29
CNU EE 10.2-1 Microelectronic Circuits II Ch 10 : Operational-Amplifier Circuits 10.3 The 741 OP-Amp circuit 10.4 DC Analysis of the 741 10.5 Small-Signal Analysis of the 741 10.6 Gain, Frequency Response, and Slew rate of the 741

Microelectronic Circuits II Ch10 : Operational-Amplifier ...contents.kocw.net/KOCW/Document/2014/Chungnam/Chahanju/14.PdfMicroelectronic Circuits II Ch10 : Operational-Amplifier Circuits

  • Upload
    others

  • View
    68

  • Download
    5

Embed Size (px)

Citation preview

Page 1: Microelectronic Circuits II Ch10 : Operational-Amplifier ...contents.kocw.net/KOCW/Document/2014/Chungnam/Chahanju/14.PdfMicroelectronic Circuits II Ch10 : Operational-Amplifier Circuits

CNU EE 10.2-1

Microelectronic Circuits II

Ch 10 : Operational-Amplifier Circuits

10.3 The 741 OP-Amp circuit10.4 DC Analysis of the 74110.5 Small-Signal Analysis of the 74110.6 Gain, Frequency Response, and Slew rate of the 741

Page 2: Microelectronic Circuits II Ch10 : Operational-Amplifier ...contents.kocw.net/KOCW/Document/2014/Chungnam/Chahanju/14.PdfMicroelectronic Circuits II Ch10 : Operational-Amplifier Circuits

CNU EE 10.2-2

§BJT op amps à 741 op-amp- a large number of transistor, relatively few resistors & only one capacitor à IC design philosophy foreconomics (silicon area, ease of fabrication, quality of realizable components) of the fabrication on IC- Two power supplies : VCC = VEE = 15V - No circuit node is connected to ground, the common terminal of the two supplies

§741 op-amp : identification of its recognizable parts and their function- Bias circuit- Short-circuit protection circuitry- The input stage à input differential stage- The second stage à intermediate single-ended high-gain stage- The output stage à output-buffering stage- Device parameters

1) for standard npn and pnp transistors :npn : IS =10-14A, b=200, VA=125Vpnp : IS =10-14A, b=50, VA=50V

2) Q13 is equivalent to two transistors, Q13A & Q13B, with parallel base-emitter junctions and havingthe following saturation currents :

ISA=0.25x10-14A ISB=0.75x10-14A3) Q14 & Q20 (output transistor) have an area three times that of a standard device.4) Output transistors have relatively large areas à supply large load current & dissipate relatively

large amount of power with only a moderate increase in device temperature

741 OP-Amp Circuit

Page 3: Microelectronic Circuits II Ch10 : Operational-Amplifier ...contents.kocw.net/KOCW/Document/2014/Chungnam/Chahanju/14.PdfMicroelectronic Circuits II Ch10 : Operational-Amplifier Circuits

CNU EE 10.2-3

742 OP-Amp Circuit

Q11, Q12, R5 : reference bias current IREF; Q10, Q9 , Q8 bias input stage; Q1 ~ Q7 : input stage; Q16 , Q17 : 2nd

gain stage (Q13B : active load); Q14 , Q20 : class AB output stage (Q13A, Q18 , Q19 : bias, , Q23 : input buffer); Q15, Q21, Q24, Q22 : protect amplifier against output short circuits & are normally cut off

Page 4: Microelectronic Circuits II Ch10 : Operational-Amplifier ...contents.kocw.net/KOCW/Document/2014/Chungnam/Chahanju/14.PdfMicroelectronic Circuits II Ch10 : Operational-Amplifier Circuits

CNU EE 10.2-4

Q11, Q12, R5 generates reference bias current IREF; Q11, Q10, R4 à Widlar current source; Q8, Q9 : biasQ12, Q13 : two-output current mirror à Q13B biases Q17 & Q13A biases output stageQ18, Q19 for dc bias à establishes two VBE drops between the bases of the output transistor Q14, Q20

Bias Circuit

Page 5: Microelectronic Circuits II Ch10 : Operational-Amplifier ...contents.kocw.net/KOCW/Document/2014/Chungnam/Chahanju/14.PdfMicroelectronic Circuits II Ch10 : Operational-Amplifier Circuits

CNU EE 10.2-5

741 OP-Amp Circuit

Input stage Second stage Output stage

Short-circuit protection

Bias circuit

Page 6: Microelectronic Circuits II Ch10 : Operational-Amplifier ...contents.kocw.net/KOCW/Document/2014/Chungnam/Chahanju/14.PdfMicroelectronic Circuits II Ch10 : Operational-Amplifier Circuits

CNU EE 10.2-6

Input Stage, Second Stage§Input stage- Input stage : Q1 ~ Q7 (biased by Q8, Q9, Q10 )- Q1, Q2 : emitter follower (CC) for high input resistance & delivering differential input signal to differential

common-base (CB) amplifier formed by Q3, Q4 à differential CC-CB configuration- Q5, Q6, Q7 & R1, R2, R3 : current-mirror load circuit à high-resistance load & conversion of signal from

differential to single-ended form with no loss in gain or common-mode rejection- Output of the input stage is taken single-endedly at the collector of Q6- Lateral pnp transistor Q3, Q4 : 1) Level shifter whose function is to shift the dc level of the signal so that the signal at the op-amp output

can swing positive and negative,2) Protection of the input-stage transistors Q1, Q2 against emitter-base junction breakdown (emitter-base

junction breakdown of an npn transistor : 7V of reverse voltage, pnp transistor à 50V)

§Second stage- Second or intermediate stage : Q16, Q17, Q13B & R8, R9- Q16 : emitter follower à high input resistance à minimize the loading on the input stage & avoids loss of

gain- Q17 : common-emitter amplifier with a 100-W resistor in the emitter à load = high output resistance of the

pnp current source Q13B // input resistance of the output stage (seen looking into the base of Q23)- Output of the 2nd stage = Collector of Q17 :: Capacitor CC in the feedback path à freq. compensation using

the Miller compensation technique à dominant pole at about 4 Hz à pole splitting àuniform -20-dB/decade gain rolloff within a unity-gain bandwidth of about 1 MHz

Page 7: Microelectronic Circuits II Ch10 : Operational-Amplifier ...contents.kocw.net/KOCW/Document/2014/Chungnam/Chahanju/14.PdfMicroelectronic Circuits II Ch10 : Operational-Amplifier Circuits

CNU EE 10.2-7

Output Stage- Purpose of the output stage

1) low output resistance2) supply relatively large load currents without dissipating an unduly large amount of power in the IC

à class AB output stage in op-amp 741§Class A output stage (a)- Emitter follower biased with a constant-current source I- Emitter follower transistor conducts at all times, and thus low output resistance à bias current I > largest

magnitude of load current iL à large power dissipation in the transistor§Class B output stage (b)- Transistor turns on only when an input signal is applied à npn source output current & pnp sink the current- Both transistors are cut off when vI=0 == biased at a zero dc current à efficient in terms of power

dissipation but output-signal distortion- If |vI|<0.5V, vO=0 à crossover distortion

Page 8: Microelectronic Circuits II Ch10 : Operational-Amplifier ...contents.kocw.net/KOCW/Document/2014/Chungnam/Chahanju/14.PdfMicroelectronic Circuits II Ch10 : Operational-Amplifier Circuits

CNU EE 10.2-8

Output Stage§Class AB output stage (d)- Crossover distortion is reduced by biasing the output-stage transistor at a low current à QN & QP remain

conducting when vI is small- As vI increase, one of the two transistors conducts more, while the other shut off à class B operation- Two diode-connected transistors Q1 & Q2 with junction areas much smaller than QN & QP- Output stage of 741 = complementary pair Q14 & Q20

1) Q18 & Q19 are fed by current source Q13A & bias the output transistor Q14 & Q20

2) Q23 = emitter follower à minimize the loading effect of the output stage on the second stage

Page 9: Microelectronic Circuits II Ch10 : Operational-Amplifier ...contents.kocw.net/KOCW/Document/2014/Chungnam/Chahanju/14.PdfMicroelectronic Circuits II Ch10 : Operational-Amplifier Circuits

CNU EE 10.2-9

§DC analysis of 741 - determine the bias point of each device à input terminals are grounded

§Reference bias current IREF

For VCC=VEE=15V and VBE11=VBE12~0.7V à IREF=0.73mA

§Input-stage bias- Widlar current source : Q11 is biased by IREF &

the voltage of Q11 bias Q10 w/ series emitter resistance R4- Assume large b

- Assume IS10=IS11 à IC10=19 mA

DC Analysis of the 741

12 11REF

5

V V V ( V )CC EB BE EEIR

- - - -=

41010

4101011 ln RIIIVRIVV C

C

REFTCBEBE ==- >

+VBE11

-

+VBE10 -

101011

10

1010

1111

101011

lnlnln

1011

C

REFTBEBE

S

CTBE

S

REFTBE

VV

SCV

V

SREF

IIVVV

IIVV

IIVV

eIIeIIfrom T

BE

T

BE

=-==

==

R4=5kW

Page 10: Microelectronic Circuits II Ch10 : Operational-Amplifier ...contents.kocw.net/KOCW/Document/2014/Chungnam/Chahanju/14.PdfMicroelectronic Circuits II Ch10 : Operational-Amplifier Circuits

CNU EE 10.2-10

§Input Stage- From symmetry, IC1=IC2=I - If npn b is high, then IE3=IE4~I=9.5mA- Base currents of Q3, Q4 are equal, with I/(bp+1)~I/bp

- Current mirror by Q8, Q9 is fed by 2I

102 CII »

Q1 through Q4, Q8 & Q9 forms a negativefeedback loop à stabilize the value of I atapproximately IC10/2.Current in Q1 & Q2 à current pulled fromQ8 à output current of Q8 - Q9 currentmirror à IC10 remains constant à nodeX forces the combined base current of Q3 &Q4 à emitter currents of Q1 & Q2 , thuscollector currents of Q1 & Q2Negative feedback stabilizes the value of I

For 741, IC10=19mA à I~9.5mA

If bp>>1,

Input-stage Bias

pC

IIb/21

29 +=

AIIII CCCC m5.94321 ==»=

IC10=19 mA

Page 11: Microelectronic Circuits II Ch10 : Operational-Amplifier ...contents.kocw.net/KOCW/Document/2014/Chungnam/Chahanju/14.PdfMicroelectronic Circuits II Ch10 : Operational-Amplifier Circuits

CNU EE 10.2-11

§Remainder of input Stage- If base current of Q16 is neglected, IC6~I - If base current of Q7 is neglected, IC5~I - VBE6 by using the transistor exponential

relationship

- Bias currents of Q7 :

- IC7 =10.5 mA à base current of Q7 (~ 0.05mA) is indeed negligible in comparison tothe value of I

AR

IRVIII BE

NEC m

b5.102

3

2677 =

++=»

)5.9,10(

517ln

14

6

AIAI

mVIIVV

S

STBE

m==

==

-

Input-stage Bias

Page 12: Microelectronic Circuits II Ch10 : Operational-Amplifier ...contents.kocw.net/KOCW/Document/2014/Chungnam/Chahanju/14.PdfMicroelectronic Circuits II Ch10 : Operational-Amplifier Circuits

CNU EE 10.2-12

Neglect IB of Q23 à IC of Q17 ~ current supplied by current source Q13B & IC13B~0.75IREF à IC13B~550mA, IC17~550mA (IREF=0.73mA)

VBE of Q17 :

IC of Q16 :

IC16 =16.2 mA à base current of Q16 (~0.08 mA) is indeed negligible compared tothe input-stage bias I

Second-stage Bias

mVI

IVVS

CTBE 618ln 17

17 ==

9

17817171616 R

VRIIII BEEBEC

++=»

Page 13: Microelectronic Circuits II Ch10 : Operational-Amplifier ...contents.kocw.net/KOCW/Document/2014/Chungnam/Chahanju/14.PdfMicroelectronic Circuits II Ch10 : Operational-Amplifier Circuits

CNU EE 10.2-13

- Q13A delivers a current of 0.25 IREF, (IS of Q13A is 0.25 times the IS of Q12) to Q18, Q19, R10

- Neglect the base current of Q14, Q20 à emittercurrent of Q23 ~ 0.25 IREF (IREF=0.73mA)à IC23~IE23~0.25IREF=180mAà IB of Q23 =180/50=3.6mAà negligible to IC17

- Assuming VBE18 = 0.6V, then IR10=15mA à IE18 =180-15=165mA & IC18~IE18=165mA(VBE18=588mV)IB of Q18 =165/200=0.8mA à IC19~IE19=15.8mA

- Voltage drop VBB by Q18, Q19 : VBB=VBE18+VBE19=588+530=1.118V

- Since VBB appears across the series-combination of the B-E junction of Q14, Q20

By using VBB & IS14=IS20=3x10-14A IC14=IC20=154mA

Bias current of the class AB output stage is small

Output-stage Bias

mVI

IVVS

CTBE 530ln 19

19 ==

20

20

14

14 lnlnS

CT

S

CTBB I

IVIIVV +=

+

VBB

-

Page 14: Microelectronic Circuits II Ch10 : Operational-Amplifier ...contents.kocw.net/KOCW/Document/2014/Chungnam/Chahanju/14.PdfMicroelectronic Circuits II Ch10 : Operational-Amplifier Circuits

CNU EE 10.2-14

§Summary (Table 9.1)

DC Analysis of the 741

- Device parameters1) for standard npn and pnp transistors :

npn : IS =10-14A, b=200, VA=125V pnp : IS =10-14A, b=50, VA=50V2) Q13 is equivalent to two transistors, Q13A & Q13B, with parallel base-emitter junctions and having

the following saturation currents :ISA=0.25x10-14A ISB=0.75x10-14A

3) Q14 & Q20 have an area three times that of a standard device.4) Output transistors have relatively large areas à supply large load current & dissipate relatively

large amount of power with only a moderate increase in device temperature

Page 15: Microelectronic Circuits II Ch10 : Operational-Amplifier ...contents.kocw.net/KOCW/Document/2014/Chungnam/Chahanju/14.PdfMicroelectronic Circuits II Ch10 : Operational-Amplifier Circuits

CNU EE 10.2-15

§Input Stage (Input resistance)- 741 input stage for small-signal analysis- Collectors of Q1 & Q2 are connected to a constant

dc voltage à grounded- Constant current biasing of the bases of Q3 & Q4

à open-circuited common base terminal - Differential signal vi appears across four equal

emitter resistances connected in series (Q1 ~ Q4 )

re : emitter resistance of Q1 ~ Q4

- Q1 ~ Q4 supplies the load circuit with a pair of complementary current signals aie

- Input differential input resistance of the op-amp :

Small-Signal Analysis of 741

e

ie r

vi4

=

)200(1.2)1(4 =W=+= NeNid MrR bb

W=== kA

mVI

Vr Te 63.2

5.925

m

Page 16: Microelectronic Circuits II Ch10 : Operational-Amplifier ...contents.kocw.net/KOCW/Document/2014/Chungnam/Chahanju/14.PdfMicroelectronic Circuits II Ch10 : Operational-Amplifier Circuits

CNU EE 10.2-16

§Input Stage (load circuit fed with the complementary pair of current signals)- Neglect the signal current in the base of Q7 à collector signal current of Q5 ~ aie

- Q5 & Q6 are identical & bases are tied together, and equal resistances in emitters à collector signalcurrents must be equal à collector signal current of Q6 ~ aie à load circuit = current mirror

- Output current io = 2aie == factor of 2 à conversion from differential to single-ended is performedwithout losing half the signal by the use of current mirror

- Transconductanceof input stage, Gm1 :

Small-Signal Analysis of 741

2)1,63.2(/26.5/1

242 1

11m

meeee

e

i

om

gGkrVmArir

iviG =»W===== >aaa

( )

11

1

+=

-=

+=

===

===

==

bba

aab

b

bb

aa

p

p

e

mC

T

B

T

mC

T

E

Te

C

Ao

T

Cm

rrgI

VIVr

gIV

IVr

IV

rVIg

Page 17: Microelectronic Circuits II Ch10 : Operational-Amplifier ...contents.kocw.net/KOCW/Document/2014/Chungnam/Chahanju/14.PdfMicroelectronic Circuits II Ch10 : Operational-Amplifier Circuits

CNU EE 10.2-17

§Input Stage (output resistance Ro1)- Resistance seen “looking back” into the collector terminal of Q6 = output resistance of the current source

supplying the signal current aie || output resistance of Q6

- Ro4 (a): Resistance looking into the collector of Q4 :: common bases of Q3 & Q4 are at a virtual ground when the input signal vi is applied in a complementary fashion à Assuming that base of Q4 is at virtualground, Ro4 is the output resistance of a common-base transistor w/ a resistance (re of Q2) in its emitter

- Ro6 (b): Resistance looking into the collector of Q6 :: assume that the signal voltage at the base is smallenough to make the base grounded à RE=R2, thus Ro6~18.2MWà Ro1=Ro4||Ro6=6.7MW

Small-Signal Analysis of 741

)5.9,50,26.5/,63.2(5.10)]//(1[ AIVVMIVrkrRMrRgrR AAoeEEmoo mp ==W==W==W=+=

Small-signal equivalent circuit for the input stage of the 741 op amp

Page 18: Microelectronic Circuits II Ch10 : Operational-Amplifier ...contents.kocw.net/KOCW/Document/2014/Chungnam/Chahanju/14.PdfMicroelectronic Circuits II Ch10 : Operational-Amplifier Circuits

CNU EE 10.2-18

§Input Stage (output resistance Ro1)- Ro4 (a): Resistance looking into the collector of Q4 ::

Small-Signal Analysis of 741

W=+= MrRgrR Emoo 5.10)]//(1[ p

( ) ( ) ( )

( ) ( )( ) ( )( )( )( )

( )( ) ( ) 1||sin||||

||1||||

||||

2122122

21222

212222122212

21222212

>>»+»

++=++=

+-==-=

pp

p

ppp

pppp

rrgcerrrgrrrgr

rrrgrrrrgrrrR

rrirvgivrrivivR

omoom

oomo

oomooomooo

oxomxxoxx

xo

Page 19: Microelectronic Circuits II Ch10 : Operational-Amplifier ...contents.kocw.net/KOCW/Document/2014/Chungnam/Chahanju/14.PdfMicroelectronic Circuits II Ch10 : Operational-Amplifier Circuits

CNU EE 10.2-19

§Second Stage (Input resistance Ri2)- Input resistance Ri2

§Second Stage (Transconductance)- Transconductance Gm2 = ratio of the short-circuit

output current to the input voltage- Short-circuiting the output terminal to ground

1) signal current through Ro of Q13B = 0 2) output short-circuit current = ic17

Small-Signal Analysis of 741

W»++++= MRrRrR eei 4)])(1//()[1( 81717916162 bb

VmAviG

RrRrRR

RRvv

Rrvi

i

cm

ei

ei

iib

e

bc

/5.6

))(1()//(

)//(

2

172

8171717

16179

179217

817

1717

==

++=+

=

+=

b

a

small-signal equivalent circuit model of the second stage

Page 20: Microelectronic Circuits II Ch10 : Operational-Amplifier ...contents.kocw.net/KOCW/Document/2014/Chungnam/Chahanju/14.PdfMicroelectronic Circuits II Ch10 : Operational-Amplifier Circuits

CNU EE 10.2-20

§Second Stage (Output resistance Ro2 of the second stage)- Ground the input terminal and find the resistance looking back into the output terminal

- Ro13B : Resistance looking into the collector of Q13B while its base and emitter are connected to ground

- Ro17 : Resistance seen looking into the collector of Q17 :: assume that the resistance between the base ofQ17 and ground is relatively small enough to assume that the base is grounded à Ro17~787kW

à Ro2=Ro13B||Ro17=81kW§Second Stage (Thevenin Equivalent Circuit)- The second-stage open-circuit voltage gain = -Gm2Ro2

Small-Signal Analysis of 741

Definition of Ro17

)//( 17132 oBoo RRR =

W== krR BoBo 9.901313

Thevenin form of the small-signal model of the second stage

)]//(1[ 817 prRgrR moo +=

Page 21: Microelectronic Circuits II Ch10 : Operational-Amplifier ...contents.kocw.net/KOCW/Document/2014/Chungnam/Chahanju/14.PdfMicroelectronic Circuits II Ch10 : Operational-Amplifier Circuits

CNU EE 10.2-21

§Output stage- Output stage (AB class) w/o short-circuit-

protection circuitry- Q18, Q19, R10 : bias the output transistors

Q14, Q20 at a low current (0.15mA)- Output stage is driven by an emitterfollower Q23 à added buffering makes theop-amp gain almost independent of theparameters of the output transistors

§Output voltage limit- Maximum positive output voltage limited

by the saturation of current-sourceTransistor Q13A ~ 1V below VCC

- Minimum (negative) output voltage limitedby the saturation of Q17 ~ 1.5V above –VEE

Small-Signal Analysis of 741

2023min EBEBCEsatEEO VVVVv +++-=Output of 2nd stage

14max BECEsatCCO VVVv --=

Page 22: Microelectronic Circuits II Ch10 : Operational-Amplifier ...contents.kocw.net/KOCW/Document/2014/Chungnam/Chahanju/14.PdfMicroelectronic Circuits II Ch10 : Operational-Amplifier Circuits

CNU EE 10.2-22

§Output Stage (Small-Signal Model)- vo2 : open-circuit output voltage of the 2nd stage- Rin3 : input resistance of the output stage determined with the amplifier loaded with RL

1) assume Q20 is conducting 5mA à Rin looking into B of Q20 ~ b20RL = 100kW (b20=50, RL=2kW)2) Ro of Q13A (ro13A~280kW) + R of Q18-Q19(~160W) à total R in E of Q23 ~ 100kW//280kW=74kW3) Rin3 ~ b23 x 74kW = 3.7MW (b23=50) à Rin3 >> Ro2 (=81kW)à little effect of Rin3 on performance of

op amp

- open-circuit overall voltage gain, Gvo3 : gain of emitter-follower output transistor (Q14 or Q20) ~ 1 &gain of Q23 ~ 1 à

Small-Signal Analysis of 741

)81,/5.6( 222222 W==-= kRVmAGvRGv omiomo

VVRR

RRGvv

vv

vvA

oin

inom

o

i

i

o

i

i /51523

322

2

3

2

2

2

32 -=

+-==º

Model of the 741 output stage

12

3 »=¥=LRo

ovo v

vG

Page 23: Microelectronic Circuits II Ch10 : Operational-Amplifier ...contents.kocw.net/KOCW/Document/2014/Chungnam/Chahanju/14.PdfMicroelectronic Circuits II Ch10 : Operational-Amplifier Circuits

CNU EE 10.2-23

§Output resistance of op amp, Rout- Input source feeding the output stage is

grounded (Ro2: Ro of 2nd stage)- Assume vo < 0 à Q20 is conducting most of

the current; Q14 is eliminated- Resistance seen looking into E of Q23

- ro13A (~0.28MW) >> Ro23 à effectiveresistance between the base of Q20 andground ~ Ro23

- Output resistance Rout :

- Add R7 (27W) for short-circuit protection àoutput resistance of the 741 = 75 W

Small-Signal Analysis of 741

W=++

= krRR eo

o 73.11 23

23

223 b

W=+=++

= 395341 20

20

23e

oout rRR

b

Page 24: Microelectronic Circuits II Ch10 : Operational-Amplifier ...contents.kocw.net/KOCW/Document/2014/Chungnam/Chahanju/14.PdfMicroelectronic Circuits II Ch10 : Operational-Amplifier Circuits

CNU EE 10.2-24

§Output Short-Circuit Protection- Limit the current in the output transistors in

the event of a short circuit- R6 & Q15 limits the current flowing out ofQ14 in a short-circuit : if current in E ofQ14 > 20mA à voltage drop across R6 > 540mV à Q15 turns on à Collector of Q15 robssome of the current supplied by Q13A à

reduce the base current of Q14

- This mechanism limits the maximumcurrent that the op amp can source (i.e.,supply from the output terminal in theoutward direction) to about 20mA

- R7, Q21, Q24 & Q22 limit the maximumcurrent that op amp can sink à the currentin the inward direction is limited to about20mA

Output Short-Circuit Protection

Page 25: Microelectronic Circuits II Ch10 : Operational-Amplifier ...contents.kocw.net/KOCW/Document/2014/Chungnam/Chahanju/14.PdfMicroelectronic Circuits II Ch10 : Operational-Amplifier Circuits

CNU EE 10.2-25

§Small-Signal Gain- Cascade of the equivalent circuits of the three stages for the evaluation of the overall voltage gain

(RL=2kW)

- Overall open-circuit voltage gain, Ao :

Gain, Frequency Response & Slew rate of 741

outL

Lvoomiom

o

o

i

o

i

i

i

o

RRRGRGRRG

vv

vv

vv

vv

+--== 322211

22

22 ))(//(

dBVVvvA

i

oo 7.107/147,24397.0)5.526(1.476 º=´-´-=º

§Frequency Response- 741 = internally compensated op amp by 30-pF capacitor (CC) connected in the negative feedback path of

the 2nd stage à Miller compensation technique à dominant low-frequency pole- Effective capacitance due to CC between B of Q16 and ground by using Miller’s theorem

- Total resistance between this node and ground : 515480,15|)|1( 22 -==+= AwherepFACC Cin

W=WW== MMMRRR iot 5.2)4//7.6()//( 21

Page 26: Microelectronic Circuits II Ch10 : Operational-Amplifier ...contents.kocw.net/KOCW/Document/2014/Chungnam/Chahanju/14.PdfMicroelectronic Circuits II Ch10 : Operational-Amplifier Circuits

CNU EE 10.2-26

§Frequency Response- Frequency fP at the dominant pole

- Miller compensation à pole splitting à all nondominant pole are at very high frequency & f3dB= fP

- unity-gain bandwidth ft :- Phase shift at ft = -90°à phase margin = 90° , in practice about 80° due to the nondominant poles

Gain, Frequency Response & Slew rate of 741

HzRC

ftin

P 1.42

1==

p

MHzfAf dBot 11.4147,2433 »´==

Page 27: Microelectronic Circuits II Ch10 : Operational-Amplifier ...contents.kocw.net/KOCW/Document/2014/Chungnam/Chahanju/14.PdfMicroelectronic Circuits II Ch10 : Operational-Amplifier Circuits

CNU EE 10.2-27

§A Simplified Model- high-gain second stage with its feedback capacitance CC à ideal integrator (gain is sufficiently high &

virtual ground at its input)- Output stage à ideal unity-gain follower

- unity-gain frequency at w=wt :

- The model is valid only at f >> f3dB à integrator with a slope of -20dB/decade

Gain, Frequency Response & Slew rate of 741

C

m

C

m

i

o

CjGjA

sCG

sVsVsA

ww 11 )(

)()()( ==º >

)30,/26.5/1(12 1

1 pFCVmAGMHzfCG

Cmt

tC

mt ==»==

pw

w >

A simple model for the 741 based on modeling the second stage as an integrator

Page 28: Microelectronic Circuits II Ch10 : Operational-Amplifier ...contents.kocw.net/KOCW/Document/2014/Chungnam/Chahanju/14.PdfMicroelectronic Circuits II Ch10 : Operational-Amplifier Circuits

CNU EE 10.2-28

§Slew rateUnity-gain follower with a step of 10V applied at the inputBecause of the amplifier dynamics, its output will not change in zero time à entire value of the step will appear as a differential signal between the two input terminals à overdriven input stage à Q2 & Q4 will be cut off & Q1 & Q3 will conduct all the available bias current (2I) à current mirror Q5, Q6, & Q7 will still function à Q6 will produce a collector current of 2I à Q6 will sink a current 2I that will be pulled from CC

A unit-gain follower with a large step input.Since the output voltage can not changeimmediately, a large differential voltageappears between the op-amp input terminals

Gain, Frequency Response & Slew rate of 741

Page 29: Microelectronic Circuits II Ch10 : Operational-Amplifier ...contents.kocw.net/KOCW/Document/2014/Chungnam/Chahanju/14.PdfMicroelectronic Circuits II Ch10 : Operational-Amplifier Circuits

CNU EE 10.2-29

§Slew rate

Since VOV will be two to three times the value of 4VT, a two-stage CMOS op amp with an ft equal to that of the 741 exhibits a slew rate that is two to three times as large as that of the 741

- Model of the 741 op-amp when a large differentialvoltage is applied

- Model of 2nd stage = ideal integrator- Q6 will sink a current 2I that will be pulled from CC- Output voltage will be a ramp with a slope of 2I/CC,

and slew rate, SR :

for the 741, I=9.5mA & CC=30pF à SR=0.63V/ms

§Relation between SR and ft

sVSRVIggGfromV

gI

GISR

Tm

mmtTt

mt

m

mp

www

63.010210254

,2

442

63

11

111

=´´´´=

=====

-

Gain, Frequency Response & Slew rate of 741

( )CC

O CISRt

CItv 22

==

ampopCMOSstagetwoforVSR tOV -= w