19
1 MIT Compact X-ray Source William S. Graves MIT March 27, 2006

MIT Compact X-ray Source 

  • Upload
    viet

  • View
    70

  • Download
    4

Embed Size (px)

DESCRIPTION

MIT Compact X-ray Source . William S. Graves MIT March 27, 2006. ICS Operating Modes. High average flux optimized for protein crystallography and medical x-rays. 10 MHz repetition rate 5 x 10 12 x-rays per second (2 x 10 11 in 0.1% bandwidth) 0.1 nC charge per bunch - PowerPoint PPT Presentation

Citation preview

Page 1: MIT Compact X-ray Source 

1

MIT Compact X-ray Source 

William S. GravesMIT

March 27, 2006

Page 2: MIT Compact X-ray Source 

2

ICS Operating Modes

High average flux optimized for protein crystallography and medical x-rays.

•10 MHz repetition rate

•5 x 1012 x-rays per second (2 x 1011 in 0.1% bandwidth)

•0.1 nC charge per bunch

•1 kW average laser power

High peak flux optimized for single-shot, time-dependent studies

•10 Hz repetition rate

•4 x 109 x-rays per shot (goal is > 1 x 1010 per shot)

•1.0 nC charge per bunch

•0.2 kW average laser power

Today’s focus

Page 3: MIT Compact X-ray Source 

3

Large Time-Average-Flux Performance

Photon energy [keV] 12

Total x-ray flux per pulse (5% BW) 5e5

Peak spectral density per pulse [photons/eV] 800

Repetition rate [MHz] 10

Average x-ray flux @ 10 MHz (5% BW) 5e12

Average x-ray flux @ 10 MHz (0.1% BW) 2e11

On-axis spectral width FWHM [keV] 0.1

Spectral width FWHM [keV] 0.6 (5%)

Avg on-axis brilliance [photons / (mm2 mrad2 sec 0.1%)] 6e14

Peak on-axis brilliance [photons / (mm2 mrad2 sec 0.1%)] 2e19

Pulse length FWHM [ps] 0.1 - 3

RMS size of source [mm] 4

RMS opening angle [mrad] 3.5

Results from 3D-code of W. Brown, MIT Lincoln Lab

Page 4: MIT Compact X-ray Source 

4

High Flux-Per-Pulse Performance

Photon energy [keV] 12

Total x-ray flux per pulse (17% BW) 4e9

Peak spectral density per pulse [photons/eV] 2e6

Repetition rate [Hz] 10

Average x-ray flux @ 10 Hz [photons/sec] (17% BW) 4e10

On-axis spectral width FWHM [keV] 0.2

Spectral width FWHM [keV] 2 (17%)

Average brilliance [photons / (mm2 mrad2 sec 0.1%)] 1.4e10

Peak brilliance [photons / (mm2 mrad2 sec 0.1%)] 1.4e20

Pulse length FWHM [ps] 9

Size of source RMS [m] 7

Opening angle RMS [mrad] 7

Results from 3D-code of W. Brown, MIT Lincoln Lab

Page 5: MIT Compact X-ray Source 

5

0

100

200

300

400

500

600

10 10.5 11 11.5 12 12.5

X-ray Energy (keV)P

ho

ton

s/e

V

Photons/pulse = 8.9 x 104

FWHM = 0.15 keV (1.3%)

Electron Beam Parameters:E = 25 MeVnx = 0.3 m

= 4 mm (rms spot size = 5 m)Rms bunch length = 1 psCharge = 0.1 nC

Laser Parameters:W = 10 mJzR= 0.3 mm (rms spot size = 5 m)

Rms Laser Duration = 0.5 ps = 1.03 m

a0 = 0.063

Total X-ray dose per pulse = 6.2x106

X-ray dose in 4 mrad full angle cone = 8.9x104

Spectral Width (FWHM) in cone = 0.15 keV

On-axis spectral width (FWHM) = 0.08 keV

Rms source size = 3.7 microns

Results of 3D ICS code assuming design electron and laser parameters

ICS Modeling Results

Page 6: MIT Compact X-ray Source 

6

0

5000

10000

15000

20000

25000

30000

35000

-5 -4 -3 -2 -1 0 1 2 3 4 5 (mrad)

Inte

ns

ity

(k

eV

/mra

d^

2)

Intensity Profile of 12 keV X-rays With 0.4% Full Width Energy Filter

dx/dz (mrad)

dy/

dz

(mra

d)

-6 -4 -2 0 2 4 6-6

-4

-2

0

2

4

6

0.5

1

1.5

2

2.5

x 104

9 mrad diameter

9 mrad

ICS Modeling ResultsResults of 3D code assuming design electron and laser parameters

Page 7: MIT Compact X-ray Source 

7

MIT Inverse Compton Source Prototype

SRF gun

7 m

Yb:YAG Power Supply

Injector Power Supply

Linac Power Supply

3 m

SESAM

Yb:YAG Oscillatorpump diode

Yb:YAG

Pre ampl.

Multi-passYb:YAG Amplifier

Diodes

1.5 mSRF linacSolenoid Collimating

chicanePhotoinjector laser

Focusing quadupoles

LHe RefrigeratorLHe

Dewar

Page 8: MIT Compact X-ray Source 

8

Diode-pumped Photocathode Laser

To achieve a homogeneous e-beam bunch

4th-HarmonicGeneration

with BBO crystals

<0.5ps, 50nJ, 10MHz@257 nm

Yb:YLF, 200 fs,

10 MHz, 20W,1030 nm

Beamshaper

(parabolicbeam)

Spatially parabolic beam

Page 9: MIT Compact X-ray Source 

9

RF waveguides

RF couplers

RF cavity

He gas collector

Titanium He vessel

LN2 portHelium port

Stainless steel vacuum vessel

Bi-Cavity Cryomodule

Page 10: MIT Compact X-ray Source 

10

16 kW 1.3 GHz

Inductive Output Tube (IOT)

Operational frequency 1300MHzBeam voltage 24kVGrid bias voltage - 50VOutput power 16.4kWCollector dissipation 5.1kWEfficiency 68.3%Drive power 63WGain 24dBBandwidth 5MHz

RF Power

At full gradient of 15 MV/m, 1 mA of current requires 15 kW of RF power per cavity. Need additional power for RF wall losses.

Specification from CPI. Similar tubes available from Thales and EEV.

Page 11: MIT Compact X-ray Source 

11

Preliminary Cryogenic Specification

Photoinjector•Static heat load 10 - 15 W.

•Dynamic heat load <50 W for a gradient of 23 MV/m in CW operation.

Linac Bi-cavity module•Static heat load 10 - 15 W .

•Dynamic heat load (RF dissipation) <105 W for a gradient of 15 MV/m CW.

Total•180 W at full power in CW mode

•Heat load scales as (beam energy)2

•Use standard Linde L140 or L280 LHe refrigerator

Linde L280 LHe liquifier

Page 12: MIT Compact X-ray Source 

12

Start-to-End Simulation

Goal is to generate a self-consistent simulation from the photocathode drive laser all the way through production and manipulation of x-rays

•Include all photon and electron beam physics

•Include optical and electron transport aberrations

•Multi-dimensional, time-dependent codes

Report first results today – more optimization to be done.

Page 13: MIT Compact X-ray Source 

13

RF Field Model of SRF Photoinjector

FZR SRF 3.5 cell photoinjector modeled with standard RF design program SUPERFISH

Niobium cavities

Photocathode

Accelerating electric field lines

Beampipe exit

Two dimensional model of cylindrically symmetric cavities

Page 14: MIT Compact X-ray Source 

14

RF Field Model of Linac Cavity

TESLA 9-cell cavity modeled by SUPERFISH

Niobium cavities

Accelerating electric field linesBeampipe

exit

Two dimensional model of cylindrically symmetric cavities

Beampipe entrance

Page 15: MIT Compact X-ray Source 

15

Accelerator Lattice Model

Quad triplet #1

Quad triplet #2

Dipole chicane

Dispersion reaches 38 mm in collimator

Minimum beta function ~4mm at interaction point (IP)

RMS size at IP = 7 m

Total demagnification = 1/45

Lattice designed with MAD

Page 16: MIT Compact X-ray Source 

16

Initial Conditions at Photocathode

Thermal emittance reaches peak of 0.6 mm for edge radius of 1.5 mm

Modest peak current of 25 Amp.

FWHM = 4 ps

Plot of x-y laser intensity on cathode

Surface electric field 33 MV/m

Initial RF phase 80 degrees

Parabolic laser intensity profile in each dimension.

Transverse parabolic profile is required, but can use arbitrary (short) longitudinal profile for charge < 300 pC

See O.J. Luiten et al, Phys Rev Lett 93 (2004)

Page 17: MIT Compact X-ray Source 

17

Upper row shows beam properties at photoinjector exit.

Lower row shows beam properties at interaction point.

PARMELA Modeling Results

rms E = 0.3 keV

rms E = 3 keV growth due to space charge

Thermal emittance is preserved from

cathode to IP

Xrms = 7 m at IP

Energy

Energy

X vs RF phaseEmittance

Emittance

X vs RF phase

Page 18: MIT Compact X-ray Source 

18

Start-to-End Modeling Results

Electron Beam Parameters:E = 25 MeVnx = 0.68 m

= 5 mm (rms spot size = 8.6 m)Rms bunch length = 2.1 psCharge = 0.1 nC

Laser Parameters:W = 10 mJzR= 0.3 mm (rms spot size = 5 m)

Rms Laser Duration = 0.5 ps = 1.03 m

a0 = 0.063

Total photons per pulse = 2.8x106

Photons in 0.4% b.w. = 1.7x104

On-axis spectral width (FWHM) = 0.2 keV

Rms source size = 5.1 microns

FWHM = 0.20 keV (1.7%)

0

2

4

6

8

10

12

14

16

18

11 11.5 12 12.5

X-ray Energy (keV)

Ph

oto

ns

/mra

d^

2/e

V

Output of 3D ICS code using electron distribution from start-to-end

Page 19: MIT Compact X-ray Source 

19

Intensity Profile of 12 keV X-rays With 0.4% Full Width Energy Filter

Photons/pulse = 1.67 x 104

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

-5 -4 -3 -2 -1 0 1 2 3 4 5 (mrad)

Inte

ns

ity

(k

eV

/mra

d^

2)

dx/dz (mrad)

dy/

dz

(mra

d)

-6 -4 -2 0 2 4 6 -6

-4

-2

0

2

4

6

1000

2000

3000

4000

5000

6000

7000

Start-to-End Modeling ResultsOutput of 3D ICS code using electron distribution from start-to-end