12
Compact Hard X-Ray Synchrotron Radiation Source with Superconducting Bending Magnets (project) E.I. Antokhin, A.A. Gvozdev, G.N. Kulipanov, N.A.Mezentsev, A.V. Philipchenko, K.V. Zolotarev Budker Institute of Nuclear Physics, Novosibirsk

Compact Hard X-Ray Synchrotron Radiation Source with Superconducting Bending Magnets (project)

  • Upload
    farrah

  • View
    39

  • Download
    1

Embed Size (px)

DESCRIPTION

Compact Hard X-Ray Synchrotron Radiation Source with Superconducting Bending Magnets (project). E . I . Antokhin , A . A . Gvozdev , G.N. Kulipanov , N.A.Mezentsev, A.V. Philipchenko , K.V. Zolotarev Budker Institute of Nuclear Physics, Novosibirsk. Reasons. - PowerPoint PPT Presentation

Citation preview

Page 1: Compact Hard X-Ray Synchrotron Radiation Source with Superconducting Bending Magnets (project)

Compact Hard X-Ray Synchrotron Radiation Source with Superconducting Bending Magnets(project)

E.I. Antokhin, A.A. Gvozdev, G.N. Kulipanov, N.A.Mezentsev, A.V. Philipchenko, K.V. Zolotarev Budker Institute of Nuclear Physics,

Novosibirsk

Page 2: Compact Hard X-Ray Synchrotron Radiation Source with Superconducting Bending Magnets (project)

Budker Institute of Nuclear Physics, Novosibirsk 2

Reasons

Absence of specialized SR source in Siberian SR Center (SSRC)

Great experience of BINP in developing and fabrication of superconducting insertion devices for SR centers

Page 3: Compact Hard X-Ray Synchrotron Radiation Source with Superconducting Bending Magnets (project)

Budker Institute of Nuclear Physics, Novosibirsk 3

HistorySuperconducting compact SR sources

Compact SR sources for X-ray lithography AURORA (Sumitomo), NIJI-III (ETL), COSY, SXLS, Helios, Super-ALIS (199X).BINP projects (1992)

6 T superconducting bending magnet prototype

Siberia-SM Siberia-MP Siberia-HB

9 T superconducting bending magnet for BESSY-II (BINP, 2004)

NIJI-III (ETL)

Siberia-MP ( BINP)

Page 4: Compact Hard X-Ray Synchrotron Radiation Source with Superconducting Bending Magnets (project)

Budker Institute of Nuclear Physics, Novosibirsk 4

Main parameters of magnetVertical aperture, mmHorizontal aperture, mm

3075

Pole gap, mm 46

Operating magnetic field, TeslaMaximum magnetic field, Тesla

3.3 - 8.5 9.6

Coil material Nb3Sn, NbTi

Edge angle, degree 1.3

Current in coil for 8.5 Tesla, A 264

Ramping time 0-7 Tesla, minRamping time 0-9 Tesla, min

<5<15

Eff. magnetic length along beam, m 0.1777

Bending angle, degree 11.25

Bending radius, m 0.905

Stored energy for 8.5 Tesla, kJ 180

Cold mass, kg 1300

Liquid He consumption ~0.5 l/h

Page 5: Compact Hard X-Ray Synchrotron Radiation Source with Superconducting Bending Magnets (project)

Budker Institute of Nuclear Physics, Novosibirsk 5

Профиль магнитного поля в сверхпроводящем магните для BESSY-II

Page 6: Compact Hard X-Ray Synchrotron Radiation Source with Superconducting Bending Magnets (project)

Budker Institute of Nuclear Physics, Novosibirsk 6

Main parameters of SR source Energy 1.2 GeV

Beam current 700 – 1000 mA

Circumference ~ 56 m

Equilibrium horizontal emittance ~ 10 nm

Number of bending magnets(all magnets have 20º deflecting magnets)

6 superconducting (8.5 T)12 conventional (1.65 T)

Critical energy of SR photons 7.6 keV for beams from supercoducting magnets1.4 keV for conventional magnets

Number of beamlines 18 from supercoducting magnets8 from convetional

Top energy injection

Page 7: Compact Hard X-Ray Synchrotron Radiation Source with Superconducting Bending Magnets (project)

Budker Institute of Nuclear Physics, Novosibirsk 7

Optical functions (TME lattice)

0

5

10

15

20

25

x,

y, m

x

y

0 5 10 15 20 25

0

0.1

0.2

0.3 ,

m

0 5 10 15 20 25

-5

0

5

s, m

k, m

-2

Page 8: Compact Hard X-Ray Synchrotron Radiation Source with Superconducting Bending Magnets (project)

Budker Institute of Nuclear Physics, Novosibirsk 8

Linear optics design layout

П=55.8 mQx/Qz = 4.10/3.67Cx/Cz = -26.78/-9.64Jx=1.038α=4.74 10-3

δE/E=1.33 10-3

εx = 10.2 nm radΔE = 180.2 keV/turnτ = 2.38 ms

-10 -8 -6 -4 -2 0 2 4 6 8 10-2

0

2

4

6

8

10

12

14

16

m

Page 9: Compact Hard X-Ray Synchrotron Radiation Source with Superconducting Bending Magnets (project)

Budker Institute of Nuclear Physics, Novosibirsk 9

100

101

102

108

109

1010

1011

1012

1013

1014

Energy, keV

Pho

ton

flux,

ph/

sec/

mr2 /0

.1%

BW

SuperBend, B=8.5 T, I=1 ABend, B=1.65 T, I=1 AVEPP-3 (2 GeV), B=2 T,I=100 mA

Page 10: Compact Hard X-Ray Synchrotron Radiation Source with Superconducting Bending Magnets (project)

Budker Institute of Nuclear Physics, Novosibirsk 10

Layout

Page 11: Compact Hard X-Ray Synchrotron Radiation Source with Superconducting Bending Magnets (project)

Budker Institute of Nuclear Physics, Novosibirsk 11

Cost estimation Subsystem Millions rubles

Superconductive magnets (6 pieces) with cryogenic system and power suppliers 120

Conventional magnets (12 pieces) 12

Other elements of magnetic system (quadruple lenses and sextupoles – 60 шт.) 28

Power supplier for magnetic elements 15

BPMs and correctors 10

RF cavity (180 MHz) 12

RF generator and power supply for RF system 12

Buster synchrotron (1.2 GeV) 150

Linac (100 MeV) 60

Transfer lines 18

Injector system 12

Vacuum chamber 18

Vacuum pumps and power supplier 6

Vacuum valves with RF window 4

Total cost 477

Page 12: Compact Hard X-Ray Synchrotron Radiation Source with Superconducting Bending Magnets (project)

Budker Institute of Nuclear Physics, Novosibirsk 12

Schedule200

62007 2008 2009 2010

3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Conceptual design, specification of all systemsSuperconducting magnets

DevelopingFabrication of prototype

ManufacturingMain systems (linac, buster, injector system, magnetic system, vacuum chamber, control system etc)

DevelopingFabricationAssembling

BuildingDismantling

ReconstructionConstructing of additional experimental

holeCommissioning of storage ringSR beamlines

Design and fabricationAssembling