52
www.iap.uni-jena.de Metrology and Sensing Lecture 5: Interferometry I 2017-11-16 Herbert Gross Winter term 2017

Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

  • Upload
    others

  • View
    14

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

www.iap.uni-jena.de

Metrology and Sensing

Lecture 5: Interferometry I

2017-11-16

Herbert Gross

Winter term 2017

Page 2: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

2

Preliminary Schedule

No Date Subject Detailed Content

1 19.10. Introduction Introduction, optical measurements, shape measurements, errors,

definition of the meter, sampling theorem

2 26.10. Wave optics Basics, polarization, wave aberrations, PSF, OTF

3 02.11. Sensors Introduction, basic properties, CCDs, filtering, noise

4 09.11. Fringe projection Moire principle, illumination coding, fringe projection, deflectometry

5 16.11. Interferometry I Introduction, interference, types of interferometers, miscellaneous

6 23.11. Interferometry II Examples, interferogram interpretation, fringe evaluation methods

7 30.11. Wavefront sensors Hartmann-Shack WFS, Hartmann method, miscellaneous methods

8 07.12. Geometrical methods Tactile measurement, photogrammetry, triangulation, time of flight,

Scheimpflug setup

9 14.12. Speckle methods Spatial and temporal coherence, speckle, properties, speckle metrology

10 21.12. Holography Introduction, holographic interferometry, applications, miscellaneous

11 11.01. Measurement of basic

system properties Bssic properties, knife edge, slit scan, MTF measurement

12 18.01. Phase retrieval Introduction, algorithms, practical aspects, accuracy

13 25.01. Metrology of aspheres

and freeforms Aspheres, null lens tests, CGH method, freeforms, metrology of freeforms

14 01.02. OCT Principle of OCT, tissue optics, Fourier domain OCT, miscellaneous

15 08.02. Confocal sensors Principle, resolution and PSF, microscopy, chromatical confocal method

Page 3: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

3

Content

Introduction

Interference

Types of interferometers

Page 4: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

4

Interferometry

Basic idea:

- separation of a wave into two beams

(test and reference arm)

- every beam surpasses different paths

- superposition and interference of both beams

- analysis of the pattern

Different setups for:

- the beam splitting

- the superposition

- the referencing

Different path lengths

Difference equivalent of one fringe

Measurement of plates:

Haidinger fringes of equal inclination

Newton fringes of equal thickness

Ref: W. Osten

1 1 2 2 wn t n t N t

2wt

n

detector

beam

splitter

reference mirror

collimated

laser beam

surface

under

test

Page 5: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

5

Classification of Interferometers

Division of amplitude: - Michelson interferometer

- Mach-Zehnder interferometer

- Sagnac interferometer

- Nomarski interferometer

- Talbot interferometer

- Point diffraction interferometer

Division of wavefront: - Young interferometer

- Rayleigh interferometer

Division of source: - Lloyds mirror

- Fresnel biprism

Ref: R. Kowarschik

Page 6: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

6

Classification of Interferometers

Two-beam interferometers: - Michelson

- Twyman Green

- Sagnac

- Young

- Mach-Zehnder

- Rayleigh

- Fizeau

- Shearing

- Mireau

- Linnik

Multi-beam interferometers: - Fabry-Perot

- Lummer-Gehrke

Ref: R. Kowarschik

Page 7: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

7

Interferometers

Accuracy of interferometers

Ref: F. Hoeller

Page 8: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

8

Localization of Fringes

Interference volume for a plate

Interference volume for a wedge

Ref: R. Kowarschik

volume of

interference

fringes

incident

light back side

reflectedfront side

reflected

volume of

interference

fringes

incident

light

back side

reflected

front side

reflected

Page 9: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

9

Interference of Two Waves

Superposition of two plane waves:

1. Intensity

2. Phase difference

Spacing of fringes

Interference of two spherical waves

More complicated geometry

),,(cos2²²),,( 2121 zyxAAAAzyxI

rkkzyxzyxzyx

)(),,(),,(),,( 1212

Ref.: B. Dörband

2sin2

ns

Page 10: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

Interference of a Double Pinhole

increasing separation D

decreasing

wavelength

Interference of a coherently illuminated double-pinhole setup

The observed pattern depends on the wavelength and the pinhole distance

Page 11: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

11

Two Beam Interference

Interference of two point source spherical waves

1. both waves are radiating outside

2. one incoming and one outgoing wave

Page 12: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

12

Two Beam Interference

Interference of two point source spherical waves with perturbations

Page 13: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

13

Two Beam Interference

Interference of two plane waves under different directions

Fringe distance s 1212

2

eenkks

Page 14: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

14

Two Beam Interference

Interference of two plane waves

with finite spectral width w

1

0

))),,,(cos()()(2)²()²((1

),,( 2121

01

dzyxAAAAzyxI

Page 15: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

15

Two Beam Interference

Interference of two spherical waves with finite bandwidth in x/z

Delay rotated cone of maximum contrast

bandwidth 20 nm bandwidth 60 nm bandwidth 100 nm

no

delay

delay

5 ms

Page 16: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

16

Michelson Interferometer

Visibility of fringes

Ref: R. Kowarschik

Haidinger Fringes Fizeau Fringes

B

S

S2’ S1’

M2

M1 M2’

S

B

S2’

S1’

M2

M1

M2’

Page 17: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

17

Haidinger Fringes

Fringes of equal inclination:

Haidinger

Every inclination creates an individual delay in the plate

Page 18: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

Two beam interference of two waves:

- propagation in the same direction

- same polarization

- phase difference smaller than axial length of coherence

Coherent superposition of waves

Difference of phase / path difference

Number of fringes

location of same phase

Conrtast

122121

2

21

cos2

IIII

EEI

122

s

sN

2

12

21

21

minmax

minmax2

II

II

II

IIK

Two Beam Interference

Page 19: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

Two beam interference at a plane plate

- Fresnel fringes of equal thickness

- Haidinger fringes of equal inclination

Path difference

:

transparent

plane plate

detector

source

d

1

2

n

2sin2

2cos2 1

22

2

ndnds

Interference Fringes at a Plane Plate

Page 20: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

20

Interference at a Plane-Parallel Plate

Multiple reflection superposition

Airy formulas

T: tranmittance

R: Reflectance

Ref: R. Kowarschik

n

n

n’ h’

r, t Reflection,

Transmission Coeff.

n n’

r’, t’ Reflection,

Transmission Coeff.

n’ n

Plane monochr.

wave

)(

22

2

)(

2sin4)1(

2sin4

ir I

RR

R

I

)(

22

2)(

2sin4)1(

it I

RR

TI

Page 21: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

test surface

beamsplitter

reference surface

here: flat

illumination

to detector

path difference

mRrm

Test by Newton Fringes

Reference surface and test surface with nearly the same radii

Interference in the air gap

Reference flat or curved possible

Corresponds to Fizeau setup

with contact

Broad application in simple

optical shop test

Radii of fringes

21

Ref: W. Osten

Page 22: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

22

Newton Fringes

Movement of fringes

Determination of the OPD sign

Ref: B. Doerband

Page 23: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

spherical aberration coma

tilt astigmatism

Example Interferograms

Page 24: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

24

White Light Interferograms

Typical interferograms

monochromatic / white light

Additional information by different

wavelengths

Ref: B. Dörband

Page 25: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

Autocollimation Principle

Spherical test surface:

- incoming and outgoing wavefront spherical

- concentric waves around center of curvature:

autocollimation

Aspherical test surface

auxiliary lensspherical test

surface

center of

curvature

wavefronts

spherical

auxiliary lens

aspherical test

surface

incoming wavefront

spherical

outcoming wavefront

aspherical

paraxial

center of

curvature

Page 26: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

Test and reference arm separated:

setup sensitive

Both arms aligned:

fringes of equal inclination

Tilt in reference arm:

fringes of equal thickness

Setup corresponds to Twyman-Green-

interferometer

screen

reference mirror

laser source

compensator

plate

surface

under test

test beam

reference

beam

beam splitter

Michelson Interferometer

Page 27: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

Testing with Twyman-Green Interferometer

Short common path,

sensible setup

Two different operation

modes for reflection or

transmission

Always factor of 2 between

detected wave and

component under test

detector

objective

lens

beam

splitter 1. mode:

lens tested in transmission

auxiliary mirror for auto-

collimation

2. mode:

surface tested in reflection

auxiliary lens to generate

convergent beam

reference mirror

collimated

laser beam

stop

Page 28: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

Straylight suppression in Twyman-

Green interferometer

Polarization of both arms by /4 plates

Analyzer in front of detector:

only signal light is passing

Optimization of azimuthal orientations

of the plates:

- reflectivity of test surface

- splitting of power in both arms

- largest contrast of interferogram

detector

lens

polarization

beam splitter

auxiliary

lens

surface under

test

reference mirror

collimated

laser beam

/ 2

plate

/ 4

plate

/ 4

plate

analyzer

Ri

1tan

RA tan

Suppression of Straylight by Polarization

Page 29: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

Fizeau surface as part of the system work as reference

Fizeau surface near to test surface:

- large common path, insensitiv setup

- small cavity length

The test surface is imaged onto the detector

Fizeau Interferometer

detector

beam

splitter

collimator

plane test

surface

light

source

Fizeau

surface

stop

Page 30: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

Fizeau Interferometer

Long common path, quite insensitive setup

Autocollimating Fizeau surface quite near to test surface, short cavity length

Imaging of test surface on detector

Straylight stop to bloc unwanted light

Curved test surface: auxiliary objective lens (aplanatic, double path)

Highest accuracy

detector

beam

splitter

collimatorconvex

surface

under test

light

source

Fizeau

surface

auxiliary lens

stop

Page 31: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

no common path setup, sensitive

long distances, measurement of samples with small effects

beam

combiner

source

beam splitter

mirror

mirror

test arm

reference arm

detector

sample

Mach-Zehnder Interferometer

Page 32: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

Separation of wavefront:

self reference

Interferograms are looking completly different

Aperture reduced due to shear

Splitting and shift of wavefront:

- by thin plate

- by grating

Shearing Interferometer

source

shear

distance

Page 33: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

Grating Shearing Interferometer

Shearing interferometer with two identical Ronchi gratings with distance d

Self referencing system

Lateral shear offset d limizes transverse resolution

Interference by only the orders +1 and -1

Quite different interferogram pictures obtained

d

g g

+1

+1

-1

-1

(+1/+1)

(+1/-1)

(-1/+1)

(-1/-1)

orders

s

gdds

2sin2

Page 34: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

Schematic drawing of sheared wavefronts

Typical interferogram

Shearing Interferometer

shear distance

wavefront W

x

Page 35: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

Compact setup

Modified Mach-Zehnder setup with telescope

Radial Shearing Interferometer

beam splitterwavefront under

test

wavefront with

radial shear

lens

beam splitter

source

beamsplitter

mirror

mirror

test arm

reference arm

detector

telescope for

change of diameter

Page 36: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

36

Shearing Interferometer

Types of shear

Page 37: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

Focussing onto a transparent plagte with pinhole

Pinhole creates a reference spherical wave

Optimization of contrast:

- size of pinhole

- numericalaperture

- transparency of the plate

Very stable setup

transparent plate

with pinhole

wavefront

under test reference

wavefront

Point Diffraction Interferometer

Page 38: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

38

Point Diffraction Interferometer

Full setup according to Smartt

Page 39: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

39

Point Diffraction Interferometer

Setup integrated into Mach-Zehnder interferometer

Page 40: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

Beam splitting by stop / slit

Application:

measurement of inhomogeneities of refractive index

liquids must be in polishes glass cuvette

source detectorstop

test arm

reference arm

Rayleigh Interferometer

Page 41: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

Separation of both arms by polarization

Shear principle

Used in microscopy for differential interference

contrast (DIC) phase imaging

Point spread function

Parameter:

1. Shear distance

2. Phase offset

3. Splitting ratio

Nomarski Interferometer

condenser

object

Wollaston

prism

Wollaston

prism

compensator

objective

polarizer

analyzer

shear

distance

x

adjustment

phase

splitting

ratio

R1-R

),(

),()1(),(

yxxEeR

yxxEeRyxE

psf

i

psf

i

psfdic

Page 42: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

42

DIC Phase Imaging

Orientation of prisms and shift size determines the anisotropic image formation

Ref.: M. Kempe

Page 43: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

DIC-Psf

object image, x-shear

image, y-shearimage, x-and y-shear

Differential Interference Contrast

Orientation of the shear

Page 44: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

Interference of the the light from two coherent excited monomode fibers

Interferogram: fringes with gaussian envelope

Spacing of fringes depends on fiber distance a

screen

z

fiber

2a

x

s

R

akxeIxI w

x2

cos1)(2

2

0

sa

zx

2

2

Fiber Interferometer

Page 45: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

Mirror ring setup

both arms are defined by opposite round trip direction

perfectly common path guarantees stable setup

alignment of mirror critical

Sagnac Interferometer

beamsplitter

mirror

mirror

detector

mirror

Page 46: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

Jamin Interferometer

Köster Interferometer

source

test arm

reference arm

detector

source

test arm

reference arm

detector

Further Types of Interferometers

Page 47: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

47

Fabry-Perot Interferometer

Setup of an etalon

Applications:

- spectral line resolution

- laser mode selection

Ref: R. Kowarschik

B Fabry-Perot Etalon

Point source

h’

n’

Page 48: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

Multi beam interference

Intensity of pattern

Finesse determines the contrast d

n

1

2I( )

2m (2m+1) (2m+2)

R = 0.2

R = 0.6

R = 0.9

cos21

)1(2

2

RR

RIT

R

RF

1

2

2/1

Interference at a Plane Plate

Page 49: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

49

Fabry-Perot Interferometer

Intensity

Finesse

Transmission

Contrast

Ref: R. Kowarschik

1

2

22

)(

)(

2sin

1

21

11

R

R

R

A

I

Ii

t

R

RF

1

2

max

)(

)(

11

R

A

I

Ii

t

p

2

22

min

)(

)(

max

)(

)(

41

1

1

F

R

R

I

I

I

I

C

i

t

i

t

Page 50: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

50

Fabry-Perot Interferometer

Intrumental functions

Ref: R. Kowarschik

Properties )(W FRP

Absorption

Surface

imperfections

Finite range of

incidence

A

2

HF

FF

F

h 2

1

)(cos

1

0

AA

d

2

H

h

2

F )(cos

1

2

2

2

(sin)1(

41

1

d

R

R

R

T

d

mmm

m

),(0

)()( hfH

)cos(()( fF

Perfectly plane-

parallel plate

1R

1R

hR ,1

)(cos,1 R

Page 51: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

Spectral filtering

Straylight suppression

Diameter adaptation

lensL1

lensL2

lensL3

lensL4

lensL5

LinseL6

CCD-camera

prism group

test surfaceM1

beam splitter

M1

stopB1

stopB2

stopB3

disrances1

distanceL1

distanceL2

distanceL3

distances2

D :2.5 mm D :

3.81 mm

D :10.0 mm D :

7.72 mm

D :3.81 x 9.49 mm

reference arm

straylight suppression and diameter adaptation

spectral filtering

detection

More complex Setup of an Interferometer

Page 52: Metrology and Sensing - uni-jena.de...plate surface under test test beam reference beam beam splitter Michelson Interferometer Testing with Twyman-Green Interferometer Short common

52

Real Interferometers

Ref: R. Kowarschik