25
MIT 3.071 Amorphous Materials 10: Electrical and Transport Properties Juejun (JJ) Hu 1

MIT 3.071 Amorphous Materials...Amorphous Materials 10: Electrical and Transport Properties Juejun (JJ) Hu 1 After-class reading list Fundamentals of Inorganic Glasses Ch. 14, Ch

  • Upload
    others

  • View
    6

  • Download
    1

Embed Size (px)

Citation preview

Page 1: MIT 3.071 Amorphous Materials...Amorphous Materials 10: Electrical and Transport Properties Juejun (JJ) Hu 1 After-class reading list Fundamentals of Inorganic Glasses Ch. 14, Ch

MIT 3.071

Amorphous Materials

10: Electrical and Transport Properties

Juejun (JJ) Hu

1

Page 2: MIT 3.071 Amorphous Materials...Amorphous Materials 10: Electrical and Transport Properties Juejun (JJ) Hu 1 After-class reading list Fundamentals of Inorganic Glasses Ch. 14, Ch

After-class reading list

Fundamentals of Inorganic Glasses

Ch. 14, Ch. 16

Introduction to Glass Science and Technology

Ch. 8

3.024 band gap, band diagram, engineering

conductivity

2

Page 3: MIT 3.071 Amorphous Materials...Amorphous Materials 10: Electrical and Transport Properties Juejun (JJ) Hu 1 After-class reading list Fundamentals of Inorganic Glasses Ch. 14, Ch

Basics of electrical conduction

Electrical conductivity

Einstein relation

i i i

i

n Z e

iiv E

: electrical conductivity

n : charge carrier density

Z : charge number

e : elementary charge

: carrier mobility

D : diffusion coefficient

v : carrier drift velocity

E : applied electric field i B

i

i

k TD

Z e

21

i i i

iB

Z e n Dk T

Both ions and electrons

contribute to electrical

conductivity in glasses

3

Page 4: MIT 3.071 Amorphous Materials...Amorphous Materials 10: Electrical and Transport Properties Juejun (JJ) Hu 1 After-class reading list Fundamentals of Inorganic Glasses Ch. 14, Ch

Ionic conduction in crystalline materials

Vacancy mechanism Interstitial mechanism

4

Page 5: MIT 3.071 Amorphous Materials...Amorphous Materials 10: Electrical and Transport Properties Juejun (JJ) Hu 1 After-class reading list Fundamentals of Inorganic Glasses Ch. 14, Ch

Ionic conduction pathway in amorphous solids

There are low energy

“sites” where ions

preferentially locate

Ionic conduction results

from ion transfer

between these sites

Ionic conduction is

thermally activated

2-D slices of regions with Li site

energies below a threshold value

in Li2O-SiO2 glasses

Phys. Chem. Chem. Phys. 11, 3210 (2009)

5

Comparison of Li transport pathways figure removed due tocopyright restrictions. See: Figure 8: Adams, S. and R. PrasadaRao. "Transport Pathways for Mobile Ions in Disordered Solidsfrom the Analysis of Energy-scaled Bond-valence MismatchLandscapes." Phys. Chem. Chem Phys. 11 (2009): 3210-3216.

Page 6: MIT 3.071 Amorphous Materials...Amorphous Materials 10: Electrical and Transport Properties Juejun (JJ) Hu 1 After-class reading list Fundamentals of Inorganic Glasses Ch. 14, Ch

A tale of two valleys

Assuming completely random hops, the average total distance an ion moves after M hops in 1-D is:

Average diffusion distance: +

Average spacing between adjacent sites: d

r d M

Electric field E = 0

r D 2 (1-D)

r D 6 (3-D)

D d1 2 (1-D)2

D d1 2 (3-D)6

D 1 f d 2 0 1 f6

Ion hopping frequency:

For correlated hops:

6

Page 7: MIT 3.071 Amorphous Materials...Amorphous Materials 10: Electrical and Transport Properties Juejun (JJ) Hu 1 After-class reading list Fundamentals of Inorganic Glasses Ch. 14, Ch

A tale of two valleys

Attempt (vibration) frequency: 0

Frequency of successful hops (ion hopping frequency):

Barrier height DEa

+ DE v v a 0 exp

k T B

1 2 E D fv D a 6 0d exp

k TB

Electric field E = 0

Equal probability of hopping along all directions: zero net current

7

Page 8: MIT 3.071 Amorphous Materials...Amorphous Materials 10: Electrical and Transport Properties Juejun (JJ) Hu 1 After-class reading list Fundamentals of Inorganic Glasses Ch. 14, Ch

A tale of two valleys

Energy difference between adjacent sites: ZeEd

Hopping frequency → :

Hopping frequency ← :

Net ion drift velocity:

DEa

+

ZeEd 0

1 exp2

a

B

Ev vk TD

Electric field E > 0

01 exp2

a

B

E Ze dv vk T

D

E

v 2

0ZeEd Ev v d exp D v a

2k T B Bk T

8

Page 9: MIT 3.071 Amorphous Materials...Amorphous Materials 10: Electrical and Transport Properties Juejun (JJ) Hu 1 After-class reading list Fundamentals of Inorganic Glasses Ch. 14, Ch

A tale of two valleys

Ion mobility

Electrical conductivity (1-D, random

DEa

+

ZeEd hop)

Einstein relation (3-D, correlated hops)

Electric field E > 0

20 exp2

a

B B

v Zed Ek T k T

D

2

0 exp2

a

B B

nv Zed Ek T k T

D

1 Z 2 fnv 2

0 Zed E E e nD exp D a a0 exp D

k TB 6k T

B k TB T k TB

9

Page 10: MIT 3.071 Amorphous Materials...Amorphous Materials 10: Electrical and Transport Properties Juejun (JJ) Hu 1 After-class reading list Fundamentals of Inorganic Glasses Ch. 14, Ch

Temperature dependence of ionic conductivity

0ln ln a

B

ET

k T

D

Slope: a

B

E

k

D

1/T (× 1,000) (K-1)

Dispersion of activation

energy in amorphous

solids leads to slight

non-Arrhenius behavior

Phys. Rev. Lett. 109, 075901 (2012)

10

Page 11: MIT 3.071 Amorphous Materials...Amorphous Materials 10: Electrical and Transport Properties Juejun (JJ) Hu 1 After-class reading list Fundamentals of Inorganic Glasses Ch. 14, Ch

2

000exp

6a

B B

fnv ZedET k T k D

Theoretical ionic conductivity limit in glass

When T → ∞, → 0 /T Extrapolation of the

Arrhenius plot agrees with infrared spectroscopic measurements in ionic liquids (molten salts)

Note that 0 has a unit of W·cm/K

Solid State lonics 18&19, 72 (1986) Annu. Rev. Phys. Chem. 43, 693 (1992)

11

Page 12: MIT 3.071 Amorphous Materials...Amorphous Materials 10: Electrical and Transport Properties Juejun (JJ) Hu 1 After-class reading list Fundamentals of Inorganic Glasses Ch. 14, Ch

Fast ion conductors / superionic conductors

Acta Mater. 61, 759 (2013)

12

Page 13: MIT 3.071 Amorphous Materials...Amorphous Materials 10: Electrical and Transport Properties Juejun (JJ) Hu 1 After-class reading list Fundamentals of Inorganic Glasses Ch. 14, Ch

Band structures in defect-free crystalline solids

All electronic states are labeled with real Bloch wave vectors k

signaling translational symmetry

All electronic states are extended states

No extended states exist in the band gap

13

Page 14: MIT 3.071 Amorphous Materials...Amorphous Materials 10: Electrical and Transport Properties Juejun (JJ) Hu 1 After-class reading list Fundamentals of Inorganic Glasses Ch. 14, Ch

Band structures in defect-free crystalline solids

In the band gap, wave equation solutions have complex wave vectors k

Kittel, Introduction to Solid State Physics, Ch. 7

14

Figure removed due to copyright restrictions. See Figure 12, Chapter 7:Kittel, Charles. Introduction to Solid State Physics. Wiley, 2005.

Page 15: MIT 3.071 Amorphous Materials...Amorphous Materials 10: Electrical and Transport Properties Juejun (JJ) Hu 1 After-class reading list Fundamentals of Inorganic Glasses Ch. 14, Ch

Anderson localization in disordered systems

Localization criterion: V0 / J > 3

P. W. Anderson

Disorder leads to (electron, photon, etc.) wave function localization

15

Image is in the public domain.Source: Wikimedia Commons.

Page 16: MIT 3.071 Amorphous Materials...Amorphous Materials 10: Electrical and Transport Properties Juejun (JJ) Hu 1 After-class reading list Fundamentals of Inorganic Glasses Ch. 14, Ch

Anderson localization in disordered systems

Extended states (Bloch states)

Localized states

16

Page 17: MIT 3.071 Amorphous Materials...Amorphous Materials 10: Electrical and Transport Properties Juejun (JJ) Hu 1 After-class reading list Fundamentals of Inorganic Glasses Ch. 14, Ch

Density of states (DOS) in crystalline and

amorphous solids

E

DOS

Conduction

band

Valence

band

Band gap

E

DOS

Conduction band

Valence band

Crystalline solids

Mobility edge

Mid-gap states

Urbach tail

Amorphous solids

Defect states

17

Page 18: MIT 3.071 Amorphous Materials...Amorphous Materials 10: Electrical and Transport Properties Juejun (JJ) Hu 1 After-class reading list Fundamentals of Inorganic Glasses Ch. 14, Ch

Extended state conduction

Extended state conductivity:

Drift mobility ex increases with

temperature (T → ∞, ftrap → 0)

Extended state conductivity

follows Arrhenius dependence

ex exne

01ex trapf

0 : free mobility

ftrap : fraction of time in trap states

Electron drift

mobility in a-Si:H

R. Street, Hydrogenated Amorphous Silicon, Ch. 7

Electron

mobility in c-Si:

1400 cm2 V-1 s-1

18

Page 19: MIT 3.071 Amorphous Materials...Amorphous Materials 10: Electrical and Transport Properties Juejun (JJ) Hu 1 After-class reading list Fundamentals of Inorganic Glasses Ch. 14, Ch

Hopping conduction via localized states

Fixed range hopping: hopping between nearest neighbors

Hopping between dopant atoms at low temperature

Variable range hopping (VRH)

Hopping between localized states near EF

E

DOS

Mobility edge

EF R

exp R

g

x

y

z

19

Page 20: MIT 3.071 Amorphous Materials...Amorphous Materials 10: Electrical and Transport Properties Juejun (JJ) Hu 1 After-class reading list Fundamentals of Inorganic Glasses Ch. 14, Ch

Variable range hopping

Hopping probability

Within distance R, the average minimal energy difference DE is:

Optimal hopping distance:

x

y

z

R

exp R

exp 2 VRH

B

EP R

k T

D

3

34

ER g

D

13 44

min

22 49B B

ER

k T gk T

D

1 4expVRH T

1 48 9BR g k T

20

Page 21: MIT 3.071 Amorphous Materials...Amorphous Materials 10: Electrical and Transport Properties Juejun (JJ) Hu 1 After-class reading list Fundamentals of Inorganic Glasses Ch. 14, Ch

DC conductivity in amorphous semiconductors

ln

1/T

Extended state conduction

1expex T

1 4expVRH T

Variable range hopping

Measured DC conductivity

VRH is most

pronounced at

low temperature

21

Page 22: MIT 3.071 Amorphous Materials...Amorphous Materials 10: Electrical and Transport Properties Juejun (JJ) Hu 1 After-class reading list Fundamentals of Inorganic Glasses Ch. 14, Ch

VRH in As-Se-Te-Cu glass

Near room temperature, mixed ionic and extended state conduction

At low temperature, variable range hopping dominates

J. Appl. Phys. 101, 063520 (2007) 22

Page 23: MIT 3.071 Amorphous Materials...Amorphous Materials 10: Electrical and Transport Properties Juejun (JJ) Hu 1 After-class reading list Fundamentals of Inorganic Glasses Ch. 14, Ch

Summary

Basics of electrical transport

Conductivity: scalar sum of ionic and electronic contributions

Einstein relation

Ionic conductivity

Occurs through ion hopping between different preferred “sites”

Thermally activated process and non-Arrhenius behavior

2

000exp

6a

B B

fnv ZedE

T k T k

D

i i i

i

n Z e iiv E

21i B

i i i i

ii B

k TD Z e n D

Z e k T

23

Page 24: MIT 3.071 Amorphous Materials...Amorphous Materials 10: Electrical and Transport Properties Juejun (JJ) Hu 1 After-class reading list Fundamentals of Inorganic Glasses Ch. 14, Ch

Summary

Electronic structure of amorphous semiconductors

Anderson localization: extended vs. localized states

Density of states

Mobility edge

Band tail and mid-gap states

Extended state conduction

Free vs. drift mobility

Thermally activated process

Localized state conduction

Fixed vs. variable range hopping

Mott’s T -1/4 law of VRH

E

DOS

Conduction band

Valence band

Mobility edge

Mid-gap states

Urbach tail

24

Page 25: MIT 3.071 Amorphous Materials...Amorphous Materials 10: Electrical and Transport Properties Juejun (JJ) Hu 1 After-class reading list Fundamentals of Inorganic Glasses Ch. 14, Ch

MIT OpenCourseWarehttp://ocw.mit.edu

3.071 Amorphous MaterialsFall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.