2 Ph2

Ph2

Ph2

Ph2

WC

CC CCo

Co PP

(OC)2 W

WC

CCCCC C

WC

Co

CoPP

Co

Co PP

(OC)23

(CO)2

Figure 9.

Deprotonation of the alkyne-bridged clusters [RuCo2(CO)9(μ3-RC≡CH)] (100a-

d) with triethylamine and further reaction with the organometallic halides [Cp(CO)2FeCl]

(101), [Cp(CO)2RuCl] (102), [Cp(PPh3)NiCl] (103), and [Cp(CO)3MoCl] (104) in

presence of catalytic amounts of copper(I) iodide results in incorporation of the metal

species as organometallic acetylides MC≡CR into the RuCo2M metal frameworks (105-

111) (Scheme 29). With acids, the resulting acetylide-bridged clusters are reconverted to

the starting materials.57

Page 30: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

30

CoRu

HRC C

Co(CO)3(CO)3

(CO)3

100a; R = Me100b; R = Ph

(CO)2(CO)3

(CO)3

CoRu

RC C

Co

MCp(CO)

CO(CO)2(CO)2L

(CO)3

CoRu

RC C

Co

NiCp

CO

(CO)2(CO)3

(CO)3

CoRu

RC C

Co

Mo

CO

(CO)2Cp

105a; M = Fe, R = Me105b; M = Fe, R = Ph106a; M = Fe, R = Me106b; M = Fe, R = Ph

107; R = Me, L = CO108; R = Me, L = PPh3

109; R = Me

(CO)2(CO)3

Cp(CO)2

CoRu

RC C

Mo

Mo

CO

(CO)2Cp

(CO)3(CO)3

Cp(CO)2

CoRu

HC C

Mo

R

110a; R = Me110b; R = Ph

111; R = Me

Cp(CO)2MClM = Fe, RuCp(PPh3)NiCl

Cp(CO)3MoCl

+

Cp(CO)3MoCl

Et3N, CuI, THF

Et3N, CuI, THF

Et3N, CuI, THF

Et3N, CuI, THF

Scheme 29.

A pentanuclear heterometallic acetylide complex [Cp2Mo2Ru3(CO)10(C≡CPh)2]

(113) has been prepared by the thermolysis reaction of a toluene solution of metal

acetylide [CpMo(CO)3(C≡CPh)] with [Ru3(CO)12] (Figure 10).58

Mo Ph

Ru

C

Ru

C

Ru

C Mo

C

CPh

C

(CO)3

Cp

(CO)3

CpO

O

113

Ru = Ru(CO)2

Figure 10.

Page 31: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

31

Room temperature reaction of [W(C≡CC≡CH)(CO)3Cp] with the reactive

[Ru3(CO)10(NCMe)2] forms initially [Ru3{μ3-HC2C≡C[W(CO)3Cp]}(μ-CO)(CO)9]

(114), which readily transforms to [Ru3(μ-H){μ3-C2C≡C[W(CO)3Cp]}(CO)9] (115) on

benzene reflux and to 116 on reaction with excess of [W(C≡CC≡CH)(CO)3Cp] (Scheme

30).59 Similarly, reaction with [Ru3(μ-dppm)(CO)10] forms three interconverting isomers

of [Ru3(μ-H){μ3-C2C≡C[W(CO)3Cp]}(μ-dppm)(CO)12] (117-119) (Scheme 31).

[Ru3(CO)10(NCMe)2]

(CO)3

O

H

(CO)3Ru Ru(CO)3

CC

C C

W(CO)3Cp

Ru

C

C6H6

(CO)3

H

C COC

C

OC

Ru Ru(CO)4Ru

W

CCC

C

C(OC)3CpW

(CO)2Cp

H

114

115 116

CH)(CO)3(Cp)][W(C C C

(CO)2

CH)(CO)3(Cp)][W(C C C

80ºC

(CO)3

(CO)3Ru Ru(CO)3

CCC

C W(CO)3Cp

Ru

H

CH2Cl2

CH2Cl2

Scheme 30.

Page 32: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

32

(CO)3Ru Ru(CO)3

Ru

CHCC CW

P PPh2 Ph2

(CO)3(CO)3Cp

[Ru3(μ-dppm)(CO)10]

117

118 119

HC C C CW(CO)3Cp

(CO)3Ru Ru(CO)3

Ru

C

H

CC CW

P PPh2 Ph2

(CO)3(CO)3Cp

(CO)3Ru Ru(CO)3

Ru

C HCC CW

P PPh2 Ph2

(CO)3(CO)3Cp

THF, 65ºC

Scheme 31.

Further reaction of [Ru3(μ-H){μ3-C2C≡C[W(CO)3Cp]}(CO)9] (115) with

[Ru3(CO)12] affords [{Ru3(μ-H)(CO)9}(μ3-η2,μ3-η2-C2C2){Ru2W(CO)8Cp}] (120a),

while reaction with [Fe2(CO)9] gives an analogous product 120b,in which three of the

ruthenium sites are partially occupied by a total of one or two iron atoms (Scheme 32).

Treatment of [Ru3(μ-H){μ3-C2C≡C[W(CO)3Cp]}(CO)9] (115) with [Co2(CO)8] forms a

vinylidene cluster [{CoRu2(CO)9}(μ3-η2,μ3-η2-CCHC2){CoRuW(CO)8Cp}] (121) by a

process involving the transfer of cluster-bound hydride to the C4 ligand.59

Page 33: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

33

(CO)3

(CO)3

(CO)3

(CO)3

(CO)3

(CO)3Ru Ru(CO)3

CC

CC

W(CO)3Cp

Ru

H115

(CO)2Cp

Ru

RuW M

C

M

C C MC

H(CO)3

120a; M = Ru120b; M=Fe/Ru

Co2(CO)8

Co M

C C

Ru

M

C

Ru

CW

CO

(CO)2Cp

(CO)3

(CO)2

(CO)3H

121; M = Co/Ru

(CO)2

M = M(CO)2

Fe2(CO)9or

Ru3(CO)12 Toluene, 110ºC

Toluene, 110ºC

Scheme 32.

Reaction of a dichloromethane solution of 1,6-bis(trimethylsilyl)hexa-1,3,5-triyne

(122) with [Os3(CO)10(NCMe)2] yields [Os3(CO)9(μ-CO)(μ3-η1,η1,η2-

Me3SiC≡CC2C≡CSiMe3)] (123), which on reflux in heptane with [Ru3(CO)12] gives

[Os3Ru(CO)12(μ4-η1,η2,η1,η2-Me3SiC≡CC2C≡CSiMe3)] (124). However, thermal

reaction between 122 and [Ru3(CO)12] forms a butterfly cluster [Ru4(CO)12(μ4-

η1,η2,η1,η2-Me3SiC≡CC2C≡CSiMe3)] (125a) and the ruthenole complex [Ru2(CO)6{μ-

η2,η5-C(C≡CSiMe3)C(C≡CSiMe3)C(C≡CSiMe3)C(C≡CSiMe3)}] (125b). In the room

temperature reaction between cluster 125a and [Co2(CO)8], a slippage of the butterfly

cluster core along the hexatriyne chain occurs and [{Ru4(CO)12}{Co2(CO)6}(μ4-

η1,η2,η1,η2:μ-η2,η2-Me3SiC2C≡CC2SiMe3)] (126) is obtained (Scheme 33).60

Page 34: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

34

Me3Si SiMe3

C C

Os Os

Os

C CC C

C(CO)3 (CO)3

(CO)3

O

Me3Si SiMe3

C C

Os

Os

Os

C CC C

Ru

(CO)3

(CO)3

(CO)3

(CO)3Ru3(CO)12

[Os3(CO)10(NCMe)2]

Ru3(CO)12

(CO)3

(CO)3

Ru Ru

Ru Ru

Me3Si SiMe3

C CC C

C C

(CO)3 (CO)3

(CO)3 (CO)3

(CO)3 (CO)3

(CO)3 (CO)3

Me3Si

Ru Ru

Ru Ru

C CC

CC

Co Co

CSiMe3

(CO)3 (CO)3

Co2(CO)8

+

122

123 124

125b

126

CMe3Si

Me3Si SiMe3

C CC CC C

C CC C

Ru

Ru

SiMe3C

Me3Si (C C)3 SiMe3

125a

Scheme 33.

Reaction of a benzene solution of [{Cp(PPh3)2Ru}2(μ-C≡C)3}] with [Co2(CO)8]

or [Co2(μ-dppm)(CO)6] gives [{Ru(PPh3)2Cp}2{-C≡CC2{Co2(CO)6}(C≡C)}] (127a) and

[{Ru(PPh3)2Cp}2{μ-C≡CC2{Co2(μ-dppm)(CO)4}C≡CC≡C}] (127b), while

[{Ru(PPh3)2Cp}2{μ-C≡CC2{Co2(μ-dppm)(CO)4}C≡CC≡C}] (127c) has been obtained

from a thermal reaction of [{Cp(PPh3)2Ru}2(μ-C≡C)4}] with [Co2(μ-dppm)(CO)6]

(Scheme 34).35b

Page 35: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

35

[Co2(CO)6(dppm)2]

Ru(PPh3)2Cp

C C

L(CO)2Co Co(CO)2L

(CC)n-2

CC

Cp(PPh3)2Ru

Cp (PPh3)2Ru (C C)n Ru(PPh3)2Cp

n = 3, 4or Co2(CO)8

127a; n = 3, L = CO127b; n = 3, L2 = dppm127c; n = 4, L2 = dppm

Scheme 34.

A heterometallic CoRu5 cluster, [CoRu5(μ4-PPh)(μ4-C2Ph)(μ-PPh2)(CO)12(η5-

C5H5)] (129) has been isolated from the reaction between [Ru5(μ5-C2PPh2)(μ-

PPh2)(CO)13] (128) and [Co(CO)2(η-C5H5)] (Figure 11).61 Its structure consists of a

square pyramidal Ru5Co unit, and a Ru(Ph)C2-group attached to it through two

ruthenium and one cobalt atoms.

(CO)3Ru

Ru Ru(CO)3P

CC

Co

Ru Ru(CO)2

PPh2

Ph

(CO)2Ph

(CO)2

Cp

129 Figure 11.

The reaction between [Ru3(μ3-η2-PhC2C2Ph)(μ-CO)(CO)9] and [Co2(CO)8]

affords a pentametallic cluster [Co2Ru3(μ5-η2,η2-PhC2C2Ph)(CO)14] (130) in quantitative

yield.62a The X-ray determined molecular structure consists of a Co2Ru3 bow-tie cluster

straddled by the PhC2C2Ph ligand, the two C≡C triple bonds are attached to the five

metal atoms by 2σ(2Ru) and π(Co) bonding modes (Figure 12).

Page 36: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

36

Co

CCC

Ru

C

PhPh

Ru Ru

Co CC

C

C

(CO)3 (CO)3

(CO)2 (CO)2O OO

O

130 Figure 12.

A dihydride complex [Cp*Rh(μ2-1,2-S2C6H4)(μ2-H)Ru(H)(PPh3)2] (131) reacts

with excess of p-tolylacetylene at room temperature to afford a mixture of cis and trans

isomers of alkynyl hydride complex, [Cp*Rh(μ2-1,2-S2C6H4)(μ2-H)Ru(C≡CTol-

p)(PPh3)2] (132a). On the other hand, reaction of 131 with trimethylsilylacetylene gives,

exclusively the cis isomer of [Cp*Rh(μ2-1,2-S2C6H4)(μ2-H)Ru(C≡CSiMe3)(PPh3)2]

(132b) (Scheme 35).62b The mechanism involves hydrogen transfer from 131 to the

alkyne, followed by oxidative addition of a second equivalent of the alkyne to the

dinuclear core of [Cp*Rh(μ2-1,2-S2C6H4)Ru(PPh3)2] unit.

H

S

Rh

S

RuHCp*

H

S

Rh

S

Ru C C RCp*2 R C CH(PPh3)2 (PPh3)2

132a; R = p-tolyl (cis:trans = 8:2)132b; R = SiMe3 (cis)

131

Scheme 35.

Thermal reaction of [Fe3(CO)9(μ3-E)2], (E=Se, 133a; Te, 133b) with [(η5-

C5H5)M(CO)3(C≡CPh)] (M =Mo, W) (134a, b) in the presence of trimethylamine-N-

oxide (TMNO), in acetonitrile solvent yield the mixed-metal clusters [(η5-

C5H5)MFe2(μ3-E)2(CO)7(η1-CCPh)] (E = Se and M = Mo, 135; E = Se and M = W, 136;

E = Te and M = Mo, 137; E = Te and M = W, 138) bearing η1-acetylide groups. Further

Page 37: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

37

reaction of 135 or 137 with dicobaltoctacarbonyl at room temperature gives the mixed-

metal cluster compound [(η5-C5H5)MoFe2Co2(μ3-E)2(CO)9(η-CCPh)] (139, 140)

(Scheme 36).63

(CO)2

Cp

Cp(CO)3

135; M =Mo, E =Se136; M =W, E =Se137; M =Mo, E =Te138; M = W, E =Te

139; E = Se140; E = Te

Co2(CO)8

+ M C CPh

133a; E = Se133b; E = Te

134a; M = Mo134b; M = W

Me3NO (CO)3Fe EFe(CO)3

M

E

CC

Ph

(CO)3Fe EFe(CO)3

Fe

ECH3CN, 60ºC

(CO)3Cp

(CO)

(CO)2

Mo

E

Co

Fe

E

(CO)2Fe

CC Ph

Co(CO)3

Scheme 36.

When a toluene solution containing [Fe3(CO)9(μ3-E)2] ( E = S, Se or Te ) and

[W(η5-C5Me5)(CO)3(CCPh)] is subjected to reflux, mixed metal clusters [W2Fe3(η5-

C5Me5)2(μ3-E)2{μ4-CC(Ph)C(Ph)C}] (E = S, 141; Se, 142) are formed.64 The molecule

is made up of a Fe3W2 metal core which is enveloped by terminal and bridging carbonyl

ligands and a μ4-{CC(Ph)C(Ph)C} unit. The five metal atoms are arranged in the form of

an open triangular bipyramidal polyhedron wherein the three Fe atoms occupy the basal

plane while the two W centres are at the axial positions (Scheme 37).

Page 38: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

38

(CO)3

+

133b; E = Se133c; E = S

(CO)3Fe EFe(CO)3

Fe

E C CPh

OE

W

CC

C C

E

W

Fe

Fe

Fe

OC

Ph Ph

C

CO

OC

OC CO

Cp* Cp*Toluene

110 ºC(CO)3WCp*

141; E = Se142; E = S

Scheme 37.

When a toluene solution of the acetylide complex, [Mo(η5-C5H5)(CO)3(C≡CPh)]

is thermally reacted with [Fe3(CO)9(μ3-E)2] ( E = S, Se ), formation of mixed metal

clusters, [(η5-C5H5)2Mo2Fe3(CO)8(μ3-E)2{μ5-CC(Ph)CC(Ph)}] (E = S, 143; Se, 144),

[(η5-C5H5)2Mo2Fe4 (CO)9(μ3-E)2(μ4-CCPh)2] (E = S, 145; Se, 146) and [(η5-

C5H5)2Mo2Fe3 (CO)7(μ3-E)2{μ5-CC(Ph)C(Ph)C}] (E = S, 147; Se, 148) are observed

featuring head to tail coupling of two acetylide groups, two uncoupled acetylide groups

and a tail to tail coupling of two acetylide groups, respectively, on the chalcogen bridged

Fe/Mo cluster framework (Scheme 38).65 The head-to-tail acetylide -coupled μ5-

{CC(Ph)CC(Ph)} unit of 143/144 acts as an eight electron donor to the cluster core. The

basic cluster geometry of 147/148 consists of a twisted bow-tie type Fe3MoE unit, one of

the faces is capped by a second Mo atom, and the second face is capped by one terminal

carbon atom of an {(CC(Ph)C(Ph)C} unit.

Page 39: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

39

(CO)3

133b; E = Se133c; E = S

(CO)3Fe EFe(CO)3

Fe

E

+145; E = Se146; E = S

(CO)3

(OC)2

CCC

Fe

Fe PhPh

C

Mo Fe

EE Mo

Cp

Cp(CO)3

Ph

E

Fe

C

Fe

FeFeC

CC

Mo

MoE

Ph

Cp

(CO)2(CO)3

(OC)2 (CO)2

Cp

(OC)3 (CO)3

E E

Mo MoCpCp

CC

Fe FeC

CC

Fe

PhPh

O

Toluene 90ºC

+

C CPh(CO)3CpMo+

143; E = Se144; E = S

147; E = Se148; E = S Scheme 38.

Under similar thermolytic conditions, formation of clusters [(η5-C5H5)2W2Fe3

(CO)7(μ3-E)2(μ3-η2-CCPh)(μ3-η1-CCH2Ph)] (E = S, 149; Se, 150) and [(η5-

C5H5)WFe2(CO)8(μ-CCPh)] (151) has been observed in reactions of [W(η5-

C5H5)(CO)3(C≡CPh)] with [Fe3(CO)9(μ3-E)2] ( E = S, Se) (Scheme 39).65

Page 40: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

40

(CO)3

133b; E = Se133c; E = S

(CO)3Fe EFe(CO)3

Fe

E

Toluene 90ºC

C CPh(CO)3CpW+

Cp

Cp (CO)3

(CO)3O

W

Fe FeC

C

Ph

Cp (CO)2

(CO)3(CO)3

CH2

Ph

W

Fe

FeC

CPh

E

WE

FeC

C

+

151

149; E = Se150; E = S

Scheme 39.

When a benzene solution containing [Fe3(CO)9(μ3-S)2], [(η5-

C5R5)Mo(CO)3(C≡CPh)] (R = H, Me), H2O and Et3N are photolysed with continuous

bubbling of argon a rapid formation of cluster [(η5-C5R5)MoFe2(CO)6(μ3-S)(μ-

SCCH2Ph)] ( R = H, 152; R = Me, 153) is observed (Scheme 40).66 The H2O molecule

acts as a source of protons as confirmed by labeling experiment, and Et3N works as a

phase transfer catalyst

(CO)3

133b; E = Se133c; E = S

(CO)3Fe EFe(CO)3

Fe

E C CPh (CO)3MoL

+

152; L = Cp153; L = Cp*

Et3N:H2Ohν

(CO)3Fe Fe(CO)2

S CC S

MoCH2 PhO

L

L=Cp, Cp*

Scheme 40.

Page 41: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

41

Photolytic reaction of metal acetylide complexes with simple metal carbonyls has

been used to form heterometallic acetylide bridged complexes. For instance, photolytic

reaction of a benzene solution of [Fe(CO)5] and [(η5-C5R5)Mo(CO)3(C≡CPh)] (R = H,

Me) under continuous bubbling of argon results in a rapid formation of [(η5-

C5R5)Fe2Mo(CO)8(μ3-η1:η2:η2-CCPh)] (R = H, 154; Me, 155) and [(η5-

C5H5)Fe3Mo(CO)11(μ4-η1:η1: η2:η1-CCPh)] (156) (Scheme 41).67 The structure of 154

consists of a MoFe triangle and a μ3-η1,η2,η2 acetylide ligand. The molecular structure

of 156 comprises of an open Fe3Mo butterfly arrangement with a acetylide group bonded

in μ3-η1 mode.

Fe(CO)5 C6H6, hν,

+

156; R = H

Mo C CPh(CO)3

(CO)3

154; R = H 155; R = Me

(CO)3

(η5-C5R5)Fe

Mo Fe(CO)3C

CPh

(η5-C5R5)Ph

FeMo Fe(CO)3

Fe C CC

CO

O

(η5-C5R5)

(CO)2

(CO)2

(CO)3

0ºC

Scheme 41.

However, when a benzene solution containing a mixture of [(η5-

C5Me5)Mo(CO)3(C≡CPh)], [Fe(CO)5] and [PhC≡CH] are photolysed, formation of

alkyne-acetylide coupled mixed metal cluster [(η5-C5Me5)Fe2Mo(CO)7(μ3-

C(H)C(Ph)C(Ph)C)] (157) is obtained in moderate yield (Scheme 42).67 The molecular

structure of 157 consists of a Fe2Mo triangle with a {C(H)=C(Ph)C(Ph)=C} ligand triply

bridging the Fe2Mo face.

Fe(CO)5 hν

Mo C CPh(CO)3

157

HC CPh+Cp*

Ph

CO

Mo Fe

Fe

HC C

CO

C

PhC C

Cp*

O

(CO)(CO)3C6H6, 0ºC

Scheme 42.

Page 42: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

42

When a mixed metal cluster [Fe2Ru(CO)9(μ3-E)2] (E = S or Se) has been reacted

with [(η5-C5H5)M(CO)3(C≡CPh)] (M = Mo or W) in toluene reflux condition,

heterometallic clusters [(η5-C5H5)2Fe2RuM2(CO)6(μ3-E)2{μ4-CC(Ph)C(Ph)C}] (M = Mo

and E = S, 158; M = Mo and E = Se, 159; M = W and E = S, 160; M = W and E = Se,

161) and [(η5-C5H5)2Fe2Ru2M2(CO)9(μ3-E)2{μ3-CCPh}2] (M = W and E = S, 162; M =

W and E = Se, 163), have been isolated from the reaction mixtures (Scheme 43).68 The

molecular structure of 158 consists of an open trigonal bipyramidal Fe2RuMo2 metal core

enveloped by terminal and bridging carbonyl ligands and a μ4-{CC(Ph)C(Ph)C} unit.

Structure of 162 can be described as a FeRuW2S distorted square pyramid core, in which

the WRu edge is bridged by a Fe(CO)3S and the RuFe edge by a Ru(CO)3 unit. One

acetylide group caps the W2Ru face in a η1, η2, η2 fashion and another caps the open

FeRuW face in a similar bonding mode.

158; M = Mo, E = S159; M = Mo, E = Se160; M = W, E = S161; M = W, E = Se

Toluene

+

(CO)3Fe

Ru(CO)3

Fe(CO)3

E

E

+ (CO)3Cp M C C Ph

Cp

Cp

Cp

Cp

Ru(CO)3

Ph

MRu

(CO)3FeE

CFeE

MC C C Ph

CO

CO

110 ºC

162; M = W, E = S163; M = W, E = Se

(CO)

EFe

E M C

M C

FeRu

C

OC

C

O

CO C

C Ph

Ph

O

OC

OC

Scheme 43.

When a toluene solution of a Fe/W mixed metal cluster, [Fe2W(CO)10(μ3-S)2] is

heated at 80 ºC with the tungsten acetylide complex [(η5-C5H5)W(CO)3(CCPh)], the

Fe2W3 mixed metal [(η5-C5H5)2W3Fe2S2(CO)12(CCPh)2] (164) was isolated (Scheme

44).69 Its structure consists of a Fe2WS2 trigonal bipyramidal unit in which the W atom

Page 43: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

43

is attached to two separate molecules of [(η5-C5H5)W(CO)3(CCPh)] through the

acetylide group.

Toluene80 ºC

+ W C CPhW(CO)3C(CO)3W C

(OC)3Fe

WS S

Fe(CO)3

C

Ph

C

Ph

164

(CO)3

Cp

Cp

Cp(CO)4

(CO)3Fe SFe(CO)3

W

S

Scheme 44.

When [Fe2Mo(CO)10(μ3-S)2] is made to interact with [(η5-

C5Me5)W(CO)3(C≡CPh)] under mild thermolytic condition in argon atmosphere, a mixed

metal acetylide cluster [(η5-C5Me5)MoWFe4(μ3-S)3(μ4-S)(CO)14(CCPh)] (165) is

isolated (Scheme 45).70 Molecular structure of 165 consists of a {Fe2MoS2} distorted

square pyramid unit in which the basal Mo atom is bonded to the two sulphur atoms of an

open {Fe2S2} butterfly unit and a {(η5-C5H5)W(CO)2} group. A single phenylacetylide

ligand bridges the Mo-W bond in μ-η1,η2 fashion.

(OC)3Fe SFe(CO)3

Mo

S + W C CPh (CO)3Cp*Benzene

60 ºC

165

OO

Mo

SS

WC

SFe(CO)3S

Fe(CO)3(CO)3Fe

Fe(CO)3

C C PhC

Cp*

(CO)4

Scheme 45.

Photolysis of a benzene solution of a mixture of [Fe3(CO)9(μ3-S)2], [(η5-

C5Me5)M(CO)3(C≡CPh)] (M = Mo, W) and HC≡CR (R = Ph, n-Bu and Fc) (Fc =

ferrocene) forms two types of clusters depending on the nature of acetylene used. When

Page 44: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

44

phenylacetylene or n-butyl acetylene are used, clusters [(η5-C5Me5)MFe3(CO)6(μ3-

S){(μ3-C(H)=C(R)S}(μ3-CCPh)] (166 - 169) are formed (Scheme 46).71 In these

compounds a new C−S bond is formed yielding a {HC=C(R)S} ligand which bridges a

{MFe2} face of the cluster framework. Use of ferrocenylacetylene in the reaction

medium results in the formation of [(η5-C5Me5)MFe3(CO)7(μ3-S){μ3-C(Fc)=C(H)S}(μ3-

CCPh)] (170, 171) in which a formal switching of the α and β carbons of the coordinated

acetylide moiety is observed (Scheme 47). Nature of the sulfido-acetylene coupling may

be an important factor in determining which cluster type is formed, with the bulky

ferrocene group disfavouring the expected S−Csubs coupling. The structure of 166 can be

described as consisting of a {MoFe3} butterfly core in which the hinge is composed of

the Mo and a Fe atom. One {MoFe2} face is capped by μ3-S ligand as well as an unusual

{HC=C(Ph)S} ligand. The second butterfly face is capped by a {η1: η2: η2-CCPh}

group. The wing - tip Fe atoms bear two and three carbonyl groups each and the hinge

Fe atom has one terminal carbonyl bonded to it.

(OC)3Fe SFe(CO)3

Fe(CO)3

S + M C CPh (CO)3Cp*Benzenehν, 25ºC

166; M = Mo, R = Ph167; M = Mo, R = nBu168; M = W, R = Ph169; M = W, R = nBu

RC CH

H R

SFeM

Fe Fe(CO)3

S

C

C

CC

PhCO

CO

CO

Cp*

Scheme 46.

Compound 170 consists of a Fe3 triangle, which is capped by a sulfido ligand.

One of the iron atoms is bonded to a {(η5-C5Me5)W} group, and the Fe−W bond is

bridged by a ferrocenylacetylene group. A second sulfido ligand triply - bridges the

terminal carbon atom of this acetylene with the tungsten and one of the iron atoms. A

{CCPh} group forms an unusual quadruple bridge in which the β - carbon of the

Page 45: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

45

acetylide is now η1-bonded to the tungsten atom. Seven terminal carbonyls distributed

on the three iron atoms and on the tungsten atom complete the ligand environment of the

cluster.72

(OC)3Fe SFe(CO)3

Fe(CO)3

S + M C CPh (CO)3Cp*Benzenehν, 25ºC

FcC CH

170 M = Mo171 M = W

H

(CO)3

(CO)2

(CO)Cp*

C C

SFe

Fe

Fe

M

C C

SOC

Fc

Ph

Scheme 47.

Reactions between [Ir(C2Ph)(CO)2(PPh3)2] and iron carbonyls (Fe(CO)5 or

Fe2(CO)9) result in the formation of iron-iridium clusters [Fe2Ir(μ3-C2Ph)(CO)9-n(PPh3)n]

(n =1, 172; 2 ,173) and [FeIr2(μ3-PhC2C2Ph)(CO)12(PPh3)2] (174). The Rh analogue of

172 has been obtained by a similar reaction (Scheme 48). Substitution of the iridium

bound PPh3 by PEt3 and addition of PEt3 to Cα of the acetylide ligand in 172 gives

zwitterionic [Fe2Ir(μ3-PhC2PEt3)(CO)8(PEt3)] (177), which on heating converts to

[Fe2Ir(μ3-C2Ph)(CO)7(PEt3)2] (179) by migration of PEt3 from carbon to iridium

(Scheme 49).73 Analogous complexes containing cluster-bound PMe2Ph and P(OMe)3

have also been obtained by such type of reaction.

Page 46: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

46

174

Fe(CO)5Fe2(CO)9

M(C2Ph)(CO)n(PPh3)2M = Ir, n = 2M = Rh, n = 1

C

(Ph3P)(OC)2M

C

Fe(CO)3

Fe

Ph

(CO)2L172; M = Ir, L = CO175; M = Ir, L = PPh3176; M = Rh, L = CO

(CO)3

Ph

CIr

CIr(CO)2(PPh3)

Fe

CCPh

(Ph3P)(CO)2+

orTHF, 70ºC

Scheme 48.

C

IrC

Fe(CO)3

Fe

Ph

(CO)3

(CO)3

CIr

CFe(CO)3

Fe

LPh

(L)(CO)2

(Ph3P)(CO)2

+ C

IrC

Fe(CO)3

Fe

Ph

(CO)2L'

(L)(CO)2

PEt3

172

177; L = PEt3 178; L = PPh3, L' = PEt3179; L = PEt3, L' = PEt3180; L = PEt3, L' = CO

+

(L)(CO)2

(CO)2L'

C

IrC

Fe(CO)3

Fe

Ph

(L)(CO)2

(CO)2L'

C

IrC

Fe(CO)3

Fe

Ph

181; L = PMe2Ph, L' = PMe2Ph 182; L = PPh3, L' = P(OMe)3183; L = P(OMe)3, L' = P(OMe)3

THF

PMe2PhTHF

P(OMe)3THF, 45ºC

Scheme 49.

Page 47: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

47

Reaction of Fe2Ir cluster (172) with dihydrogen gives complex 184, whereas,

stepwise addition of H- and H+ results in the formation of 184 and the isomeric hydrido

alkyne derivative 185 (Scheme 50).74

C

IrC

Fe(CO)3

Fe

Ph

(CO)3

(CO)2

H

(CO)3

CIr

CFe(CO)3

Fe

PhH

(CO)2

(CO)3

CIr

CFe(CO)3

Fe

PhH

H

(CO)2

H

C

IrC

Fe(CO)3

Fe

Ph

H

H(CO)3

(CO)2

172

185184

H2, 30 atm

Cyclohexane, 80 ºC

+(Ph3P) (Ph3P)

(Ph3P)

(Ph3P)

+

Scheme 50.

Treatment of the triruthenium imido complex [Ru3(CO)10(μ3-NPh)] (186) with

metal hydride complex [LW(CO)3H] in refluxing toluene produces a trinuclear

heterometallic imido cluster, [LWRu2(CO)8(μ-H)(μ3-NPh)] (L=Cp, 187a; Cp*, 187b),

which on reaction with tungsten acetylide [CpW(CO)3CCPh] produces a tetranuclear

imidoalkyne complex [LCpW2Ru2(CO)6(μ-NPh)(μ-η2-CH=CPh)] (L=Cp, Cp*) (188a,b)

(Scheme 51).75

Page 48: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

48

O

N

C Ru

Ru Ru

Ph

(CO)3 (CO)3

(CO)3

LW(CO)3H

L = Cp, Cp*O

N

C W

Ru Ru

Ph

CH

(CO)3 (CO)3

LO

Ru(CO)3

N

Ph C

CpW

Ru(CO)3

W

C H

LPh

CpW(CO)3C CPh

186 187a; L= Cp 187b; L= Cp*

188a; L= Cp 188b; L= Cp*

+

Scheme 51.

Convenient and widely applicable synthetic routes to trinuclear heterometallic

acetylide complexes [LMM’2(CO)8(CCR)] have been developed which involve the

reaction of metal acetylide [LM(CO)3(CCR)] (L = Cp or Cp*; M = W or Mo; R = Ph,

C5H4F, C5H4OMe, tBu and nPr) with [Os3(CO)10(NCMe)] or [Ru3(CO)12]. Thus,

reaction of [CpW(CO)3C≡CR] (R = Ph, tBu) with [Os3(CO)10(CH3CN)2] in refluxing

toluene produces tetranuclear mixed-metal acetylide complexes

[CpWOs3(CO)11(C≡CR)] (R = Ph, 189a; tBu, 189b).76 The molybdenum analogue

[MoOs3(CO)11(C≡CPh)(η-C5H5)] (190) has also been prepared by a similar procedure.

Carbonylation of 189a, b at 120 ºC under pressurized CO induces cluster fragmentation,

giving [CpWOs2(CO)8(C≡CR)] (191a,b) in 80-85 % yield. Hydrogenation of 189b

produces an alkylidyne complex, [CpWOs3(CO)11(μ3-CC5H11)] (192), while treatment of

189a with excess of ditolylacetylene affects the scission of the acetylide ligand to give

[CpWOs3(CO)8(μ3-CPh){μ4-η5-C(C2Tol2)2}] (193) (Scheme 52).77

Page 49: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

49

(CO)2Cp

Os Os(CO)3

Os(CO)3

W C

C

R

(CO)3

(CO)2Cp

(CO)3Os Os(CO)3

WC

C

R

191a; R = Ph 191b; R = nBu

(CO)2Cp

Os

Os(CO)3

Os(CO)3

W CCH2R

(CO)3

192

(CO)3

(CO)2(CO)3

Ph

WCp

Os Os

CCCC C

Os

C

Tol

Tol TolTol

193

CO H2

R = nBu 189a; R = Ph 189b; R = nBu

2TolC CTolR = Ph

Scheme 52.

In contrast, treatment of complexes 189 a and b with alkynes containing electron-

withdrawing groups produces the tetranuclear alkyne-acetylide coupling products

[CpWOs3(CO)10{CR'CR'CCR}] (R = Ph and R' = CO2Me, 194a; R = Ph and R' = CO2Et,

194b; R = nBu and R' = CO2Et, 194c) and [CpWOs3(CO)9{CCRCR'CR'}] (R = Ph and R'

= CO2Me, 195a; R = Ph and R' = CO2Et, 195b; R = nBu and R' = CO2Et, 195c) (Figure

13).76

(CO)3

(CO)3(CO)3

WCp

Os Os

CC

C C

Os

R'RR'

CO

(CO)2

(CO)3

(CO)3WCp

Os

Os

CC

CC

Os

RR'R'

OC

195a; R = Ph, R' = CO2Me195b; R = Ph, R' = CO2Et195c; R = nBu, R' = CO2Me

194a; R = Ph, R' = CO2Me194b; R = Ph, R' = CO2Et194c; R = nBu, R' = CO2Me

Figure 13.

Page 50: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

50

The cluster acetylide complexes [MOs3(CO)11(C≡CPh)(η-C5H5)] (M = Mo, 190;

M = W, 189a) react with [Mo(CO)3(C≡CPh)(η-C5H5)] to give planar pentanuclear

complexes [MMoOs3(CO)11(CCPhCCPh)(η-C5H5)2] (M = Mo, 196; M = W, 197) which

contain a C4 hydrocarbon fragment derived from head-to-tail coupling between the two

acetylide fragments. Reaction of complex 190 with [W(CO)3(C≡CPh)(η-C5H5)] does not

produce the coupling product but induces C-C bond scission of [W(CO)3(C≡CPh)(η-

C5H5)] giving a novel carbide-alkylidyne complex [MoWOs3(CO)8(μ4-C)(μ3-

CPh)(CCPh)(η-C5H5)2] (198) (Figure 14).78

MoCC

M Os

OsC

Os

CPh

PhOC(CO)3

(CO)2Cp

Cp

(CO)3(CO)2

Os

Os

W Os

C

CMo

CC

Ph

C

C

Ph

OC

O

O

Cp

Cp

(CO)3

(CO)2

198196; M = Mo197; M = W

Figure 14.

Treatment of the acetylide complexes [CpWOs2(CO)8(C≡CR)], (R = Ph, 191a; R

=nBu, 191b) with Me3NO in acetonitrile followed by reaction with various disubstituted

alkynes, C2R’2 in refluxing toluene facilitates acetylide-alkyne coupling and formation of

two isomeric trinuclear complexes, [CpWOs2(CO)12{C(R’)C(R’)CCR}] (R = Ph and R’

= Tol, 199; R = nBu and R’ = Tol, 200; R = Ph and R’ = CO2Et, 201; R = nBu and R’ =

CO2Et, 202; R = Ph and R’ = CF3, 203) (Scheme 53).79

(CO)3

CR W

Os

CC

C

Os

R'

C

R'

R

Os(CO)3W

Os

C

C

Cp

Cp O

(CO)3(CO)3

W

Os Os

CTol

CC C

R

Tol

Cp(CO)

1. Me3NO/MeCN2. C2Tol2 2. C2R'2

1. Me3NO/MeCN

191a; R = Ph191a; R = nBu

201; R = Ph, R' = Co2Et202; R =nBu, R = Co2Et203; R = Ph, R = CF3

199; R = Ph200; R = nBu

(CO)3

(CO)3

(CO)3

Scheme 53.

Page 51: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

51

When [Ru3(CO)12] has been used to react with [CpW(CO)3C≡CPh] in refluxing

toluene, [CpWRu2(CO)8(C≡CPh)] (204) is isolated. In solution the variable temperature

NMR suggests that the acetylide ligand of 204 undergoes a 360º rotation on the face of

the WRu2 triangle.80 With excess of [CpW(CO)3C≡CR], 204 gives two heterometallic

acetylide clusters [Cp2W2Ru2(CO)9(CCRCCR)] (R = Ph, 205a; R = p-C6H4F, 205b),

with C-C bond coupling and [Cp2W2Ru2(CO)6(C≡CR)2] (R = Ph, 206a; R = p-C6H4F,

206b), without C-C bond coupling (Scheme 54). 81

204a;R = Ph 204b;R = C6H4F-p

+

205a;R = Ph 205b;R = C6H4F-p

W(CO)2Cp

C

RuC

W(CO)2Cp

RuC

CR

R

(CO)2(CO)3W

W(CO)Cp

Ru

(CO)2Ru

C C

C

C

C

R R

CpO

(CO)2

CpW(CO)3(CCR)

206a;R = Ph 206b;R = C6H4F-p

R

Ru(CO)3(CO)3Ru

W(CO)2

C

C

Cp

Scheme 54.

In a similar reaction, thermolysis of a mixture of [Ru3(CO)12] and

[CpMo(CO)3C≡CPh] in a molar ratio 2:3 in refluxing toluene gives the trinuclear

acetylide derivative [CpMoRu2(CO)8C≡CPh] (207) and a pentanuclear heterometallic

acetylide complex [Cp2Mo2Ru3(CO)10(C≡CPh)2] (208) (Figure 15).82

Ru

C

Mo

Ru

C

Ru

C C

MoC

PhPh

C

CpCp

(CO)3

(CO)2

(CO)3OO

207 208Ph

Ru(CO)3(CO)2CpMo

Ru(CO)3

C

C

Figure 15.

Condensation of triosmium alkyne complexes [Os3(CO)10(C2R2)] (R = Tol, 209a;

R = Me, 209b) with mononuclear tungsten acetylide complexes [LW(CO)3C≡CR’], (L =

Page 52: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

52

Cp, Cp*, R’ = Ph, tBu) generates six WOs3 cluster complexes via 1: 1 combination of the

starting materials. Treatment of [Os3(CO)10(C2Me2)] with [CpW(CO)3C≡CPh] under

refluxing toluene forms two heterometallic complexes

[CpWOs3(CO)9{CC(Ph)C(Me)C(Me)}] (210a) and

[CpWOs3(CO)10{C(Me)C(Me)CC(Ph)}] (211). On the other hand, thermal reaction of

[Os3(CO)10(C2Tol2)] with [CpW(CO)3C≡CPh] gives

[CpWOs3(CO)9{CC(Ph)C(Tol)C(Tol)} (210b) and [CpWOs3(CO)9(CCTolCTol)(μ3-

CPh)] (212b), whereas only one heterometallic cluster,

[LWOs3(CO)9{CC(R’)C(Tol)C(Tol)}] (L = Cp* and R’ = Ph, 210c; L = Cp and R’ = tBu,

210d) is obtained on thermolysis of [Os3(CO)10(C2Tol2)] with [LW(CO)3C≡CR’] (L =

Cp*, R’ = Ph or L = Cp, R’ = tBu). Addition of 1:1 molar equivalent of [Me3NO] to

compound 211, followed by heating under refluxing toluene affords

[CpWOs3(CO)9(CCMeCMe)(μ3-CPh)] (212a). When toluene solution of

[Os3(CO)10(C2Me2)] is thermally reacted with [Cp*W(CO)3C≡CPh], five heterometallic

clusters are formed (210e, 212e, 213, 214 and 215) (Figure 16).83

Page 53: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

53

(CO)3

(CO)3(CO)3

WOs Os

CC

C C

Os

RR'R

OC

L

(CO)2

(CO)3

(CO)3W

Os

Os

CCCC

Os

R

(CO)

R

L

R'

211; L = Cp, R = Me, R' = Ph

(CO)3

(CO)3(CO)3W

Os Os

CC

C OsR

R

CR'

L

212a Cp Me Ph 212b Cp Tol Ph 212c Cp* Me Ph

(CO)3

(CO)3(CO)(CO)2

OsC

C

W

Os

C COs

R'

R

R

L

213; L = Cp*, R = Me, R' = Ph

(CO)2

(CO)2 (CO)2L

C

C

Os

Os

Os WR

R

CC

R'

(CO)3

214; L = Cp*, R = Me, R' = Ph

(CO)3

Os

W

Os

OsCC C

CC

O

R'R

C

R(CO)3

L

O

(CO)2

215; L = Cp*, R = Me, R' = Ph

210a Cp Me Ph210b Cp Tol Ph 210c Cp* Tol Ph210d Cp Tol tBu 210e Cp* Me Ph

L R R'

L R R'

Figure 16.

Thermolysis of a toluene solution of complex 212b with ditolylacetylene yields

the planar clusters [CpWOs3(CO)8(μ3-CPh){C(Tol)C(Tol)CC(Tol)C(Tol)}] (216a). On

the other hand, reaction of 212e in refluxing xylene solvent gives [Cp*WOs3(CO)8(μ3-

CPh){C(Tol)C(Tol)CC(Me)C(Me)}] (216b), [WOs3(C5Me5)(CO)12(μ3-

CPh){CMeCMeCC(Tol)C(Tol)}] (217) and 218 (Scheme 55).84

Page 54: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

54

(CO)3

(CO)3(CO)3

W

Os Os

CC

C

OsR

R

CR'

L

(CO)3(CO)2(CO)3

C

WOs Os

CCC

OsR

R

CPh

C

Tol

Tol

L(CO)3

(CO)2

(CO)3

LC

WOs Os

CCC

Os

RR

CPh

C

Tol

Tol (CO)2 (CO)2(CO)3

LW

Os OsC

C

OsCC C

C

C

Ph

RTol

Tol

O

Excess C2Tol2

212b; R = Tol, L = Cp212e; R = Me, L = Cp*

216a; R = Tol, L = Cp216b; R = Me, L = Cp*

217; R = Me, L = Cp* 218; R = Me, L = Cp*

+ +

Scheme 55.

Treatment of 211 with Me3NO followed by thermolysis in refluxing toluene

yields the spiked triangular cluster [WOs3Cp(CO)9(μ-H){CMeCMeCC(μ2-η2-C6H4)}]

(219) as a major product, which, on further thermolysis converts to a butterfly cluster

[WOs3Cp(CO)9{CMeCMeCHC(μ2-η2-C6H4)}] (220) and then to a tetrahedral cluster

[WOs3Cp(CO)8{CMeCMeCHC(μ2-η2-C6H4)}] (221) via hydride migration followed by

loss of CO (Scheme 56).85

Page 55: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

55

W OsCC

OsC

PhMe

Me

Cp

OC

Os

C

(CO)3(CO)3

(CO)3 H

MeMe

OsC

C

C

C Os

CpW

Os(CO)3 (CO)3(CO)3

(CO)2

(CO)3

HMe

Me

OsW Os

OsC

C

C

C

Cp

(CO)2

(CO)3(CO)3

CO

+ CO

211 219

220221

OCCp

MeMeCCC C

W

OsH

Os

Os

Toluene110ºC

(CO)3

Me3NOToluene

110ºC

Scheme 56.

The tetranuclear clusters 222-225 shown in Scheme 57 are formed in the reaction

of [Cp*W(CO)3C≡CR] (R = Ph, nBu, CH2OMe, CH2Ph) with [Os3(CO)10(NCMe)2].

While 222 is stable in a single isomeric form, cluster 223-225 exist in two interconverting

isomeric forms on heating. When 222 is treated with Me3NO, followed by heating to

reflux in toluene, 226 is obtained. On similar treatment, complex 223 affords two

isomeric vinylidene clusters [Cp*WOs3(μ4-C)(μ-H)(μ-CCHnPr)(CO)9] (227a,b) as an

inseparable mixture, while thermal reaction of 224 a,b with Me3NO forms two methoxy

derivatives [Cp*WOs3(μ4-C)(μ-H)(μ-CCHOMe)(CO)9] (228a,b) (Scheme 58).86

(CO)2Cp*

Os Os(CO)3

Os(CO)3WC

C

R

(CO)3 (CO)2Cp*

Os(CO)3Os

W Os(CO)3

C

C

R

(CO)3

222; R = Ph223a; R = nBu224a; R = CH2OMe225a; R = CH2OPh

223b; R = nBu224b; R = CH2OMe225b; R = CH2OPh

Scheme 57.

Page 56: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

56

OC

Os

Os(CO)3

Os(CO)3

WCC

Ph

Cp*

(CO)3

OsOs

Os(CO)2

W CC C R"

R'

H

CO

(CO)3

(CO)3

227; R', R" = nPr, H228; R', R"= H, OMe

223

224or

222

226

Toluene

110ºC

Toluene

110ºC

Cp*

Scheme 58.

Thermal reaction of 227 with CO in toluene leads to regeneration of 223a,b,

while 228 gives 224a,b along with an alkenyl cluster [Cp*WOs3(μ4-C)(μ-

CHCHOMe)(CO)10] (229) (Scheme 59).86

OsOs

Os(CO)2

W CC C R"

R'

H

CO

(CO)3

(CO)3

227; R', R" = nPr, H228; R', R"= H, OMe

223a,bor224a,b

OC

Os

Os

Os(CO)3

W CC C H

H R'Cp*

(CO)3

(CO)3

229; R' = OMe

Me3NO

CO, 110ºC CO, 110ºC Cp*

Scheme 59.

A mixture of two isomers (230 and 231) of a benzofuryl complex [Cp*WOs3(μ4-

C)(μ-H)2(μ-C8H5O)(CO)9] is formed on thermolysis of 225. Clusters 230 and 231 have

also been isolated on thermolysis of a 1:1 mixture of [Cp*W(CO)3C≡CCH2OPh] with

[Os3(CO)10(NCMe)2] in refluxing toluene (Scheme 60).86

Page 57: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

57

225a or b110 ºC

(CO)3

(CO)3

Os

Os

Os(CO)2

WC

C C

HH

H

O

Cp*

(CO)3

(CO)3

+

230 231

HOs(CO)2Os

Os

WC

C C

H

HO

Cp*

Toluene

Scheme 60.

Hydrogenation of the CH2OMe derivative, 224 affords four compounds (232-235)

(Scheme 61).86

110ºC

Os

Os

Os(CO)2

WC

C C

H

H

H

HOMe

Cp*OC

(CO)3

(CO)3

235

(CO)3

(CO)3

Os

Os

Os(CO)2

WC C

H

H CH2OMe

Cp*CO

234

224 + H2

(CO)2W Os(CO)3

Os(CO)3OsC

CH

HCp*

CH2OMe

(CO)2

232

(CO)2

OsOs(CO)3

Os(CO)3

W C

CH2CH2OMeCp*

(CO)3

233

+

+ +

Toluene

Scheme 61.

When the carbide cluster complex [Cp*WOs3(μ4-C)(μ-H)(CO)11] (236) is treated

with excess of Me3NO and 4-ethynyltoluene, the formation of an alkylidyne compound

[(C5Me5)WOs3(μ3-CCHCHTol)(CO)11] (237) is observed, while, the corresponding

reaction of 236 with 3-phenyl-1-propyne affords alkenyl carbido cluster

[(C5Me5)WOs3(μ4-C)(CHCHCH2Ph)(CO)10] (238) and an alkylidyne compound

[(C5Me5)WOs3[μ3-CC(CH2Ph)(CH2)](CO)10] (239) (Scheme 62).87

Page 58: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

58

W

Os Os

C

Os H(CO)3

(CO)3

(CO)2Cp*

(CO)3TolC CH

W

Os Os

C

Os

C R

(CO)3

(CO)3

(CO) Cp*

(CO)3

O

PhCH2C CH

(CO)Cp*

(CO)3

(CO)3

(CO)3

(CO)2

Cp*

(CO)3

(CO)3

C

CH2PhCW

Os Os

Os

C HH

(CO)2

+

236 237; R = CH=CHTol

238 239

HC

C

W

OsC

OsOsH

CH2Ph

Scheme 62.

On the other hand, coupling of 236 with an electron deficient alkyne, diisopropyl

acetylenedicarboxylate (DPAD) results in the formation of a dimetallaallyl cluster

[Cp*WOs3(CO)10{C3H(CO2iPr)2}] (240), which undergoes C-C metathesis to afford a

second dimetallaallyl cluster (241) (Scheme 63).88 Trace amount of a related vinyl-

alkylidene cluster 242 has been observed in the reaction of 236 with DPAD in refluxing

toluene solution.

Page 59: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

59

2. (CO2iPr)C C(CO2

iPr)

Cp*

Os OsOs

CW

H(CO)3

(CO)3

(CO)3

(CO)2

Cp*W

CC

Os

OsC

C

CO

Os

H

iPrO O OiPr

(CO)2

(CO)3(CO)3

(CO)2

Cp*

COOiPr

W

CC

Os

OsC C O

Os

OiPrH

(CO)2

(CO)3(CO)3

(CO)2Os Os

Os

W C C

CH

CO2iPr

CO2iPrCp*

(CO)3

(CO)3

(CO)2

(CO)2

236

242

240

241

2. (CO2iPr)C C(CO2

iPr)110ºC

1. Me3NO

1. Me3NO110ºCToluene

Scheme 63.

Reaction of [CpWOs2(CO)8(C≡CPh)] with 1.2 equiv of Me3NO in a mixture of

dichloromethane-acetonitrile solvent at room temperature followed by in situ reaction

with hydride complexes [LW(CO)3H] (L = Cp and Cp*) in refluxing toluene produces

the acetylide cluster complexes [CpLW2Os2(CO)9(CCPh)(μ-H)] (L = Cp, 243a; L = Cp*,

243b) and vinylidene cluster complexes [CpLW2Os2(CO)9(CCHPh)] (L = Cp, 244a; L =

Cp*, 244b). Heating of the acetylide or vinylidene complex in refluxing toluene induces

a reversible rearrangement giving a mixture of two isomeric complexes (Scheme 64).78

Me3NO

LW(CO)3H

(CO)Cp

W Os(CO)3

Os(CO)3W

C

C

Ph

H

(CO)2L

W

C

C

COs

WOs

C

Ph

H

OO Cp(CO)

L(CO) (CO)2

(CO)3

191a

243a; L = Cp243b; L = Cp*

244a; L = Cp244b; L = Cp*

110ºC

Scheme 64.

Page 60: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

60

Molybdenum analogue, [Cp2Mo2Os2(CO)9(CCPh)(μ-H)] (243c) has been

obtained by the addition of Me3NO to dichloromethane-acetonitrile solution of

[CpMoOs2(CO)8(CCPh)], followed by a thermolytic reaction with [CpW(CO)3H].89

Treatment of the carbido cluster [Ru5(μ5-C)(CO)15] with Me3NO followed by

addition of the tungsten acetylide complexes [LW(CO)3(CCPh)] (L=Cp, Cp*) affords the

heterometallic cluster complexes [LWRu5(μ5-C)(CCPh)(CO)15] (L=Cp, 245a; L=Cp*,

245b) and [LWRu5(μ5-C)(CCPh)(CO)13] (L=Cp, 246a; L=Cp*, 246b). Thermolysis of

245 results in an irreversible formation of 246. Hydrogenation of 246b gives two cluster

compounds [(C5Me5)WRu5(μ6-C)(μ-CCH2Ph)(μ-H)2(CO)13] (247) and

[(C5Me5)WRu5(μ4-C)(μ3-CCH2Ph)(μ-H)4(CO)12] (248), via 1,1-addition of H2 to the

ligated acetylide and concurrent formation of two or four bridging hydrides (Scheme

65).90

Page 61: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

61

245b; L = Cp*

RuRu

Ru

CRu Ru

(CO)3

(CO)3

(CO)3

(CO)3 (CO)3

+LW(CO)3(C2Ph)

L = Cp, Cp*

(CO)3

(CO)3

(CO)2(CO)3

C

LW

RuRu

Ru

CRu Ru

C

Ph

(CO)2

(CO)2

245a; L = Cp

110º C

Me3NO

H2L=Cp*

246b; L = Cp*246a; L = Cp

(CO)3

(CO)2(CO)2

(CO)2L O

Ru

OC

OC

Ru

OC

CRu

Ru

CW Ru

C

C

Ph

(CO)2(CO)2

(CO)3

(CO)3

Ru

Ru

Ru

Ru

C

WRu

H

H

CH2

Ph

C

H

C

H

O

WRu

Ru

CRu Ru

CCH2Ph

Ru

C

C C

C

H H

(CO)2

(CO)2

(CO) (CO)2O

O O

O

Cp*

(CO)2

+

248247 Scheme 65.

Heterometallic vinylacetylide clusters [Cp*WRe2(CO)9(CCR)] (R = C(Me)=CH2,

249;R = C6H9, 250) have been obtained from the condensation of mononuclear tungsten

acetylide complexes [Cp*W(CO)3(C≡CR)] (R = -C(Me)=CH2, C6H9) and rhenium

carbonyl complex [Re2(CO)8(NCMe)2]. Treatment of the vinylacetylide complex

[Cp*WRe2(CO)9{C=CC(Me)=CH2}] (249) with alcohols, ROH (R = Me, Et, Ph) in

refluxing toluene solution afford complexes [Cp*WRe2(CO)8(μ-OR)(C=C=CMe2)] (R =

Me, 251a; R = Et, 251b; R = Ph, 251c), which contain an unusual μ3-η3-allylidene ligand

and a bridging alkoxide ligand, and show fluxional behavior in solution. When 249 is

heated in the presence of hydrogen, a metallacyclopentadienyl complex

[Cp*WRe2(CO)7(μ-H){CHCHC(Me)CH}] (252a,b) is formed as a mixture of two non

Page 62: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

62

interconvertible isomers (Scheme 66).91 On the other hand, hydrogenation of 250 in

toluene under refluxing condition initially produces a dihydride cluster

[Cp*WRe2(CO)8(μ-H)2{C=C(C6H9)}] (253) which on heating in toluene converts to 254

and 255 (Scheme 67).91

110 ºC

249

252b; R1 = Me, R2 = H252a; R1 = H, R2 = Me

251a; R = Me

251c; R = Ph251b; R = Et

Cp*

Re

CH2

C

W ReC

CMe

CO(CO)2

(CO)3

(CO)3ROH Cp*

(CO)2

(CO)3

(CO)3

RRe

CW

Re

C

C Me

O

Me

Cp*(CO)2

(CO)3

(CO)3R

Re

O

CW

Re

C

C

Me

Me

ReC

CW

Re

CC

C

HR1

HR2

HO

Cp*

(CO)3 (CO)3

H2

Toluene

Toluene110ºC

Scheme 66.

Page 63: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

63

W Re

CC

Re C

H

Cp*(CO)2

(CO)3

(CO)3

O

H2 W Re

CC

Re H

H

HCp*(CO)2

(CO)3

(CO)3

251b 253

+O

Cp*

Re

W

Re

CH

CC

HH

(CO)3 (CO)3

254

O

Cp*

(CO)3 (CO)3

255

W

Re ReC

HCCHH

Toluene110ºC

Toluene110ºC

Scheme 67.

The acetylide complex [Co2(CO)6{μ-PhC=CRe(CO)5}] (256) (obtained by the

treatment of the binuclear acetylide-hydride carbonyl complex of rhenium [Re2(CO)8(μ-

H)(μ-C≡CPh)]with [Co2(CO)8]) undergoes nondestructive reaction with oxygen resulting

in the net loss of one acetylide carbon atom together with a CO ligand and formation of

the carbyne cluster complex [Co2Re(CO)10(μ3-CPh)] (257) (Scheme 63).92

CC

(CO)4Re

Ph

HRe(CO)4

Co2(CO)8

C

C(CO)5Re Co(CO)3

Co

Ph

(CO)3

Hexane 20Air

ºC

257

(CO)3256

C

Co(CO)3

Co

Ph

(CO)4Re

Scheme 68.

A dichloromethane solution of rhenium ethynyl complex [(η5-

C5Me5)Re(NO)(PPh3){(C≡C)nH}] (n = 1-3) (258a-c) and triosmium complex

[Os3(CO)10(NCMe)2] react at room temperature to give [(η5-C5Me5)Re(NO)(PPh3)

(CC)nOs3(H)(CO)10] (n = 1–3) (259a-c) (Scheme 69). Thermal reaction in hexane

Page 64: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

64

converts 259b to the nonacarbonyl complex [(η5-

C5Me5)Re(NO)(PPh3)(CCCC)Os3(CO)9(H)] (260) (Scheme 70).93, 94

HC

CC

ReCON PPh3

Cp*

OsOs

Os

N N

(CO)4

(CO)3 (CO)3

CCH3

CCH3

n-1 +

Cp*

n-1

C

CC

ReCON PPh3

Os

Os

OsH

(CO)4

(CO)3 (CO)3

Cp*

n-1

(CO)4

(CO)3 (CO)3Os

Os

OsH

Re

CON PPh3

CC

C

+

258b; n = 2 258c; n = 3

258a; n = 1 259b; n = 2 259c; n = 3

259a; n = 1

Scheme 69.

Cp*

Os

CC

ReC

COs

OsH

ON

PPh3

(CO)3 (CO)3

(CO)3

Cp*

C

CC

ReCON PPh3

Os

Os

OsH

(CO)4

(CO)3 (CO)3

259b

Hexane

Cp*

(CO)3 (CO)3

(CO)3

+Re

C

ON

PPh3

Os

CC

COs

OsH

260

60ºC

Scheme 70.

Addition of HBF4. Et2O (1 equiv.) to compound 259a gives the cationic dihydride

complex [(η5-C5Me5)Re(NO)(PPh3)(CC)Os3(CO)10(H)2]+ BF4- (261 ) (Scheme 71).93

Page 65: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

65

Cp*

C

Os

Os

OsH H

ReCON PPh3

(CO)4

(CO)3 (CO)3

HBF4.Et2O

nBuLi

+ BF4Cp*

C

Os

Os

OsH

ReCON PPh3

(CO)4

(CO)3 (CO)3

259a 261 Scheme 71.

Synthesis of a C3OMe complex [(η5-

C5Me5)Re(NO)(PPh3)(C≡CC(OMe))Os3(CO)11] (262) from the reaction of [(η5-

C5Me5)Re(NO)(PPh3)(C≡CLi)] with [Os3(CO)12] and [Me3O+BF4-] has been reported.93

On refluxing in heptane it forms 263 (Scheme 72).

Cp*

C

ReCON PPh3

Li

1. Os3(CO)12

2. Me3O+BF4-

Cp*

C

ReCON PPh3

Os

Os

OsC

OMe

(CO)4

(CO)3 (CO)3

heptanereflux

Cp*

Os

CC

COs

OsO

ReON

PPh3

(CO)3

(CO)3

(CO)3

Me

+

262 263

δδ

Scheme 72.

Products obtained from the reaction between molybdenum dimer [Mo2(CO)4(η-

C5H5)2] and [M(CCR)(CO)2(η-C5H5)] (M = Ru or Fe, R = Me or Ph) depends on the

alkynyl metal used. The ruthenium containing reactant gives the dimolybdenum alkynyl

adducts [Mo2{Ru(μ-CCR)(CO)2(η-C5H5)}(CO)4(η-C5H5)2] (R = Me (264a), Ph (264b))

as the only isolable product. In contrast, the iron alkynyls undergo Fe-C bond cleavage

to give the alkyne adducts [Mo2(μ-η2-HC2R)(CO)4(η-C5H5)2] (R = Me, 265a; R = Ph,

265b) (Scheme 73).95

Page 66: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

66

264a; R = Me264b; R = Ph

CpM C CR+M = Ru

R = Me, Ph

M = Fe

CpMo MoCp

C

C

C

R

O

CpRu

CpMo Mo(CO)Cp

C

C

C

R

O

H

+

CpMo MoCp

[{Fe(CO)2(η5 C5H5)}2]

(CO)2

(CO)2

(CO)2

(CO)2

(CO)2(CO)

(CO)2

265a; R = Me265b; R = Ph

Scheme 73.

On the other hand, reaction of [{Ru(CO)2(η-C5H5)}2(μ-C≡C)] with

[Mo2(CO)4(η-C5H5)2] gives [MoRu2(μ2-CO)3[μ3-C≡C{Ru(CO)2(η-C5H5)}](η-C5H5)3]

(266), but not the dimolybdenum ‘alkynyl’ adduct, 264a,b (Scheme 74).96

CpRu C C RuCp+

CpRu

Ru Ru

C

C

MoC

C

CO

CpMo MoCp(CO)2

(CO)2

(CO)2

(CO)2CpCp

CpO

O

(CO)2

266 Scheme 74.

Reaction of [(OC)4Fe(η1-PPh2C≡CPh)] (267) with [Co2(CO)8] at room

temperature affords the heterotrimetallic complex [(OC)4Fe(μ-η1:η2-

PPh2CCPh)Co2(CO)6] (268), in which the alkynic moiety is bound to a Co2(CO)6 unit.

Both the mono- and di-substituted complexes, [(OC)4Fe(μ-η1:η2-

PPh2C≡CPh)Co2(CO)5{P(OMe)3}] (269a) and [(OC)4Fe(μ-η1:η2-

PPh2CCPh)Co2(CO)4{P(OMe)3}2] (269b), have been obtained on reaction of 268 with an

Page 67: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

67

excess of trimethylphosphite at elevated temperature. Thermolysis of 269a results in

phosphorus-carbon bond cleavage and iron-cobalt bond formation to yield the acetylide

bound mixed-metal triangular cluster [FeCo2(CO)6{μ3-η2-CCPh}{P(OMe)3}(μ-PPh2)]

(270). Substitution of a Co - bound carbonyl ligand of 270 with triphenylphosphine gives

[FeCo2(CO)5{μ3-η2-CCPh}{P(OMe)3}(PPh3)(μ-PPh2)] (271) (Scheme 75).97

P

PhPh

C CCo

Co

Ph(OC)4Fe

P

PhPh

CC

Co

Co

Ph(OC)4Fe

+

267 268

269b269a

270 271

269a

(CO)4

Hexane 54ºC

C CPhP

FePh

Ph

Co2(CO)8P

PhPh

C CCo(CO)3

Co(CO)3

PhFe

P(OMe)3

(OC)2Co

C C

Fe

CoPPh

Ph

Ph

(CO)3

(CO){P(OMe)3}

PPh3 Hexane 28 ºC

Toluene 68ºC

(CO)4

Ph3P(OC)Co

C C

Fe

CoPPhPh

Ph

(CO)3

(CO){P(OMe)3}

(CO)2{P(OMe)3}

(CO)2 {P(OMe)3}(CO)2

{P(OMe)3}(CO)2

Scheme 75.

Reaction between [CpFe(CO)2(C2Me)] and [Co2(CO8)] which affords a μ-alkyne

complex [CpFe(C2Me)Co2(CO)8] (272a).98 In contrast to the reaction of phenylacetylide

complex [CpFe(CO)2C2Ph] and [Co2(CO8)] forms [(η-C5H5)Fe(C2Ph)Co2(CO)6] (273)

and [(η-C5H5)Fe(C2Ph)Co2(CO)8] (272b) (Figure 17).99

Page 68: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

68

Cp

Co

C

FeC R

Co(CO)3(CO)3

(CO)2

Cp

Co

C

Fe

CPh

Co(CO)3

(CO)3272a; R = Me272b; R = Ph

273; R = Ph

Figure 17.

Tungsten-iridium tetrahedral cluster [WIr3(μ-CO)3(CO)8(η-C5R5)] (R5 = H5,

274a; R5 = Me5, 274b; R5 = H4Me, 274c), prepared from the reaction between

[WH(CO)3(η-C5R5)] and [IrCl(CO)2(p-toluidine)] under CO atmosphere, has been used

extensively to synthesise several mixed metal acetylide complexes. Thermal reaction of

[WIr3(μ-CO)3(CO)8(η-C5Me5)] (274b) with [W(C≡CPh)(CO)3(η-C5H5)] results in the

isolation of an edge-bridged tetrahedral cluster [W2Ir3(μ4-η2-C2Ph)(μ-CO)(CO)9(η-

C5H5)(η-C5Me5)] (275a) and an edge-bridged trigonal-bipyramidal cluster [W3Ir3(μ4-η2-

C2Ph)(μ-η2-C=CHPh)(Cl)(CO)8(η-C5Me5)(η-C5H5)2] (275b) (Scheme 76).100 Cluster

275a is formed by the insertion of [W(C≡CPh)(CO)3(η-C5H5)] into Ir-Ir and W-Ir bonds,

and contains a μ4-η2 alkynyl ligand. Cluster 275b also contains an alkynyl ligand

bonded to two iridium atoms and two tungsten atoms in a μ4-η2 fashion and a vinylidene

ligand bridge the W-W bond.

Page 69: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

69

274c

275a 275b

PhC(OC)3CpW C

W

IrIr IrC

C

C

CO

(CO)3(CO)2

(CO)2

Cp*O

O

O+

CH2Cl234 ºC

CpC

Ph

HC

C

CIr

W

Ir

WIr W

Ph

Cl

(CO)2

Cp*(CO)2

(CO)2

(CO)2

Cp

C

IrIr

W

Ir

WC

CO

OCPh

C

Cp

Cp*O

(CO)2

(CO)3(CO)2

+

Scheme 76.

A similar reaction of a THF solution of W-Ir cluster, [WIr3(CO)11(η-C5R5)] (R =

H, 274a; R = Me, 274b) with [(η-C5H5)(CO)2Ru(C≡C)Ru(CO)2(η-C5H5)] leads to

cluster compound [Ru2WIr3(μ5-η2-C2)(μ-CO)3(CO)7(η-C5H5)2(η-C5R5)] [R = H, 276a;

R = Me, 276b] containing WIr3 butterfly core capped by Ru atoms. The reaction

involves an insertion of a C2 unit into a W-Ir bond and scission of Ru-C bond of the

diruthenium ethyndiyl precursor (Scheme 77). Another mixed metal cluster with a

butterfly W2Ir2 unit capped by a Ru(η-C5H5) group, [RuW2Ir2{μ4-η2-

(C2C≡C)Ru(CO)2(η-C5H5)}(μ-CO)2(CO)6(η-C5H5)3] (277) has been isolated by the

reaction of [W2Ir2(CO)10(η-C5H5)2] (274d) with the diruthenium ethyndiyl reagent

(Scheme 78). When the reaction between [WIr3(CO)11(η-C5R5)] (R5 = H5, 274a; R5 =

Me5, 274b; R5 = H4Me, 274c) and [(η-C5H5)(CO)3W(C≡CC≡C)W(CO)3(η-C5H5)] is

performed in refluxing toluene solution, metallaethynyl type of clusters [W2Ir3{μ4-η2-

(C2C≡C)W(CO)3(η-C5H5)}(μ-CO)2(CO)2(η-C5H5)(η-C5R5)] (R = H, 278a; R = Me,

278b; R5 = H4Me, 278c) are obtained (Scheme 79).100a

Page 70: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

70

RuCp(CO)2C(OC)2CpRu C

W

IrIr Ir

CC

(CO)3(CO)3

(CO)3

+45 ºCTHF

Ir Ru

WCRu

Ir

C

IrC

CO

COCO

Cp

(C5R5)Cp

(CO)2

O

(CO)2

O

(C5R5)

O

Ir = Ir(CO)2

274a; R = H274b; R = Me

276a; R = H276b; R = Me

Scheme 77.

+

Cp

Cp(CO)3

(CO)2

Cp

CpRu C

Ru

WCCIr

COCO

C

Ir

W

CO

RuCp(CO)2C(OC)2CpRu C 45 ºCTHF

Ir = Ir(CO)2

O

Cp

O

(CO)3

(CO)3 (CO)2

W

IrIr W

CC

277

Cp

274d

Scheme 78.

WCp(CO)3C)2(OC)3CpW (C110ºC

Ir = Ir(CO)2

O

(η5-C5R5)

O

(CO)3

(CO)3 (CO)3

W

IrIr Ir

CC

+

274a; R = H274b; R = Me274c; R5 = H4Me

Toluene(CO)3

(CO)3

(η5-C5R5)

Cp

Ir

WCC

IrCO

CO

CC

Ir

WCO

CpW 278a; R = H278b; R = Me278c; R5 = H4Me

Scheme 79.

Mixed group 6-9 transition metal complexes,

[{Cp(OC)3W}C≡CC≡C{M(CO)(PPh3)2}] (M = Ir, 279a; M = Rh, 279b) have been

obtained from the reaction between [W(C≡CC≡CH)(CO)3Cp] and [M(OTf)(CO)(PPh3)2]

(M = Ir, Rh) in presence of diethylamine. Thermal reaction of a THF solution of 279a or

279b with [Fe2(CO)9] gives [{Cp(OC)3W}C≡CC2{Fe2M(CO)8(PPh3)}] (M = Ir, 280a; M

Page 71: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

71

= Rh, 280b) and [{Cp(OC)8Fe2W}C2C2{Fe2M(CO)8(PPh3)}] (M = Ir, 281a; M = Rh,

281b) (Scheme 80).100b

W

Fe

Fe

C C C C

Fe

Fe

M

(CO)3

(CO)3(CO)3

(CO)3

(CO)2PPh3(CO)2

Cp

Cp(CO)3 M

PPh3

PPh3

COCCW C C

279a; M = Ir279b; M = Rh

Cp(CO)3

FeCC

WC

M

C

Fe(CO)

PPh3

(CO)3

(CO)3

THF 60 ºC

280a; M = Ir280b; M = Rh

281a; M = Ir281b; M = Rh

+

Scheme 80.

VI MIXED GROUP 10 - 12 METAL ACETYLIDE COMPLEXES

Platinum-acetylide complexes have been used in reactions with copper, silver or

gold salts to form heteropolynuclear Pt-Ag, Pt-Cu or Pt-Au complexes bridged by

alkynyl ligands. A synthetic strategy for heterometallic complexes with bridging alkynyl

ligands have been developed by Fornies and co-workers,102-110 in which alkynyl

substrates containing linear acetylide units are allowed to react with electrophilic metal

centres containing potential leaving groups. Reaction of alkynyl platinate(II) complexes

[NBu4]2[Pt(C≡CR)4].nH2O (R = Ph, n = 0; R = tBu, n = 2) and X2[cis-

Pt(C6F5)2(C≡CR)2] (X = PMePh3, R = Ph; X = NBu4, R = tBu) towards suitable

electrophilic copper, silver and gold complexes has been investigated to obtain a variety

types of heteropolynuclear platinum complexes, the type formed depending on the nature

of the platinum starting material and on the molar ratio of the reactants. Treatment of

[Pt(C≡CR)4]2- (39) (R = Ph (a), tBu (b)) with AgClO4, or with CuCl or [AuCl(tht)] (tht =

Page 72: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

72

tetrahydrothiophene) in the presence of NaClO4 in 1:2 molar ratio forms a hexanuclear

complex [Pt2M4(C≡CR)8] (M = Ag, Cu, Au) (R = Ph, nBu) (282a,b-284a,b).102 The Cu

analogue, [Pt2Cu4(C≡CPh)8] has been prepared by the reaction of

[Pt{C5H4Fe(C5H5)}Cl(cod)] with an excess of phenylacetylene and CuI.101 An anionic

tetranuclear complex [Pt2M2(C6F5)4(C≡CR)4]2- (285a,b-286a,b) has been obtained from

the reaction of [cis-Pt(C6F5)2(C≡CR)2]2- (40) with AgClO4, AgCl or CuCl in a 1:1 molar

ratio.103 On treatment of complex 285a,b with AgClO4 (1:2), the Pt-Ag mixed-metal

acetylide complex [{PtAg2(C6F5)2(C≡CR)2}n] (287a,b) is obtained.104 An alternative

reaction of [Pt(C6F5)2(C≡CR)2]2- (40) with two equivalents of AgClO4 also gives

complex 287a,b. X ray diffraction study of 301 (an acetone solvated derivative of 287)

reveals a polymeric nature of the complex (Scheme 82). A trimetallic Pt-Ag complex

[Pt2Ag(C≡CR)4L4]ClO4 (291-293) has been synthesized by the reaction of cis-

[Pt(C≡CR)2L2] (288-290) with AgClO4 (2:1 molar ratio) (Scheme 81).102

Page 73: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

73

282a Ag Ph282b Ag nBu283a Cu Ph283b Cu nBu284a Au Ph284b Au nBu

288a PPh3 Ph288b PPh3 nBu289a PEt3 Ph289b PEt3 nBu290a dppe Ph290b dppe nBu

12

[Pt(C CR)4]2

cis-[Pt(C CR)2L2]

PtRC C C CR

C CRRC C

PtRC C C CR

C CRRC C

MM M

MAgClO4 orCuCl or[AuCl(tht)].2NaClO4

Ag

R

PtC

C

C

R

C

L

L

CC

PtC

RC

L

L

R+

AgClO4

39a; R = Ph39b; R = nBu

M R

L R291a PPh3 Ph291b PPh3 nBu292a PEt3 Ph292b PEt3 nBu293a dppe Ph293b dppe nBu

L R

Scheme 81.

Page 74: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

74

2

[Pt]RC C

RC C

285a Ag Ph285b Ag nBu286a Cu Ph286b Cu nBu

M

M

[Pt]C CR

C CR

2AgClO4

S = Acetone

cis-[Pt(C6F5)2(C CR)2]2AgClO4,

AgCl or CuCl40

[Pt]C CR

C CR

Ag

Ag

[Pt]RC C

RC C

Ag

Ag

n

AgClO4

[Pt]C CR

C CR

Ag

Ag

[Pt]RC C

RC C

AgSS

AgS S

287a; M = Ag, R = Ph287b; M = Ag, R = nBu [Pt] = Pt (C6F5)2

301a; M = Ag, R = Ph301b; M = Ag, R = nBu

M R

Scheme 82.

Treatment of complex 285a,b with PPh3 or PEt3 (1:2 or 1:4 ratio) or with dppe

results in the formation of anionic complexes 294-295 and dianionic complexes 296

respectively.105 On the other hand, reaction of polymeric complex 287 with phosphines,

tert-butylisocyanide or pyridine in a Ag:L molar ratio of 2:1 produces hexanuclear

complexes [Pt2Ag4(C6F5)4(C≡CR)4L2] (297-300) which are structurally related to

complex 301 (Scheme 76). The X-ray structure of 297a reveals the tridentate behavior of

the two cis-[Pt(C6F5)2(C≡CR)2] fragments towards silver atoms. The alkynyl ligands

exhibit an unsymmetrical μ3-η2 bonding mode. In contrast, trinuclear

[PtAg2(C6F5)2(C≡CR)2L2] (302-305) are isolated when higher proportion of the ligand L

is used with complex 287. The tetranuclear 285 is obtained when 287 is reacted with

NBu4Br (Scheme 83).106,110

Page 75: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

75

[Pt] C CRC CR

[Pt]C CR

C CR

Ag

Ag

[Pt]RC C

RC C

AgL

AgL

Ag L

[Pt]C CR

C CR

[Pt]

RC C

RC C

Ag

AgP

P

[{PtAg2(C6F5)2(C CR)2}n]

[PtAg2(C6F5)4(C CR)4]2-

[Pt]C CR

C CR

AgL

dppeL(1:2 or 1:4)

285

Br

287

L 2L

AgL

[Pt] = Pt(C6F5)2

2

294a PPh3 Ph294b PPh3 nBu295a PEt3 Ph295b PEt3 nBu

296a; R = Ph296b; L = nBu

L R

297a PPh3 Ph297b PPh3 nBu298a PEt3 Ph298b PEt3 nBu299a CN tBu Ph299b CN tBu nBu300a Py Ph300b Py nBu

L R302a PPh3 Ph302b PPh3 nBu303a PEt3 Ph303b PEt3 nBu304a CN tBu Ph304b CN tBu nBu305a Py Ph305b Py nBu

L R

Scheme 83.

Two different Pt-M ( M = Ag, Cu) complexes (306-313) have been isolated when

the hexanuclear complexes 282a,b-283a,b are reacted with anionic ligands X- (X = Cl,

Br) or neutral ligands L ( L = tCNBu, pyridine). For instance, the reaction of

Page 76: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

76

[Pt2M4(C≡CPh)8] (M = Ag, 282a; M = Cu, 283a) with four equivalents of anionic (X =

Cl, Br) or neutral ligands ( L = CNBut, pyridine) gives the corresponding trinuclear

anionic or neutral complexes (306-310), while, reaction of [Pt2M4(C≡CtBu)8] (M = Ag,

282b; M = Cu, 283b) with the same ligands gives hexanuclear complexes (311-313).

Addition of 8 equivalents of the ligands to 282b or 283b afford the trinuclear complexes

(306-310) (Scheme 84).107

[Pt2M4(C CPh)8] PtRC C C CR

C CRRC C

LM

LM

n

4L282a; M = Ag282b; M = Cu

L = Br, Cl, CN tBu, py

28 NBu4Br

306a 2 Ph Ag Cl306b 2 Ph Ag Br307a 2 Ph Cu Cl307b 2 Ph Cu Br308a 0 Ph Ag CN tBu308b 0 Ph Ag py309a 2 tBu Ag Cl309b 2 tBu Ag Br310a 2 tBu Cu Cl310b 2 tBu Cu Br

4L

PtRC C C CR

C CRRC C

PtRC C C CR

C CRRC C

M

M

ML

ML

L = Br, Cl, py

n

311a 2 Ph Ag Cl311b 2 Ph Ag Br312a 2 Ph Cu Cl312b 2 Ph Cu Br313 0 Ph Ag py

or

n R M L

n R M L

Scheme 84.

The platinum mononuclear complexes [Pt(C≡CR)4]2- (39) and

[Pt(C6F5)2(C≡CR)2]2- (40) have been used to synthesise di- and trinuclear complexes

containing doubly bridged alkynyl systems. Their reactions with mercury halides afford

1:2 adducts (314-316) or 1:1 adducts (317-319) (Scheme 85).108

Page 77: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

77

CR)4]2[Pt(C PtC C

C C

C

CC

C

R R

RR

HgX

XHgX

X

2

2HgX2

314a Cl tBu314b Cl SiMe3

315a Br tBu315b Br SiMe3

316a I tBu316b I SiMe3

39

CR)2]2cis-[Pt(C6F5)2(C PtC

C

C

CR

R

F5C6

F5C6

HgX

X

2

HgX2

40

317a Cl tBu317b Cl SiMe3

318a Br tBu318b Br SiMe3

319a I tBu319b I SiMe3

X R

X R

Scheme 85.

The hexanuclear platinum-copper complex [Pt2Cu4(C6F5)4(C≡CtBu)4(acetone)2]

(320) and the polynuclear derivative [PtCu2(C6F5)2(C≡CPh)2]x (321), which crystallizes

in acetone as [Pt2Cu4(C6F5)4(C≡CPh)4(acetone)4] (322), have been prepared from the

reaction of [cis-Pt(C6F5)2(THF)2] with the corresponding copper-acetylide, [Cu(C≡CR)]x

(R = Ph, tBu) (molar ratio 1:2) as starting materials. The Ag-analogues (323-325) have

been synthesized similarly (Scheme 86).104,109

Page 78: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

78

2[AgC CPh]x

[Ag Pt(C6F5)2(C CPh)2]x

2[AgC CtBu]x

[Ag Pt(C6F5)2(C CtBu)2]x

4[CuC CPh]x

[PtCu2(C6F5)2(C CPh)2]x

2.5[CuC CtBu]x

[cis Pt(C6F5)2(thf)2]

Acetone

Acetone

AgSS

C CPt

C C tBu

tBuC6F5

C6F5

Ag

Ag

C6F5

CC

tBu

PtC6F5

CCtBu

AgS S

[cis Pt(C6F5)2(thf)2]

S = Acetone

322

321

323324

320

325

PtC6F5F5C6

CC

CPh

CuCu

Cu

CPh

CuC

C

Ph

PtC

F5C6 C6F5

C

S

S

Ph

S

S

CCPt

CtBu tBu

C6F5C6F5

C

SCu

PtC6F5 C6F5

CCCtBuC tBu

Cu Cu

S

Cu

Scheme 86.

Page 79: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

79

Addition of four equivalents of 2,2’-bipyridine to a solution of 320 or 321 yields

neutral trinuclear alkynyl bridged complexes [{cis-Pt(C6F5)2(μ-C≡CR)2}{Cu(bipy)}2] (R

= tBu, 326; R = Ph, 327). An analogous trinuclear complex [{cis-Pt(C6F5)2(μ-

C≡CtBu)2}{Cu(dppe)2] (328) has been obtained by the reaction of 320 with four

equivalents of dppe. In contrast, the reaction of 321 with dppe produces mixtures of

mononuclear platinum or copper complexes (Scheme 87). A comparison of the

photoluminescent spectra of 320 and 321 with those of the related platinum-silver species

[PtAg2(C6F5)2(C≡CR)2]x and the monomeric [cis-Pt(C6F5)2(C≡CR)2]2- suggest the

presence of emitting states bearing a large cluster [PtM2]x -to-ligand (alkynide) charge

transfer (CLCT).109

[Pt2Cu4(C6F5)4(C CtBu)4(acetone)2]

[{cis-Pt(C6F5)2(μ-C CtBu)2}{Cu(dppe)2}]

N NCu

CuNN

326; R = tBu 327; R = Ph

4 dppe

4 [2,2'-bipy]

320

328

PtF5C6

F5C6 C

C

C

C R

R

Scheme 87.

VII OTHER MIXED METAL ACETYLIDE COMPLEXES

A variety of acetylide complexes have been reported with mixed early-late

transition metal or mid-late transition metal complexes. The synthetic procedures either

involve reactions of early transition metal acetylide complexes with late transition metal

Page 80: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

80

complexes containing labile ligands or vice versa. Mixed early-mid transition metal

acetylide complexes are rather rare.

The reaction of mononuclear [Cp2Ti(C≡CtBu)2] with cis-[M(C6F5)(thf)2] (M = Pt)

results in the formation of dimetallic Pt-Ti acetylide complex [Cp2Ti(μ-η1-

C≡CBut)2Pt(C6F5)2] (329) (Scheme 88).111

cis-[Pt(C6F5)2(thf)2]

329

PtC6F5

C6F5

Ti

C

C

C

C

Cp

Cp

tBu

tBu

[Ti(Cp)2(C CtBu)2]

Scheme 88.

When [Pt(C2H4)(PPh3)2] is added to [Ti(η-C5H5)2(C≡CR)2] (R = But, Ph),

products [Cp2Ti(μ-η1,η1-C≡CBut)(μ-η2,η1-C≡CBut)Pt(PPh3)] (330) and [Cp2Ti(μ-η2,η1-

C≡CPh)2Pt(PPh3)] (331) are obtained (Scheme 89).112

[Pt(C2H4)(PPh3)2]

330; R = tBu

PtTi

C

C

CC

Cp

Cp

R

PPh3

R

[Ti(Cp)2(C CR)2] +

331; R = Ph

Ti

CC

CC

Cp

Cp

R

R

Pt PPh3+

R = Ph, tBu

Scheme 89.

A solution of tetranuclear heteroleptic arylcopper aggregate [Cu4R2Br 2] (R =

C6H3(CH2NMe2)2-2,6) in diethylether reacts at room temperature with the titanium

complex [(η5-C5H4SiMe3)2Ti(C≡CSiMe3)2] (332), in 1:4 molar ratio, to give a 1,1-bis-

metallaalkenyl complex [(η5-C5H4SiMe3)2Ti(C≡CSiMe3){μ-C=C(SiMe3)(R)}Cu] (334)

Page 81: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

81

resulting from an intramolecular addition of a Cu-C bond across the alkyne triple bond

(Scheme 90).113 A probable formation of complex 333 as an intermediate has been

proposed.

Ti

SiMe3

SiMe3

R1 Ti

SiMe3

SiMe3

R1 Cu SAr1/2 Cu4R2Br2 LiR

Ti

SiMe3

SiMe3

R1 Cu R

Cu

Ti

SiMe3

SiMe3 NMe2

NMe2

R1

334

333332 335R = C6H3(CH2NMe2)2-2,6 Ar = C6H4CH2NMe2-2

Et2O

R1 = (η5-C5H4SiMe3)2 Scheme 90.

Dinuclear Pt-Rh (336a-c, 339) and Pt-Ir (337a-c, 338) complexes with doubly

alkynyl bridging systems have been isolated from the reactions between platinum alkynyl

complex, 40 and from cyclooctadiene complexes of rhodium and iridium (Scheme 91).114

Page 82: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

82

339

12

+

[(Cp*)Ir(PEt3)(Me2CO)2][ClO4]2R = Ph

R = SiMe3

cis-[Pt(C6F5)2(C CR)2]2 MC

CR

40(cod)

338

F5C6

F5C6

Pt

PhC

IrC

CPh

C

PEt3

Cp*

RhC

CSiMe3

PEt3

Cp*

336a Rh Ph336b Rh tBu336c Rh SiMe3 337a Ir Ph337b Ir tBu337c Ir SiMe3

[Rh(cod)(OEt2)2]ClO4

[{IrCl(cod)}2]or

[(Cp*)Rh(PEt3)(Me2CO)2][ClO4]2

F5C6

F5C6

PtC

CR

C

F5C6

F5C6

Pt

SiMe3C

M R

Scheme 91.

The tetranuclear mixed metal cluster [(η5-C5H5)2Ni2Fe2(CO)5(μ-PPh2)(μ4 -η2 -

C≡CPh)] (340) has been synthesised in high yield via condensation of [Fe2(CO)6(μ-

PPh2)(μ2-η2-C≡CPh)] and [(η5-C5H5)2Ni2(CO)2] in benzene reflux.115 X-ray analysis

has revealed a μ4-acetylide complex coordinated on a spiked triangular metal skeleton

(Figure 18).

Fe

CNiC Fe

Ni

Ph2P

PhCp

Cp

(CO)3

(CO)2

340 Figure 18.

Page 83: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

83

A triangular Ni-Fe acetylide complex [Cp2NiFe2(CO)6(C2tBu)] (341) has been

obtained when [Cp2Ni2(HC2tBu)] is reacted with [Fe3(CO)12] in refluxing heptane

(Figure 19). 116

But

NiFe

Fe

C

C(CO)3

(CO)3

Cp

341 Figure 19.

A pentanuclear Ni-Ru cluster [NiRu4(CO)9(μ-PPh2)2(μ4-C≡CiPr)2] (342) has

been synthesised by the addition of electron rich [(η-Cp)Ni(CO)]2 to a carbocationic μ3-

acetylide group in [Ru3(CO)9(μ3-C≡CiPr)(PPh2)].117 Its structure consists of a Ru4

butterfly, zipped up by a Ni(CO) group, with the two acetylide groups in μ4-η2-bonding

mode (Figure 20).

(CO)2

(CO)2

(CO)

C

RuRu

Ru

Ru

Ni

Ph2P

C

C

C

PPh2

CHMe Me

CHMeMe

Ru = Ru(CO)2342

Figure 20.

The reaction of the terminal alkyne, [HC≡C-iPr] with [Ru3(CO)12] in boiling

heptane gives [(μ-H)Ru3(CO)9(μ4-η2-C=CHiPr)] (343) which on further reaction with an

octane solution of [(η5-C5H5)Ni(CO)]2 under reflux condition forms the vinylidene

Page 84: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

84

cluster [(μ-H)(η5-C5H5Ni)Ru3(CO)9(μ4-η2-C=CHiPr)] (344) (Figure 21).118 Structure of

344 consists of a butterfly arrangement of Ru3Ni moiety, with the vinylidene ligand σ -

bonded to two ruthenium and one nickel atoms and η2- coordinated to the third

ruthenium atom.

Cp

HR

Ru

H

Ni

Ru Ru

C

C

(CO)3(CO)3

(CO)3(CO)3

(CO)3

(CO)3

R

Ru

H

Ru

Ru

CC

343 344 Figure 21.

Reaction of a THF solution of [Ru2(CO)6(μ-PPh2)(μ-η1,η2-C≡C–C≡CR)]

(R= tBu, 345a;R = Ph, 345b) with [Pt(PPh3)2(η-C2H4)] leads to a trimetallic

heteronuclear complex [Ru2Pt(CO)7(PPh3)(μ3-η1,η1,η1-C=C–C≡CR)(μ-PPh2)] (346a,b)

(Scheme 92).119 A THF solution of 345a also reacts under reflux condition with

[Ni(cod)2] or [Ni(CO)4] to give a pentanuclear cluster, [Ru4Ni(CO)12(μ-PPh2)2(μ4-

η1,η1,η2,η4-tBuC≡CC4C≡CtBu)] (347), resulting from stoichiometric coupling of two

moieties of 345a and the incorporation of a nickel atom bonded to two Ru2 units. The

structure of 347 also shows a head-to-head coupling of two butadienyl ligands to form a

C8 chain.

Page 85: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

85

RC

CC

CRu Ru

PPh2

(CO)3 (CO)3

345a; R = tBu345b; R = Ph

CNi

C

RuC

Ru

C

Ru Ru

PPh2

tBuC

C

P

C

C

tBu

Ph2

(CO)3 (CO)3

(CO)3

(CO)3

(CO)

[Ni(cod)2]or [Ni(CO)4]

PtC

Ru Ru

PPh2

C

PPh3

RC

COC

(CO)3(CO)3

[Pt(PPh3)2(C2H4)]

347

THF 80ºC

THF

346a; R = tBu346b; R = Ph

Scheme 92.

A triangular triosmium-platinum cluster complex [Os3Pt(μ-H)(μ4-η2-

C≡CPh)(CO)10(PCy3)] (349) has been synthesised by the treatment of the unsaturated

[Os3Pt(μ-H)2(CO)10(PCy3)] (348) with [LiC≡CPh] followed by protonation.120 X-ray

structural analysis reveals a μ4-η2-C≡CPh ligand about the triosmium framework with a

platinum atom coordinated to one of the three osmium atoms in a spiked triangular

arrangement (Figure 22).

PtC C

Os Os

Os

P(Cy3)

H

Ph(CO)

(CO)3 (CO)3

(CO)3

349 Figure 22.

Page 86: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

86

To achieve alkyne oligomerization, bis(acetylide) Pt(II) complexes have been

used to facilitate acyclic dimeriztion of alkynyls through head-to-head C-C bond

coupling.121,122 Thermal reaction of a toluene solution of [cis-Pt(C≡CPh)2(dppe)] (350a)

with [Mn2(CO)9(CH3CN)] gives a mixed Mn-Pt compound,

[Mn2Pt(PhCCCCPh)(CO)6(dppe)] (351),121 whereas reaction of 350a with [Ru3(CO)12]

in refluxing toluene forms two isomeric Ru/Pt compounds (352 a,b) (Scheme 93).122

Ru3(CO)12

Ph

Ru

CCRu

CC

Pt

Ph

Ru(CO)4P

P

(CO)3

(CO)3 Ph

Ru

CC Ru

CCRu

Ph

Pt

P P

(CO)3

(CO)3

(CO)(CO)3

+

352a 352b

PtC

C

CPh

CPh

P

P

Mn2(CO)9(CH3CN)

350a

Toluene 110º C

C

C

C CPt Ph

Ph

P

P

Mn

Mn(CO)3

(CO)3

P

P= dppe

351

Toluene 110º C

Scheme 93.

In refluxing toluene, compound 350b reacts with [Ru3(CO)9(PPh3)3] to form the

μ-1,3-diyne compound [Pt(η2-PhCCCCPh)(PPh3)2] (350c). Successive reaction of 350c

with [Fe(CO)5] and [Ru3(CO)12] under benzene reflux lead to the isolation of a

dimetallacyclic compound, [FePt(μ 2-η1:η1: η2-C(O)PhC=CC≡CPh)(CO)3(PPh3)2] (353)

and a triangular cluster, [MPt2(μ3-η1:η1:η2-Ph-CCC≡CPh)(CO)5(PPh3)2] (M= Fe, 354a;

M= Ru, 354b) (Scheme 94).121

Page 87: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

87

PtC

C

CPh

CPh

Ph3PPh3P

Ru3(CO)12

[Ru(CO)9(PPh3)3] PhC C C CPh

Pt(Ph3P)2

Fe(CO)5

C C C CPh

CO

Fe

Pt

PhPPh3

PPh3

353354b; M = Ru

354a; M = Fe

350b 350c

350c

(CO)3(CO)3

C C CCPh

PtM

Pt

Ph

PPh3

COOC

Ph3P

Toluene, 110ºC

Toluene, 110ºC

C6H680ºC

C6H6, 80ºC

Scheme 94.

Addition of [(dppm)2RuCl2] to trans-[(PEt3)2Pt(Ph)(C≡C-p-C6H4-C≡CH)]

followed by treatment with DBU forms a heterometallic acetylide complex

[(PEt3)2Pt(C≡C-p-C6H4-C≡C)Ru(Cl)(dppm)2)] (355). Thermal reaction of a methanol

solution of [Cp(PPh3)2RuCl] with trans-[(PEt3)2Pt(Ph)(C≡C-p-C6H4-C≡CH)] results in

the formation of trans-[Cp(PPh3)2Ru(C≡C-p-C6H4-C≡C)Pt(Et3P)2(Ph)] (356) (Scheme

95).36b

PEt3

PEt3

CC CHCPtPh

i) [(dppm)2RuCl2],2NaPF6, CH2Cl2 CC CC

PPh2Ph2P

Ph2P PPh2

Ru Cl

PEt3

PEt3

PtPh

CC CC

PEt3

PEt3

PtPhPPh3Ph3P

Ru Cp[RuCp(PPh3)2Cl],

Na, MeOH

ii) DBU

355

356Scheme 95.

Reduction of 172 with Na/Hg followed by addition of [O{Au(PPh3)}3][BF4] or

[AuCl(PPh3)] gives complexes [AuFe2Ir(μ3-C2HPh)(CO)8(PPh3)2] (357a) and

Page 88: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

88

[Au2Fe2Ir(μ4-C2Ph)(CO)7(PPh3)2] (357b) (Scheme 96). Reaction of complex 172 with

K[BH(CHMeEt)3] followed by auration gives a Au3FeIr cluster

[Au3Fe2Ir(C2HPh)(CO)12(PPh3)4] (358). The Rh analogue of 357 has also been prepared

by a similar procedure.123

(CO)3

CIr

CFe(CO)3

Fe

PhH

AuPPh3

(Ph3P)(CO)2

1) Na/Hg2) [O{Au(PPh3)}3][BF4]

(CO)3

C

IrC

Fe(CO)3

Fe

Ph

(Ph3P)(CO)2

(CO)3

C

IrC

Fe(CO)3

Fe

Ph

Au

Au

(Ph3P)(CO)

(PPh3)

(PPh3)+

357a 357b

172

or K[BH(CHMeEt)3 or AuCl(PPh3)

Scheme 96.

Mono-, di- and tri-gold containing ruthenium clusters [Ru3Au(μ3-

C2tBu)(CO)9(PPh3)] (360), [Ru3Au2(μ3-C=CHtBu)(CO)9(PPh3)2] (361) and

[Ru3Au3(C2tBu)(CO)8(PPh3)3] (362) have been isolated by a deprotonation reaction of

[HRu3(CO)9C2tBu] (359) with K[HB(CHMeEt)3], followed by auration with

[O{Au(PPh3)}3][BF4] (Scheme 97).124 Molecular structure of 361 contains a trigonal

pyramidal Ru3Au2 core with the Ru3 face bridged by a vinylidene ligand, σ-bonded to

two ruthenium atoms and η2-coordinated to the third ruthenium atom.

Page 89: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

89

C

RuRu

Ru

C

H

But

(CO)3 (CO)3

(CO)3

359

C

RuRu

Ru

C

Au

But

(CO)3 (CO)3

(CO)3

360

(PPh3)

C

RuRu

Ru

C

Au

But

Au

(CO)3 (CO)3

(CO)3

361

(PPh3) (PPh3)

1.2. [O{Au(PPh3)}3][BF4]

+

362

Au

AuRu

Ru

Ru

Au

CC

But

(CO)3

(CO)3

(CO)3

(PPh3)

(PPh3)

(PPh3)

K[BH(CHMeEt)3

+

Scheme 97.

Addition of a THF solution of K[BHsBu3] to a solution of [Ru3(μ-H)(μ3-

C2H)(CO)9] (363) in THF followed by auration with [AuCl(PPh3)] results in the isolation

of [AuRu3(μ-H)(μ3-C2H2)(CO)9(PPh3)] (364) and [Au2Ru3(μ3-C=CH2)(CO)9(PPh3)2]

(365) (Scheme 98).125 Complex 364 crystallises in a dark red form, in which the AuRu3

core forms a tetrahedron (364a), and a yellow form, in which the AuRu3 core has a

butterfly structure (364b). The C2H2 ligand is 2η1,η2 coordinates to the Ru3 face in both

the isomeric forms. In cluster 365 the Au2Ru3 core has a distorted square pyramidal

conformation with the CCH2 ligand attached to the Ru3 face.

Page 90: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

90

C

RuRu

Ru

C

H

H

(CO)3(CO)3

(CO)3363

1.K[HBsBu3]

H Ru

C

Ru Ru

CH

Au

C

C

H

(CO)3 (CO)2

364a

O

O(PPh3)

(CO)2

CRu

Ru Ru

CH

AuH

H

(CO)3 (CO)3

(PPh3)

(CO)3

(CO)3 (CO)3

(PPh3)

(CO)3

C

Ru

Ru Ru

H2C

AuAu(PPh3)

364b 365

2. [AuCl(PPh3)]

+ +

Scheme 98.

Thermal reactions of a benzene solution of [RuCl(PPh3)2(C5H5)] and [Cu(C2Ph)]

afford [RuCuCl(C2Ph)(PPh3)2(C5H5)]2 (366) and [RuCuCl(C2Ph)(PPh3)2(C5H5)] (367a),

whereas, similar reaction with [Cu(C2C6H4Me-p)] or [Cu(C2C6H4F-p)] results in the

formation of a halogen free complex [RuCu(C2R)2(PPh3)(C5H5)] (368a,b) (R = p-

MeC6H4 or p-FC6H4) and [RuCuCl(C2C6H4Me-p)(PPh3)2(C5H5)] (367b) (Figure 23).126

The Me-analogue, [RuCuCl(C2Me)(PPh3)2(C5H5)] (367c) has been obtained by a heating

reaction of [Cu(C2Me)] and ruthenium chloride in benzene. On reflux, a benzene

solution of [RuCl(PPh3)2(C5H5)] and [Cu(C2C6F5)] gives a tetranuclear complex

[{RuCu(C2C6F5)2(PPh3)(C5H5)}2] (369). Room temperature reaction of a benzene

solution of [Fe2(CO)9] and 366 gives the trinuclear cluster

[Fe2Ru(C2Ph)(CO)6(PPh3)(C5H5)] (370). Thermal reaction of a mixture of cis-

[ReCl(CO)3(PPh3)2] and Cu(C2Ph) in THF affords [ReCuCl(C2Ph)(CO)3(PPh3)2] (371),

while, thermolysis of [ReCl(CO)3(PPh3)2] and Cu(C2C6F5) in benzene gives

[ReCu(C2C6F5)2(CO)3(PPh3)2] (372) (Figure 24).126

Page 91: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

91

366 368a; R= p-MeC6H4368b; R= p-FC6H4

Ph

Ru PPh3Ph3P

C

C

Cp

CuClCl

Cu

PhC

RuC

PPh3Ph3PCp

R

Ru PPh3Ph3P

C

C

Cp

Cu Cl

367a; R = Ph367b; R= p-MeC6H4367c; R = Me

Cu

PPh3

RuC

C

CC

Cp

R R

Figure 23.

RuCC C C

Cp

F5C6 C6F5

CuPh3P Cu PPh3

RuC CC C

Cp

F5C6 C6F5

PhRu

Ph3P

C C

FeFe(CO)3

Cp

(CO)3

CO

CPPh3

OC

OCPPh3

Re

CPh

Cu

Cl PPh3

C6F5

C6F5

O

OC

COC

Ph3PRe

C

CC

C

Cu PPh3

369 370 371 372

Figure 24.

The compounds [Ag3({Ru(CO)2(η-C5H4R)}2(μ-C≡C))3](BF4)3 (R = H, 374a; R =

Me, 374b), have been prepared from [{Ru(CO)2(η-C5H4R)}2(μ2-C≡C)] (R = H, 373a;

Me, 373b) and AgBF4 (Figure 25), and used in the reaction with [CpRuCl(CO)2] to give

[{Ru(CO)2(η-C5H4R)}3(η1,η1-C≡C)][BF4] (R = H, Me).127

Page 92: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

92

CCRu Ru

C

Ag

C

Ru

Ru

C

C

Ag

Ru

Ru

(C5H4R)(CO)2(CO)2

(CO)2

(CO)2 (CO)2

(CO)2

(C5H4R)

(C5H4R)

(C5H4R)

(C5H4R)

(C5H4R)

374a; R = H374b; R = Me

Ag

++

+

Figure 25.

Addition reaction of dichloromethane solution of [Au(C≡CPh)L] (L = PPh3 or

PMe2Ph) and [Os3(CO)10(MeCN)2] gives [Os3(C≡CPh)(AuL)(CO)10] (375a,b) which

contains a butterfly Os3Au metal core and a μ-η2-phenylethynyl ligand bridging two

osmium atoms. Decarbonylation of 375a,b in refluxing heptane gives [Os3(μ3,η2-

C≡CPh)(μ-AuL)(CO)9] (376a,b) (Scheme 99).128

PhC

C

Os Os

OsAu

L

(CO)3

(CO)4

(CO)3 (CO)3

(CO)3

(CO)3

PhC

Os Os

OsAu

C

L375a; L = PPh3 375b; L = PMe2Ph

Heptane

376a; L = PPh3 376b; L = PMe2Ph

96 ºC

Scheme 99.

Numerous examples exist of reactions between [M(C2R)(PR’3)] (M = Au, Ag,

Cu; R = Ph, C6F5; R’ = Me, Ph) and [Os3(μ-H)2(CO)10], which might be expected to

proceed by oxidative addition of [RC2M(PR’3)] and addition of the cluster-bound

hydrogen to the acetylide moiety. In toluene at –ll ºC, a rapid reaction occurs between

[Os3(μ-H)2(CO)10] and [M(C2C6F5)(PPh3)] (M=Au, Ag, Cu) to give [Os3M(μ-

CH=CHC6F5)(CO)10(PPh3)] (377a-c) in quantitative yield,129 while the reaction between

Page 93: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

93

[H2Os3(CO)10] and [M(C2Ph)(PR3)] (M = Cu, Ag, Au;R= Me or Ph) affords

[HOs3M(CO)10(PR3)] (M = Au, R = Me, Ph; M = Ag, Cu, R = Ph), [Os3M(μ-

CH=CHPh)(CO)10(PR3)] (M = Au and R = Me, 378a; M = Au and R = Ph, 378b; M =

Ag and R = Ph, 378c; M = Cu and R = Ph, 378d), [Os3M(μ-CH=CHPh)(CO)9(PR3)] (M

= Au and R = Me, 379a; M = Au and R = Ph, 379b; M = Ag, R = Ph, 379c), [HOs3M(μ3-

HCCPh)(CO)8] (M = Au, 380a; M = Ag, 380b; M = Cu, 380c) and [Os3M(η-

CH=CHPh)(CO)9(PR3)2] (M = Au and R = Me, 381a; M = Au and R = Ph, 381b; M =

Ag and R = Ph, 381c; M = Cu and R = Ph, 381d) (Figure 26).129 X-ray crystallography

of compounds 377a and 378b reveals the presence of a butterfly metal core and a μ-

η1,η2-vinyl ligand which is bonded to two osmium atoms of the Os3Au core.

COs Os

OsM

C6F5CH H

(CO)4

(CO)3

(CO)3

(PPh3)

377a; M = Au 377b; M = Ag 377c; M = Cu

COs Os

OsM

PhCH H

(CO)4

(CO)3

(CO)3

(PR3)

COs Os

OsM

PhCH H

(CO)4

(R3P)(CO)2

(CO)3

(PR3)

378a Au Me378b Au Ph378c Ag Ph378d Cu Ph

M R

381a Au Me381b Au Ph381c Ag Ph381d Cu Ph

M R

Figure 26.

Thermal reaction of a THF solution of [AgC2Ph] and [RhCl(PPh3)3] results in the

formation of a hexanuclear cluster compound [Rh2Ag4(C2Ph)8(PPh3)2] (382a).130 The

analogous Ir2Ag4 compound, [Ir2Ag4(C2Ph)8(PPh3)2] (383a) has been obtained from

AgC2Ph and [trans-IrCl(CO)(PPh3)2] on toluene reflux. Thermolysis of a solution of

[RhCl(PPh3)3] and [AgC2C6F5] in 1,2-dimethoxyethane yields three compounds:

[Rh2Ag4(C2C6F5)8(PPh3)2] (382b), [Ag(PPh3)]+[Rh(C2C6F5)4(PPh3)2]- (384a) and

{[Ag(PPh3)]2+[Rh(C2C6F5)5(PPh3)]2-} (385). The analogous iridium compound

[Ir2Ag4(C2C6F5)8(PPh3)2] (383b) and [Ag(PPh3)]+[Ir(C2C6F5)4(PPh3)2]- (384b) are

Page 94: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

94

obtained when a toluene solution of [trans-IrCl(CO)(PPh3)2] and AgC2C6F5 are heated to

reflux (Figure 27).

PPh3

MC

CAr

CC

Ar

C C ArCC

Ag Ag

Ag AgMC

CAr

C CArC

CAr

CC

Ar

Ar

PPh3

382a; M = Rh, Ar = Ph382b; M = Rh, Ar = C6F5383a; M = Ir, Ar = Ph383b; M = Ir, Ar = C6F5

M

PPh3

C

C

C

C

C

C

C

C

F5C6

C6F5

C6F5

F5C6

PPh3

AgPPh3

384a; M = Rh384b; M = Ir

Ag

PPh3

385

Ag

Ph3P

Rh

PPh3

C CC CF5C6 C6F5

F5C6 C

CC6F5

CC C C C6F5

Figure 27.

Thermolytic reaction between [(η-C5H5)Fe(CO)2Cl] and [CuC2Ph] affords a

mixed metal complex [(η-C5H5)Fe(CO)2(C2Ph)CuCl]2 (386) (Figure 28).131 Complex

386 contains a planar Cu2Cl2 ring, and each copper atom is symmetrically bonded to a C2

unit of the phenylethynyl group.

Cu

Cu FeC

CPh

Cl

Cl

C

Fe

CPh

CpCp

(CO)2

(CO)2

386 Figure 28.

Page 95: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

95

In toluene solution [trans-Pt(C≡CH)2(PMe2Ph)2] and [W2(OtBu)6] reacts at 30 ºC

to give [trans-Pt(C≡CH)[C2W2(OtBu)5](PMe2Ph)2] (387) and [trans-

Pt{C2W2(OtBu)5}2(PMe2Ph)2] (388) (Figure 29).132,133a

PtC

C

W

W

C

C

W

W

(OtBu)3

(OtBu)2

(OtBu)3

(OtBu)2

(PMe2Ph)2 PtC

C

C

W

W

CH

(OtBu)3

(OtBu)2

(PMe2Ph)2

388 387 Figure 29.

Reaction of a THF solution of [Cp(CO)(NO)W(C≡CR)]- (R = C6H5, 390a; R =

C6H4CH3, 390b; R = C(CH3)3, 390c) with [(C6H5)3PAuCl] results in the formation of a

tungsten-gold acetylide complex, [CpW(NO)(μ-CO)(μ-C≡CR)Au(P(C6H5)3)] (391)

(Scheme 100).133b Reaction of a THF solution of [Cp(CO)(NO)W(C≡CR)]- (R = C6H5,

390a; R = C6H4CH3, 390b; R = C(CH3)3, 390c; R = SiMe3, 390d) with

[Cp(CO)2Fe(THF)]BF4 as electrophile gives a bimetallic complex [{Cp(CO)(NO)W} η2-

{Cp(CO)2FeC≡CR}] (392a-d). Photolytic decarbonylation of complexes 392a-d gives

diastereomeric mixtures of heterometallic acetylides [{Cp(CO)(NO)W}η2-

{Cp(CO)FeC≡CR}] (393a-d/394a-d) (Scheme 100).133c

Page 96: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

96

nBuLiWCp C C

R

HNOOCWCp C C R

NOOC

Li+

W

Cp

C C R

NO

OC

Au

PPh3

Ph3PAuCl389a; R = tBu389b; R = Ph389c; R = p-Tol

[CpFe(CO)2THF] BF4

CCp(CO)2Fe C R

392a; R = tBu392b; R = Ph392c; R = p-Tol392d; R = SiMe3

391a; R = tBu391b; R = Ph391c; R = p-Tol

WOC NOCp

CFe CR

WCNO

Cp

Cp

OC

O

CFe CR

WC NO

Cp

OC

Cp

O

+hν

393a; R = tBu393b; R = Ph393c; R = p-Tol393d; R = SiMe3

394a; R = tBu394b; R = Ph394c; R = p-Tol394d; R = SiMe3

THF

THF

390a; R = tBu390b; R = Ph390c; R = p-Tol390d; R = SiMe3

C6H6392a-d

Scheme 100.

Reaction of fac-[Mn(CCR)(CO)3(dppe)] (R = CH2OMe, 395a; R = tBu, 395b; R

= Ph, 395c) with a suspension of CuCl in dichloromethane affords [MnCuCl(μ-

CCR)(CO)3(dppe)] (396a-c). On the other hand, the reaction of 395a and 395b with

[Au(C6F5)(tht)] (tht = tetrahydrothiophene) gives [MnAu(C6F5)(μ-CCR(CO)3(dppe)] (R

= CH2OMe, 397a; R = But, 397b). Cationic mixed metal complexes [Mn2Cu(μ-

CCR)2(CO)6(dppe)2]PF6 (R = CH2OMe, 398a; R = But, 398b) have been isolated from a

dichloromethane solution of compound 396a or 396b on addition of TlPF6 in presence of

395a or 395b respectively. The silver and gold complexes, [Mn2M(μ-

CCtBu)2(CO)6(dppe)2]PF6 (M = Ag, 399; Au, 400) are formed when [AgBF4] or

[AuCl(tht)] are reacted with TlPF6 and two fold excess of 395b. Addition of TlPF6 to

Page 97: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

97

complex 396b in presence of [P(C6H4Me-2)3] gives a cationic mixed metal complex

[MnCu(μ-CCtBu)(CO)3(dppe){P(C6H4Me-2)3}]PF6 (401) (Figure 30).133d

Mn C C R(CO)3(dppe)

Cu

Cl

Mn C C R(CO)3(dppe)

Au(C6F5)

Mn C C R(CO)3(dppe)

M

Mn C C R(CO)3(dppe)

+Mn C C R(CO)3(dppe)

+

MP(C6H4Me-2)3

396a; R = CH2OMe396b; R = tBu396c; R = Ph

397a; R = CH2OMe397b; R = tBu

398a Cu CH2OMe398b Cu tBu399 Ag tBu400 Au tBu

M R401; M = Cu, tBu

Figure 30.

Like organic alkynes or some monometalated acetylides (LnMC≡CR), the

dirhenioethyne [(OC)5ReC≡CRe(CO)5] (402) has been found to behave as an η2-ligand

towards CuI, AgI, and AuI. Thus, when a THF solution of 402 reacts with CuCl, complex

[{(η2-C≡C{Re(CO)5}2)Cu(μ-Cl)}2] (404) is isolated (Scheme 101).134

2 (CO)5Re C C Re(CO)52CuCl

Re(CO)5

Re(CO)5

(CO)5Re

(CO)5Re

CuCuCl

Cl

404

402

Scheme 101.

Reaction of 402 with [Cu(NCMe)4]PF6, [Ag(NCMe)4]BF4, [AgSbF6] or

[AgO2SOCF3] gives cationic bis- (alkyne) complexes [(η2-C≡C{Re(CO)5}2)2M]+X- (M

Page 98: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

98

= Cu, Ag; X = PF6, BF4, SbF6 or CF3SO2) (405a-d) and a cationic dimetallic tetrahedron

[(μ-η2,η2-C≡C{Re(CO)5}2)Cu2(NCMe)4]2+ (406) (Figure 31).134

Re(CO)5(CO)5Re

Re(CO)5(CO)5Re

M X

405a; M = Cu, X = PF6405b; M = Ag, X = BF4405c; M = Ag, X = SbF6405d; M = Ag, X = CF3SO3

2 (PF6 )2(CO)5Re Re(CO)5

Cu

NCCH3

NCCH3CuH3CCN

H3CCN

406

+

+

Figure 31.

On the other hand, a dichloromethane solution of [(OC)5ReC≡CSiMe3] (403) on

reaction with [Cu(NCMe)4]PF6 yields the cationic complex [(η2-

C≡CRe(CO)5SiMe3)2Cu]+ (407). Hydrolysis of [(μ-η2:η2-

C≡C{Re(CO)5}2)Cu2(NCMe)4](PF6)2 (406) or treatment of 403 with [Cu(MeCN)4]PF6 in

moist CH2Cl2 affords the difluorphosphate-bridged complexes [{μ-η2:η2-

[(OC)5ReC≡CR]}2Cu4(μ2-O2PF2)4] (R = Re(CO)5, 410; R = SiMe3, 411) (Scheme 102).

The gold complex [(η2-C≡C{Re(CO)5}2)AuPPh3]SbF6 (408) obtained from the reaction

of [Au(PPh3)SbF6] with 402, exists in equilibrium in solution with [Au(PPh3)2SbF6] and

[(η2-C≡C{Re(CO)5}2)2Au]SbF6 (409) (Scheme 103).134

Page 99: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

99

Re(CO)5Me3Si

SiMe3(CO)5Re

Cu

PF6+

407

CuOOP

F F

CuO

OP

F F

Cu

OO PF F

Cu

O OP

F F

R

Re(CO)5

(CO)5Re

R

410; R = Re(CO)5411; R = SiMe3

403[Cu(NCMe4)PF6

[Cu(NCMe4)PF6

H2OCH2Cl2 \

H2OCH2Cl2 \

403406

Scheme 102.

Re(CO)5(CO)5Re

Re(CO)5(CO)5Re

Au

+Re(CO)5(CO)5Re

AuPPh3

SbF6+

2 [Au(PPh3)2]SbF6 +

409408

SbF6

Scheme 103.

VIII ABBREVIATIONS

Cp = (η5-C5H5)

Cp* = (η5-C5Me5)

dppe = Diphenylphosphinoethane

dppm = Diphenylphosphinomethane

DPAD = Diisopropylacetylenedicarboxylate

DBU = 1,5-Diazabicyclo(5.4.0)undec-5-en

Page 100: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

100

Fc = Ferrocene

PPN = Bis(triphenylphosphine)nitrogen(l+), [(Ph3P)2N+]

tht = Tetrahydrothiophene

REFERENCES

(1) Nast, R. Z. Naturforsch. Teil B 1953, 8, 381.

(2) Nast, R. Angew. Chem. 1960, 72, 26.

(3) Manna, J.; John, K. D.; Hopkins, M. D. Adv. Organomet. Chem. 1995, 38, 79.

(4) Nast, R. Coord. Chem. Rev. 1982, 47, 89.

(5) Rourke, J. P.; Bruce, D. W.; Marder, T. B. J. Chem. Soc., Dalton Trans. 1995, 317.

(6) Takahashi, S.; Morimoto, H.; Murata, E.; Kataoka, S.; Sonogashira, K.; Hagihara,

N. J. Polym. Sci., Polym. Chem. Ed. 1982, 20, 565.

(7) Hagihara, N.; Sonogashira, K.; Takahashi, S. Adv. Polym. Sci. 1981, 41, 149.

(8) Stang, P. J. Chem. Eur. J. 1998, 4, 19.

(9) Stang, P. J.; Olenyuk, B. Acc. Chem. Res. 1997, 30, 502.

(10) Akita, M.; Terada, M.; Moro-oka, Y. Organometallics 1992, 11, 1825.

(11) Bruce, M. I.; Humphrey, M. G.; Matisons, J. G.; Roy, S. K.; Swincer, A. G. Aust. J.

Chem. 1984, 37, 1955.

(12) Bruce, M. I.; Humphrey, M. G.; Snow, M. R.; Tiekink, E. R. T. J. Organomet.

Chem. 1986, 314, 213.

(13) Chiang, S.-J.; Chi, Y.; Su, P.-C.; Peng, S.-M.; Lee, G.-H. J. Am. Chem. Soc. 1994,

116, 11181.

(14) Lotz, S.; van Rooyen, P. H.; Meyer, R. Adv. Organomet. Chem. 1995, 37, 219.

(15) Weidmann, T.; Weinrich, V.; Wagner, B.; Robl, C.; Beck, W. Chem. Ber. 1991,

124, 1363.

(16) Adams, R. D.; Bunz, U. H. F.; Fu, W.; Roidl, G. J. J. Organomet. Chem. 1999, 578,

55.

(17) Low, P. J.; Udachin, K. A.; Enright, G. D.; Carty, A. J. J. Organomet. Chem. 1999,

578, 103.

(18) Low, P. J.; Enright, G. D.; Carty, A. J. J. Organomet. Chem. 1998, 565, 279.

(19) Blenkiron, P.; Enright, G. D.; Carty, A. J. Chem. Commun. 1997, 483.

Page 101: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

101

(20) Ward, M. D. Chem. Ind. 1996, 568.

(21) Ward, M. D. Chem. Soc. Rev. 1995, 24, 121.

(22) Bunz, U. H. F. Angew. Chem. 1994, 106, 1127.

(23) Schumm, J. S.; Pearson, D. L.; Tour, J. M. Angew. Chem. 1994, 106, 1445.

(24) Metzger, R. M. Acc. Chem. Res. 1999, 32, 950.

(25) Dembinski, R.; Bartik, T.; Bartik, B.; Jaeger, M.; Gladysz, J. A. J. Am. Chem. Soc.

2000, 122, 810.

(26) Bruce, M. I.; Low, P. J.; Costuas, K.; Halet, J.-F.; Best, S. P.; Heath, G. A. J. Am.

Chem. Soc. 2000, 122, 1949.

(27) Wu, C. H.; Chi, Y.; Peng, S. M.; Lee, G. H. J. Chem. Soc., Dalton Trans. 1990,

3025.

(28) Akita, M.; Sugimoto, S.; Terada, M.; Moro-oka, Y. J. Organomet. Chem. 1993,

447, 103.

(29) Ustynyuk, N. A.; Vinogradova, V. N.; Korneva, V. N.; Kravtsov, D. N.;

Andrianov,V. G.; Struchkov, Y. T. J. Organomet. Chem. 1984, 277, 285.

(30) Mathur, P.; Ahmed, M. O.; Dash, A. K.; Walawalkar, M. G.; Puranik, V. G. J.

Chem. Soc., Dalton Trans. 2000, 2916.

(31) Mathur P.; Chatterjee S. Comments on Inorg. Chem. 2006, 26, 255.

(32) Akita, M.; Sugimoto, S.; Hirakawa, H.; Kato, S.-I.; Terada, M.; Tanaka, M.; Moro-

oka, Y. Organometallics 2001, 20, 1555.

(33) Akita, M.; Hirakawa, H.; Tanaka, M.; Moro-oka, Y. J. Organomet. Chem. 1995,

485, C14.

(34) (a) Terada, M.; Akita, M. Organometallics 2003, 22, 355; (b) Koutsantonis, G. A.;

Selegue, J. P.; Wang, J.-G. Organometallics 1992, 11, 2704.

(35) (a) Akita, M.; Chung, M.-C.; Sakurai, A.; Moro-oka, Y. Chem. Commun. 2000,

1285; (b) Bruce, M. I.; Kelly, B. D.; Skelton, B. W.; White, A. H. J. Organomet.

Chem. 2000, 604, 150.

(36) (a) Koridze, A. A.; Sheloumov, A. M.; Dolgushin, F. M.; Yanovsky, A. I.;

Struchkov, Y. T.; Petrovskii, P. V. J. Organomet. Chem. 1997, 536-537, 381; (b)

Younus, M.; Long, N. J.; Raithby, P. R.; Lewis, J. J. Organomet. Chem. 1998,

570, 55.

Page 102: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

102

(37) Mathur, P.; Singh, V. K.; Mobin, S. M.; Srinivasu, C.; Trivedi, R.; Bhunia, A. K.;

Puranik, V. G. Organometallics 2005, 24, 367.

(38) Sonogashira, K.; Ohga, K.; Takahashi, S.; Hagihara, N. J. Organomet.

Chem. 1980, 188, 237.

(39) (a) Berenguer, J. R.; Forniés, J.; Lalinde, E.; Martínez, F. J. Organomet. Chem.

1994, 470, C15; (b) Forniés, J.; Lalinde, E. J. Chem. Soc., Dalton Trans. 1996,

2587.

(40) Forniés, J.; Gomez-Saso, M. A.; Lalinde, E.; Martínez, F.; Moreno, M. T.

Organometallics 1992, 11, 2873.

(41) Abu-Salah, O. M. J. Organomet. Chem. 1990, 387, 123.

(42) Abu-Salah, O. M.; Knobler, C. B. J. Organomet. Chem. 1986, 302, C10.

(43) Abu-Salah, O. M.; Al-Ohaly, A. R. A.; Mutter, Z. F. J. Organomet. Chem. 1990,

389, 427.

(44) Abu-Salah, O. M.; Al-Ohaly, A. R. A. J. Chem. Soc., Dalton Trans. 1988, 2297.

(45) Abu-Salah, O. M.; Al-Ohaly, A. R. A.; Knobler, C. B. Chem Commun. 1985, 1502.

(46) Hussain, M. S.; Abu-Salah, O. M. J. Organomet. Chem. 1993, 445, 295.

(47) Abu-Salah, O. M.; Al-Ohaly, A. R. A.; Mutter, Z. F. J. Organomet. Chem. 1990,

391, 267.

(48) Abu-Salah, O. M. Polyhedron, 1992, 11, 951.

(49) Abu-Salah, O. M.; Hussain, M. S.; Schlemper, E. O. Chem Commun. 1988, 212.

(50) Bernhardt, W.; Vahrenkamp, H. J. Organomet. Chem. 1990, 383, 357.

(51) Akita, M.; Terada, M.; Moro-oka, Y. Organometallics 1992, 11, 1825.

(52) Akita, M.; Terada, M.; Ishii, N.; Hirakawa, H.; Moro-oka, Y. J. Organomet. Chem.

1994, 473, 175.

(53) Akita, M.; Hirakawa, H.; Sakaki, K.; Moro-oka, Y. Organometallics 1995, 14,

2775.

(54) (a) Akita, M.; Chung, M.-C.; Terada, M.; Miyauti, M.; Tanaka, M.; Moro-oka, Y.

J. Organomet. Chem. 1998, 565, 49; (b) Jensen, M. P.; Phillips, D. A.; Sabat, M.;

Shriver, D. F. Organometallics 1992, 11, 1859.

(55) Chung, M.-C.; Sakurai, A.; Akita, M.; Moro-oka, Y.; Organometallics 1999, 18,

4684.

Page 103: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

103

(56) (a) Bruce, M. I.; Halet, J.-F.; Kahlal, S.; Low, P. J.; Skelton, B. W.; White, A. H. J.

Organomet. Chem. 1999, 578, 155; (b) Bruce, M. I.; Kelly, B. D.; Skelton, B. W.;

White, A. H. J. Chem. Soc., Dalton Trans. 1999, 847.

(57) Bernhardt, W.; Vahrenkamp, H. J. Organomet. Chem. 1988, 355, 427.

(58) Hwaug, D.-K.; Chi, Y.; Peng, S.-M.; Lee, G.-H. J. Organomet. Chem. 1990, 389,

C7.

(59) Bruce, M. I.; Low, P. J.; Zaitseva, N. N.; Kahlal, S.; Halet, J.-F.; Skelton, B. W.;

White, A. H. J. Chem. Soc., Dalton Trans. 2000, 2939.

(60) Low, P. J.; Udachin, K. A.; Enright, G. D.; Carty, A. J. J. Organomet. Chem. 1999,

578, 103.

(61) Adams, C. J.; Bruce, M. I.; Skelton, B. W.; White, A. H. J. Organomet. Chem.

1991, 420, 95.

(62) (a) Bruce, M. I.; Zaitseva, N. N.; Skelton, B. W.; White, A. H. Polyhedron 1995,

14, 2647; (b) Takemoto, S.; Shimadzu, D.; Kamikawa, K.; Matsuzaka, H.;

Nomura, R. Organometallics 2006, 25, 982.

(63) Mathur, P.; Bhunia, A. K.; Kumar, A.; Chatterjee, S.; Mobin, S. M.

Organometallics 2002, 21, 2215.

(64) Mathur, P.; Ahmed, M. O.; Dash, A. K.; Walawalkar, M. G. J. Chem. Soc., Dalton

Trans. 1999, 1795.

(65) Mathur, P.; Ahmed, M. O.; Kaldis, J. H.; McGlinchey, M. J. J. Chem. Soc., Dalton

Trans. 2002, 619.

(66) Mathur, P.; Srinivasu, C.; Mobin, S. M. J. Organomet. Chem. 2003, 665, 226.

(67) Mathur, P.; Bhunia, A. K.; Mobin, S. M.; Singh, V. K.; Srinivasu, C.

Organometallics 2004, 23, 3694.

(68) Mathur, P.; Srinivasu, C.; Ahmed, M. O.; Puranik, V. G.; Umbarkar, S. B. J.

Organomet. Chem. 2002, 669, 196.

(69) Mathur, P.; Mukhopadhyay, S.; Ahmed, M. O.; Lahiri, G. K.; Chakraborty, S.;

Puranik, V. G.; Bhadbhade, M. M.; Umbarkar, S. B. J. Organomet. Chem. 2001,

629, 160.

(70) Mathur, P.; Mukhopadhyay, S.; Ahmed, M. O.; Lahiri, G. K.; Chakraborty, S.;

Walawalkar, M. G. Organometallics 2000, 19, 5787.

Page 104: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

104

(71) Mathur, P.; Bhunia, A. K.; Srinivasu, C.; Mobin, S. M. J. Organomet. Chem. 2003,

670, 144.

(72) Mathur, P.; Bhunia, A. K.; Srinivasu, C.; Mobin, S. M. Phosphorus, sulfur, and

silicon 2004, 179, 899.

(73) Bruce M. I.; Koutsantonis, G. A.; Tiekink, E. R. T. J. Organomet. Chem. 1991,

407, 391.

(74) Bruce M. I.; Koutsantonis, G. A.; Tiekink, E. R. T. J. Organomet. Chem. 1991,

408, 77.

(75) Adams, C. J.; Bruce, M. I.; Skelton, B. W.; White, A. H. Polyhedron 1998, 17,

2795.

(76) Su, P.-C.; Chiang, S.-J.; Chang, L.-L.; Chi, Y.; Peng, S.-M.; Lee, G.-H.

Organometallics 1995, 14, 4844.

(77) Chi, Y.; Lee, G.-H.; Peng, S.-M. Wu, C.-H. Organometallics 1989, 8, 1574.

(78) Wu, C.-H.; Chi, Y.; Peng, S.-W.; Lee, G.-H. J. Chem. Soc., Dalton Trans. 1990,

3025.

(79) Chi, Y.; Hüttner, G.; Imhof, W. J. Organomet. Chem. 1990, 384, 93.

(80) Hwang, D.-K.; Chi, Y.; Peng, S.-M.; Lee, G.-H. Organometallics 1990, 9, 2709.

(81) Hwang, D.-K.; Lin, P.-J.; Chi, Y.; Peng, S.-M.; Lee, G.-H. J. Chem. Soc., Dalton

Trans. 1991, 2161.

(82) Hwang, D.-K.; Chi, Y.; Peng, S.-M.; Lee, G.-H. J. Organomet. Chem. 1990, 389,

C7.

(83) Chi, Y.; Lin, R.-C.; Chen, C.-C.; Peng, S.-M.; Lee, G.-H. J. Organomet. Chem.

1992, 439, 347.

(84) Chi, Y.; Hsu, H.-F.; Peng, S.-M.; Lee, G.-H. Chem. Commun. 1991, 1019.

(85) Chi, Y.; Hsu, H.-Y.; Peng, S.-M.; Lee, G.-H. Chem. Commun. 1991, 1023.

(86) Chi, Y.; Chung, C.; Chou, Y.-C.; Su, P.-C.; Chiang, S.-J.; Peng, S.-M.; Lee, G.-H.

Organometallics 1997, 16, 1702.

(87) Chi, Y.; Chung, C.; Tseng, W.-C.; Chou, Y.-C.; Peng, S.-M.; Lee, G.-H. J.

Organomet. Chem. 1999, 574, 294.

(88) Chung, C.; Tseng, W.-C.; Chi, Y.; Peng, S.-M.; Lee, G.-H. Organometallics

1998, 17, 2207.

Page 105: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

105

(89) Chi, Y.; Wu, C.-H.; Peng, S.-M.; Lee, G.-H. Organometallics 1991, 10, 1676.

(90) Chao, W.-J.; Chi, Y.; Way, C.-J.; Mavunkal, I. J.; Wang, S.-L.; Liao, F.-L.;

Farrugia, L. J. Organometallics 1997, 16, 3523.

(91) Peng, J.-J.; Horng, K.-M.; Cheng, P.-S.; Chi, Y.; Peng, S.-M.; Lee, G.-H.

Organometallics 1994, 13, 2365.

(92) Shaposhnikova, A. D.; Stadnichenko, R. A.; Kamalov, G. L.; Pasynskii, A. A.;

Eremenko, I. L.; Nefedov, S. E.; Struchkov, Y. T.; Yanovsky, A. I. J. Organomet.

Chem. 1993, 453, 279.

(93) Falloon, S. B.; Szafert, S.; Arif, A. M.; Gladysz, J. A. Chem. Eur. J. 1998, 4, 1033.

(94) Falloon, S. B.; Arif, A. M.; Gladysz, J. A. Chem. Commun. 1997, 629.

(95) Griffith, C. S.; Koutsantonis, G. A.; Skelton, B. W.; White, A. H. Chem. Commun.

1998, 1805.

(96) Byrne, L. T.; Griffith, C. S.; Koutsantonis, G. A.; Skelton, B. W.; White, A. H. J.

Chem. Soc., Dalton Trans. 1998, 1575.

(97) Mays, M. J.; Sarveswaran, K.; Solan, G. A. Inorg. Chim. Acta 2003, 354, 21.

(98) Yasufuku, K.; Yamazaki, H. Bull. Chem. Soc. Jpn. 1972, 45, 2664.

(99) Bruce, M. I.; Duffy, D. N.; Humphrey, M. G. Aust. J. Chem. 1986, 39, 159.

(100) (a)Dalton, G. T.; Viau, L.; Waterman, S. M.; Humphrey, M. G.; Bruce, M. I.; Low,

P. J.; Roberts, R. L.; Willis, A. C.; Koutsantonis, G. A.; Skelton, B. W.; White, A.

H. Inorg. Chem. 2005, 44, 3261; (b) Bruce, M. I.; Ellis, B. G.; Skelton, B. W.;

White, A. H. J. Organomet. Chem. 2000, 607, 137.

(101) Tanaka, S.; Yoshida, T.; Adachi, T.; Yoshida, T.; Onitsuka, K.; Sonogashira, K.

Chem. Lett. 1994, 877.

(102) Espinet, P.; Forniés, J.; Martínez, F.; Tomás, M.; Lalinde, E.; Moreno, M. T.; Ruiz

A.; Welch, A. J. J. Chem. Soc., Dalton Trans. 1990, 791.

(103) Espinet, P.; Forniés, J.; Martínez, F.; Sotes, M.; Lalinde, E.; Moreno, M. T.; Ruiz,

A.; Welch, A. J. J. Organomet. Chem. 1991, 403, 253.

(104) Forniés, J.; Gomez-Saso, M. A.; Martínez, F.; Lalinde, E.; Moreno, M. T.; Welch,

A. J. New J. Chem. 1992, 16, 483.

(105) Forniés, J.; Lalinde, E.; Martínez, F.; Moreno, M. T.; Welch, A. J. J. Organomet.

Chem. 1993, 455, 271.

Page 106: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

106

(106) Ara, I.; Forniés, J.; Lalinde, E.; Moreno, M. T.; Tomás, M. J. Chem. Soc., Dalton

Trans. 1995, 2397.

(107) Forniés, J.; Lalinde, E.; Martin, A.; Moreno, M. T. J. Organomet. Chem. 1995, 490,

179.

(108) Berenguer, J. R.; Forniés, J.; Lalinde, E.; Martin, A.; Moreno, M. T. J. Chem. Soc.,

Dalton Trans. 1994, 3343.

(109) Ara, I.; Berenguer, J. R.; Eguizábal, E.; Forniés, J.; Gómez, J.; Lalinde, E. J.

Organomet. Chem. 2003, 670, 221.

(110) Ara, I.; Forniés, J.; Lalinde, E.; Moreno, M. T.; Tomás, M. J. Chem. Soc., Dalton

Trans. 1994, 2735.

(111) Berenguer, J. R.; Falvello, L. R.; Forniés, J.; Lalinde, E.; Tomás, M.

Organometallics 1993, 12, 6.

(112) Berenguer, J. R.; Forniés, J.; Lalinde, E.; Martin, A. Angew. Chem. Int. Ed. Engl.

1994, 33, 2083.

(113) Janssen, M. D.; Smeets, W. J. J.; Spek, A. L.; Grove, D. M.; Lang, H.; van Koten,

G. J. Organomet.Chem. 1995, 505, 123.

(114) Berenguer, J. R.; Forniés, J.; Lalinde, E.; Martínez, F. Chem. Commun. 1995, 1227.

(115) Weatherell, C. Taylor, N. J.; Carty, A. J.; Sappa, E.; Tiripicchio, A. J.

Organomet. Chem.1985, 291, C9.

(116) Marinetti, A.; Sappa, E.; Tiripicchio, A.; Camellini, M. T. J. Organomet. Chem.

1980, 197, 335.

(117) Lanfranchi, M.; Tiripicchio, A.; Sappa, E.; MacLaughlin, S. A.; Carty, A. J. Chem.

Commun. 1982, 538.

(118) Carty, A. J.; Taylor, N. J.; Sappa, E.; Tiripicchio, A. Inorg. Chem. 1983, 22, 1871.

(119) Blenkiron, P.; Enright, G. D.; Carty, A. J. Chem. Commun. 1997, 483.

(120) Ewing, P.; Farrugia, L. J. J. Organomet. Chem. 1987, 320, C47.

(121) Yamazaki, S.; Taira, Z.; Yonemura, T.; Deeming, A. J. Organometallics 2005, 24, 20.

(122) Yamazaki, S.; Taira, Z.; Yonemura, T.; Deeming, A. J.; Nakao, A. Chem. Lett.

2002, 1174.

(123) Bruce, M. I.; Koutsantonis, G. A.; Tiekink, E. R. T. J. Organomet. Chem. 1991,

Page 107: Mixed Metal Acetylide Complexes - NIT Rourkela: Homedspace.nitrkl.ac.in/dspace/bitstream/2080/612/1/PM... · 2012-09-26 · 3 I INTRODUCTION Complexes containing C2 hydrocarbyl ligands

107

408, 77.

(124) Bruce, M. I.; Horn, E.; Shawkataly, O. B.; Snow, M. R. J. Organomet. Chem. 1985,

280, 289.

(125) Bruce, M. I.; Zaitseva, N. N.; Skelton, B. W.; White, A. H. J. Chem. Soc., Dalton

Trans. 1999, 2777.

(126) Abu Salah, O. M.; Bruce, M. I. J. Chem. Soc., Dalton Trans. 1975, 2311.

(127) Griffith, C. S.; Koutsantonis, G. A.; Skelton, B. W.; White, A. H. Chem. Commun.

2002, 2174.

(128) Deeming, A. J.; Donovan-Mtunzi, S.; Hardcastle, K. J. Chem. Soc., Dalton Trans.

1986, 543.

(129) Bruce, M. I.; Horn, E.; Matisons, J. G.; Snow, M. R. J. Organomet. Chem. 1985,

286, 271.

(130) Abu Salah, O. M.; Bruce, M. I. Aust. J. Chem. 1977, 30, 2639.

(131) (a) Bruce, M. I.; Clark, R.; Howard, J.; Woodward, P. J. Organomet. Chem. 1972,

42, C107; (b) Abu Salah, O. M.; Bruce, M. I. J. Chem. Soc., Dalton Trans. 1974,

2302.

(132) Blau, R. J.; Chisholm, M. H.; Folting, K.; Wang, R. J. J. Am. Chem. Soc. 1987,

109, 4552.

(133) (a)Blau, R. J.; Chisholm, M. H.; Folting, K.; Wang, R. J. Chem. Commun. 1985,

1582; (b) Ipaktschi, J.; Munz, F. Organometallics 2002, 21, 977; (c) Ipaktschi, J.;

Mirzaei, F.; Müller, B. G.; Beck, J.; Serafin, M. J. Organomet. Chem. 1996, 526,

363; (d) Carriedo, G. A.; Miguel, D.; Riera, V.; Soláns, X. J. Chem. Soc., Dalton

Trans. 1987, 2867.

(134) Mihan, S.; Sünkel, K.; Beck, W. Chem. Eur. J. 1999, 5, 745.