34
Pelatihan Penulisan Jurnal Internasional, Magister Ekonomi Pertanian, ULM, Banjarbaru 25th August, 2018 Metode Penulisan Ilmiah Muthia Elma [email protected]

Metode Penulisan Ilmiahs2ekopert.ulm.ac.id/wp-content/uploads/2018/08/MUTHIA... · 2018. 8. 28. · Pelatihan Penulisan Jurnal Internasional, Magister Ekonomi Pertanian, ULM, Banjarbaru

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Metode Penulisan Ilmiahs2ekopert.ulm.ac.id/wp-content/uploads/2018/08/MUTHIA... · 2018. 8. 28. · Pelatihan Penulisan Jurnal Internasional, Magister Ekonomi Pertanian, ULM, Banjarbaru

Pelatihan Penulisan Jurnal Internasional, Magister Ekonomi Pertanian, ULM, Banjarbaru 25th August, 2018

Metode Penulisan Ilmiah Muthia [email protected]

Page 2: Metode Penulisan Ilmiahs2ekopert.ulm.ac.id/wp-content/uploads/2018/08/MUTHIA... · 2018. 8. 28. · Pelatihan Penulisan Jurnal Internasional, Magister Ekonomi Pertanian, ULM, Banjarbaru

Apa itu tulisan ilmiah di jurnal internasional??❖ Sebuah tulisan yang bersifat ilmiah yang ditulis dan

dipublikasikan dari asilo penelitian yang bersifat orisinil

❖ Belum pernah diakukan orang lain:

❖ benar-benar baru

❖ Penyempurnaan yang sudah ada

Page 3: Metode Penulisan Ilmiahs2ekopert.ulm.ac.id/wp-content/uploads/2018/08/MUTHIA... · 2018. 8. 28. · Pelatihan Penulisan Jurnal Internasional, Magister Ekonomi Pertanian, ULM, Banjarbaru

Tujuan Menulis ArticleMelaporkan penemuan baru ke komunitas akademik agar:

1. Khazanah ilmu bertambah2. Kita mendapat kredit (diakui) sebagai penemu

Page 4: Metode Penulisan Ilmiahs2ekopert.ulm.ac.id/wp-content/uploads/2018/08/MUTHIA... · 2018. 8. 28. · Pelatihan Penulisan Jurnal Internasional, Magister Ekonomi Pertanian, ULM, Banjarbaru

Untuk Siapa Menulis Article

1. Untuk kepuasan diri pribadi2. Tugas dari Dosen Pembimbing3. Jurnal

Page 5: Metode Penulisan Ilmiahs2ekopert.ulm.ac.id/wp-content/uploads/2018/08/MUTHIA... · 2018. 8. 28. · Pelatihan Penulisan Jurnal Internasional, Magister Ekonomi Pertanian, ULM, Banjarbaru

Sebelum memulai riset

Yakinkan bahwa topik yang akan dikerjakan belum dikerjakan oleh siapa pun di seluruh dunia

Caranya: membaca referensi sebanyak-banyaknya

Page 6: Metode Penulisan Ilmiahs2ekopert.ulm.ac.id/wp-content/uploads/2018/08/MUTHIA... · 2018. 8. 28. · Pelatihan Penulisan Jurnal Internasional, Magister Ekonomi Pertanian, ULM, Banjarbaru

Bagaimana Menulis Makalah di Jurnal Internasional?

Page 7: Metode Penulisan Ilmiahs2ekopert.ulm.ac.id/wp-content/uploads/2018/08/MUTHIA... · 2018. 8. 28. · Pelatihan Penulisan Jurnal Internasional, Magister Ekonomi Pertanian, ULM, Banjarbaru

Apa Itu Makalah Ilmiah di jurnal internasional?

Laporan hasil riset yang ditulis dan dipublikasi oleh satuatau beberapa orang:

Isi harus orisinal

Penemuan yang benar-benar baruPenyempurnaan penemuan yang sudah ada

Tidak hanya koleksi data, tetapi juga menuntut analisis intelektual

Dalam jurnal ilmiah

Dokumen ilmiah lain yang tersedia dalam komunitas ilmiah

Page 8: Metode Penulisan Ilmiahs2ekopert.ulm.ac.id/wp-content/uploads/2018/08/MUTHIA... · 2018. 8. 28. · Pelatihan Penulisan Jurnal Internasional, Magister Ekonomi Pertanian, ULM, Banjarbaru

Makalah Ilmiah Yang Baik

1. Bahasa yang baik dan benar2. Singkat dan jelas3. Banyak informasi dan sedikit rata-rata

Page 9: Metode Penulisan Ilmiahs2ekopert.ulm.ac.id/wp-content/uploads/2018/08/MUTHIA... · 2018. 8. 28. · Pelatihan Penulisan Jurnal Internasional, Magister Ekonomi Pertanian, ULM, Banjarbaru

Bagian-bagian Makalah IlmiahTitle

Authors

Affiliation

Abstract

Introduction

Materials and MethodResults

Discussion

Conclusion

References

IMRAD

Page 10: Metode Penulisan Ilmiahs2ekopert.ulm.ac.id/wp-content/uploads/2018/08/MUTHIA... · 2018. 8. 28. · Pelatihan Penulisan Jurnal Internasional, Magister Ekonomi Pertanian, ULM, Banjarbaru

Judul/Title

1) Abstraksi tertinggi

2) Sedikit kata-kata tetapi menjelaskan isi makalah

3) Tidak bermakna ganda

Bagian makalah yang paling banyak dibaca!!

Judul = “Nama” suatu makalah.Ditulis paling akhir

Page 11: Metode Penulisan Ilmiahs2ekopert.ulm.ac.id/wp-content/uploads/2018/08/MUTHIA... · 2018. 8. 28. · Pelatihan Penulisan Jurnal Internasional, Magister Ekonomi Pertanian, ULM, Banjarbaru

Physicochemical and photocatalytic properties of carbonaceous charand titania composite hollow fibers for wastewater treatment

David K. Wang a, *, Muthia Elma a, b, **, Julius Motuzas a, Wen-Che Hou c,Diego Ruben Schmeda-Lopez a, Tianlong Zhang d, Xiwang Zhang e

a FIM2Lab e Functional Interfacial Materials and Membranes Laboratory, School of Chemical Engineering, The University of Queensland, Brisbane,Queensland 4072, Australiab Chemical Engineering Department, Lambung Mangkurat University, Jl. A. Yani KM 36, Banjarbaru, South Kalimantan 70714, Indonesiac Department of Environmental Engineering, National Cheng Kung University, Tainan City 70101, Taiwand The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australiae Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia

a r t i c l e i n f o

Article history:Received 9 April 2016Received in revised form1 August 2016Accepted 2 August 2016Available online 5 August 2016

a b s t r a c t

This work shows the concept of a simple, single-step, partial pyrolysis approach to prepare inorganiccomposite hollow fibers at low temperature conditions. Two series of robust, photocatalytic and high-performance membranes were synthesized by changing the pyrolysis temperature (Series 1: 500e600 !C for 8 h) and time (Series 2: 550 !C for 3e12 h), leading to the formation of a composite matrixconsisted of carbonaceous char and titania nanoparticles. Chemical composition, phase of crystallinity,mechanical strength, textural characteristics, morphology and photocatalytic activity of the hollow fiberswere comprehensively characterized. Mechanical strength of the hollow fibers was found to directlyattribute to the amount of char and porosity. Hollow fibers, prepared using 8 h at 550 and 575 !C or 6 h at550 !C condition, displayed a good balance between the highest mechanical strength of 52 MPa andphoto-degradation of 90.4% of acid orange 7 under ultra-violet light. This was attributed to the opti-mization of degree of char derived from the binder and the exposure of anatase titania nanoparticles onthe hollow fiber surface made available for photo-oxidation. This work offers the opportunity for futuredevelopment of a fully integrated photocatalysis and membrane operation for wastewater treatmentapplications.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

One of the most important criteria for membrane deployment isachieving the highest membrane surface area per unit volume ratiothat allows smaller unit modules possible. Such compaction ishighly desirable by the membrane industry because of minimizingplant footprint, which is triumphed by the early development andcommercial success of polymeric hollow fiber membranes usingcellulose triacetate in the 1960s [1]. In comparison, the develop-ment of inorganic-based hollow fiber membranes has only beengaining research momentum in the last two decades. The main

reasons for the research motivations are two-folds. Firstly, poly-meric membranes face on-going stability and performance issuesregarding harsh operational conditions and membrane fouling,result of which a window of research opportunity have created forthe inorganic-based membranes to address these industrial bot-tlenecks [2e4]. Secondly, the fabrication process of inorganic-basedhollow fibers, which involves a conventional dry-wet phase-inversion process and a high-temperature sintering step toconsolidate the inorganic component, is complex, time-consumingand costly.

Typically, the synthesis of inorganic oxides hollow fibers areperformed using a polymer binder and the inorganic nanoparticlesof interest to firstly form the green body, which is followed byremoving the binder in oxidative atmosphere at high temperaturesabove 1000 !C over several hours to obtain the pure inorganichollow fibers. Such intensive thermal processing is imperative toachieve high mechanical strength by sintering the inorganic oxide

* Corresponding author.** Corresponding author. Chemical Engineering Department, Lambung MangkuratUniversity, Jl. A. Yani KM 36, Banjarbaru, South Kalimantan 70714, Indonesia.

E-mail addresses: [email protected] (D.K. Wang), [email protected](M. Elma).

Contents lists available at ScienceDirect

Carbon

journal homepage: www.elsevier .com/locate /carbon

http://dx.doi.org/10.1016/j.carbon.2016.08.0010008-6223/© 2016 Elsevier Ltd. All rights reserved.

Carbon 109 (2016) 182e191

Journal : CarbonRank : Quartiles (Q1)Impact factor: 6.337

Wang, D. K., Elma, M., Motuzas, J., Hou, W.-C., Schmeda-Lopez, D. R., Zhang, T., & Zhang, X. (2016). Physicochemical and photocatalytic properties of carbonaceous char and titania composite hollow fibers for wastewater treatment. Carbon, 109, 182-191. doi:http://dx.doi.org/10.1016/j.carbon.2016.08.001

Page 12: Metode Penulisan Ilmiahs2ekopert.ulm.ac.id/wp-content/uploads/2018/08/MUTHIA... · 2018. 8. 28. · Pelatihan Penulisan Jurnal Internasional, Magister Ekonomi Pertanian, ULM, Banjarbaru

Abstract

Apa yang dilakukan (wajib)

Apa yang dihasilkan (wajib)

Pendahuluan (kadang-kadang)

Penutup: Apa manfaat/impact (kadang-kadang)

Page 13: Metode Penulisan Ilmiahs2ekopert.ulm.ac.id/wp-content/uploads/2018/08/MUTHIA... · 2018. 8. 28. · Pelatihan Penulisan Jurnal Internasional, Magister Ekonomi Pertanian, ULM, Banjarbaru

Ditulis terakhir kali, setelah seluruh tubuh makalah selesai ditulis.

Tujuan abstrak:

Menyediakan informasi kepada pembaca untuk mengambilkeputusan apakah dia perlu membaca atau tidak

keseluruhan isi makalah

Page 14: Metode Penulisan Ilmiahs2ekopert.ulm.ac.id/wp-content/uploads/2018/08/MUTHIA... · 2018. 8. 28. · Pelatihan Penulisan Jurnal Internasional, Magister Ekonomi Pertanian, ULM, Banjarbaru

Contoh

• Misalnya kita membuat thinfilmsilicadenganmetode sol-gelpada berbagai parametersintesis:katalis (asam dan basa),suhu hydrolysis(suhu 0,suhu ruangan dan 50oC),serta pHsols(3-9).

• Inthispaperwereportthesynthesisofsilicathinfilmprocessedbyasol-gelmethod.Variousparametersofsynthesissuchascatalyst,hydrolysistemperature,andpHofsolswerevariedtoidentifytheoptimumones.

Page 15: Metode Penulisan Ilmiahs2ekopert.ulm.ac.id/wp-content/uploads/2018/08/MUTHIA... · 2018. 8. 28. · Pelatihan Penulisan Jurnal Internasional, Magister Ekonomi Pertanian, ULM, Banjarbaru

Apa yang dihasilkan• Misalnya kita membuat thinfilmsilicadenganmetode sol-gelpada berbagai parametersintesis:katalis (asam dan basa),suhu hydrolysis(suhu 0,suhu ruangan dan 50oC),serta pHsols(3-9).

• Inthispaperwereportthesynthesisofsilicathinfilmprocessedbyasol-gelmethod.Variousparametersofsynthesissuchascatalyst,hydrolysistemperature,andpHofsolswerevariedtoidentifytheoptimumones.

Page 16: Metode Penulisan Ilmiahs2ekopert.ulm.ac.id/wp-content/uploads/2018/08/MUTHIA... · 2018. 8. 28. · Pelatihan Penulisan Jurnal Internasional, Magister Ekonomi Pertanian, ULM, Banjarbaru

Penutup

❖ Implikasi❖ Kelebihan❖ Kekurangan

Page 17: Metode Penulisan Ilmiahs2ekopert.ulm.ac.id/wp-content/uploads/2018/08/MUTHIA... · 2018. 8. 28. · Pelatihan Penulisan Jurnal Internasional, Magister Ekonomi Pertanian, ULM, Banjarbaru

Penutup dengan implikasi

Thin film silica with mesoporous distribution and homogeneous are potential candidates for membrane layers.

Page 18: Metode Penulisan Ilmiahs2ekopert.ulm.ac.id/wp-content/uploads/2018/08/MUTHIA... · 2018. 8. 28. · Pelatihan Penulisan Jurnal Internasional, Magister Ekonomi Pertanian, ULM, Banjarbaru

Penutup dengan kekurangan

This method still leave a weakness, i.e., the synthesis time is longer than other method reported previously. Further investigation is in progress to shorten this time

Page 19: Metode Penulisan Ilmiahs2ekopert.ulm.ac.id/wp-content/uploads/2018/08/MUTHIA... · 2018. 8. 28. · Pelatihan Penulisan Jurnal Internasional, Magister Ekonomi Pertanian, ULM, Banjarbaru

Physicochemical and photocatalytic properties of carbonaceous charand titania composite hollow fibers for wastewater treatment

David K. Wang a, *, Muthia Elma a, b, **, Julius Motuzas a, Wen-Che Hou c,Diego Ruben Schmeda-Lopez a, Tianlong Zhang d, Xiwang Zhang e

a FIM2Lab e Functional Interfacial Materials and Membranes Laboratory, School of Chemical Engineering, The University of Queensland, Brisbane,Queensland 4072, Australiab Chemical Engineering Department, Lambung Mangkurat University, Jl. A. Yani KM 36, Banjarbaru, South Kalimantan 70714, Indonesiac Department of Environmental Engineering, National Cheng Kung University, Tainan City 70101, Taiwand The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australiae Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia

a r t i c l e i n f o

Article history:Received 9 April 2016Received in revised form1 August 2016Accepted 2 August 2016Available online 5 August 2016

a b s t r a c t

This work shows the concept of a simple, single-step, partial pyrolysis approach to prepare inorganiccomposite hollow fibers at low temperature conditions. Two series of robust, photocatalytic and high-performance membranes were synthesized by changing the pyrolysis temperature (Series 1: 500e600 !C for 8 h) and time (Series 2: 550 !C for 3e12 h), leading to the formation of a composite matrixconsisted of carbonaceous char and titania nanoparticles. Chemical composition, phase of crystallinity,mechanical strength, textural characteristics, morphology and photocatalytic activity of the hollow fiberswere comprehensively characterized. Mechanical strength of the hollow fibers was found to directlyattribute to the amount of char and porosity. Hollow fibers, prepared using 8 h at 550 and 575 !C or 6 h at550 !C condition, displayed a good balance between the highest mechanical strength of 52 MPa andphoto-degradation of 90.4% of acid orange 7 under ultra-violet light. This was attributed to the opti-mization of degree of char derived from the binder and the exposure of anatase titania nanoparticles onthe hollow fiber surface made available for photo-oxidation. This work offers the opportunity for futuredevelopment of a fully integrated photocatalysis and membrane operation for wastewater treatmentapplications.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

One of the most important criteria for membrane deployment isachieving the highest membrane surface area per unit volume ratiothat allows smaller unit modules possible. Such compaction ishighly desirable by the membrane industry because of minimizingplant footprint, which is triumphed by the early development andcommercial success of polymeric hollow fiber membranes usingcellulose triacetate in the 1960s [1]. In comparison, the develop-ment of inorganic-based hollow fiber membranes has only beengaining research momentum in the last two decades. The main

reasons for the research motivations are two-folds. Firstly, poly-meric membranes face on-going stability and performance issuesregarding harsh operational conditions and membrane fouling,result of which a window of research opportunity have created forthe inorganic-based membranes to address these industrial bot-tlenecks [2e4]. Secondly, the fabrication process of inorganic-basedhollow fibers, which involves a conventional dry-wet phase-inversion process and a high-temperature sintering step toconsolidate the inorganic component, is complex, time-consumingand costly.

Typically, the synthesis of inorganic oxides hollow fibers areperformed using a polymer binder and the inorganic nanoparticlesof interest to firstly form the green body, which is followed byremoving the binder in oxidative atmosphere at high temperaturesabove 1000 !C over several hours to obtain the pure inorganichollow fibers. Such intensive thermal processing is imperative toachieve high mechanical strength by sintering the inorganic oxide

* Corresponding author.** Corresponding author. Chemical Engineering Department, Lambung MangkuratUniversity, Jl. A. Yani KM 36, Banjarbaru, South Kalimantan 70714, Indonesia.

E-mail addresses: [email protected] (D.K. Wang), [email protected](M. Elma).

Contents lists available at ScienceDirect

Carbon

journal homepage: www.elsevier .com/locate /carbon

http://dx.doi.org/10.1016/j.carbon.2016.08.0010008-6223/© 2016 Elsevier Ltd. All rights reserved.

Carbon 109 (2016) 182e191

Page 20: Metode Penulisan Ilmiahs2ekopert.ulm.ac.id/wp-content/uploads/2018/08/MUTHIA... · 2018. 8. 28. · Pelatihan Penulisan Jurnal Internasional, Magister Ekonomi Pertanian, ULM, Banjarbaru

Pendahuluan❖ Isi:

Mengapa penelitian dilakukan (topik menarik)

Sampai di mana pemahaman hingga saat ini

Apa permasalahan yang masih ada

Apa hipotesis anda

Apa yang akan dilakukan (agenda)

Page 21: Metode Penulisan Ilmiahs2ekopert.ulm.ac.id/wp-content/uploads/2018/08/MUTHIA... · 2018. 8. 28. · Pelatihan Penulisan Jurnal Internasional, Magister Ekonomi Pertanian, ULM, Banjarbaru

Apa menariknya riset yang dilaporkan• Tidak ada manfaat melakukan riset topik-topik yangtidak menarik dan tidak bermanfaat.

• Menarik dan bermanfaat:bagi masyarakat atau bagiilmu itu sendiri.

• Dapat menyontoh dari makalah-makalah oranglainyangmengerjakan topik yangsama ditulis ulang dengankalimat sendiri.

• Hindari copydan pastetulisan orangtersebut karenadikhawatirkan masuk katageri plagiarisme.

• Anda memiliki peluang merefer pekerjaan andaterdahulu sehingga pekerjaan anda ada yangmuncul direferensi

Page 22: Metode Penulisan Ilmiahs2ekopert.ulm.ac.id/wp-content/uploads/2018/08/MUTHIA... · 2018. 8. 28. · Pelatihan Penulisan Jurnal Internasional, Magister Ekonomi Pertanian, ULM, Banjarbaru

Physicochemical and photocatalytic properties of carbonaceous charand titania composite hollow fibers for wastewater treatment

David K. Wang a, *, Muthia Elma a, b, **, Julius Motuzas a, Wen-Che Hou c,Diego Ruben Schmeda-Lopez a, Tianlong Zhang d, Xiwang Zhang e

a FIM2Lab e Functional Interfacial Materials and Membranes Laboratory, School of Chemical Engineering, The University of Queensland, Brisbane,Queensland 4072, Australiab Chemical Engineering Department, Lambung Mangkurat University, Jl. A. Yani KM 36, Banjarbaru, South Kalimantan 70714, Indonesiac Department of Environmental Engineering, National Cheng Kung University, Tainan City 70101, Taiwand The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australiae Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia

a r t i c l e i n f o

Article history:Received 9 April 2016Received in revised form1 August 2016Accepted 2 August 2016Available online 5 August 2016

a b s t r a c t

This work shows the concept of a simple, single-step, partial pyrolysis approach to prepare inorganiccomposite hollow fibers at low temperature conditions. Two series of robust, photocatalytic and high-performance membranes were synthesized by changing the pyrolysis temperature (Series 1: 500e600 !C for 8 h) and time (Series 2: 550 !C for 3e12 h), leading to the formation of a composite matrixconsisted of carbonaceous char and titania nanoparticles. Chemical composition, phase of crystallinity,mechanical strength, textural characteristics, morphology and photocatalytic activity of the hollow fiberswere comprehensively characterized. Mechanical strength of the hollow fibers was found to directlyattribute to the amount of char and porosity. Hollow fibers, prepared using 8 h at 550 and 575 !C or 6 h at550 !C condition, displayed a good balance between the highest mechanical strength of 52 MPa andphoto-degradation of 90.4% of acid orange 7 under ultra-violet light. This was attributed to the opti-mization of degree of char derived from the binder and the exposure of anatase titania nanoparticles onthe hollow fiber surface made available for photo-oxidation. This work offers the opportunity for futuredevelopment of a fully integrated photocatalysis and membrane operation for wastewater treatmentapplications.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

One of the most important criteria for membrane deployment isachieving the highest membrane surface area per unit volume ratiothat allows smaller unit modules possible. Such compaction ishighly desirable by the membrane industry because of minimizingplant footprint, which is triumphed by the early development andcommercial success of polymeric hollow fiber membranes usingcellulose triacetate in the 1960s [1]. In comparison, the develop-ment of inorganic-based hollow fiber membranes has only beengaining research momentum in the last two decades. The main

reasons for the research motivations are two-folds. Firstly, poly-meric membranes face on-going stability and performance issuesregarding harsh operational conditions and membrane fouling,result of which a window of research opportunity have created forthe inorganic-based membranes to address these industrial bot-tlenecks [2e4]. Secondly, the fabrication process of inorganic-basedhollow fibers, which involves a conventional dry-wet phase-inversion process and a high-temperature sintering step toconsolidate the inorganic component, is complex, time-consumingand costly.

Typically, the synthesis of inorganic oxides hollow fibers areperformed using a polymer binder and the inorganic nanoparticlesof interest to firstly form the green body, which is followed byremoving the binder in oxidative atmosphere at high temperaturesabove 1000 !C over several hours to obtain the pure inorganichollow fibers. Such intensive thermal processing is imperative toachieve high mechanical strength by sintering the inorganic oxide

* Corresponding author.** Corresponding author. Chemical Engineering Department, Lambung MangkuratUniversity, Jl. A. Yani KM 36, Banjarbaru, South Kalimantan 70714, Indonesia.

E-mail addresses: [email protected] (D.K. Wang), [email protected](M. Elma).

Contents lists available at ScienceDirect

Carbon

journal homepage: www.elsevier .com/locate /carbon

http://dx.doi.org/10.1016/j.carbon.2016.08.0010008-6223/© 2016 Elsevier Ltd. All rights reserved.

Carbon 109 (2016) 182e191

Wang, D. K., Elma, M., Motuzas, J., Hou, W.-C., Schmeda-Lopez, D. R., Zhang, T., & Zhang, X. (2016). Physicochemical and photocatalytic properties of carbonaceous char and titania composite hollow fibers for wastewater treatment. Carbon, 109, 182-191. doi:http://dx.doi.org/10.1016/j.carbon.2016.08.001

Page 23: Metode Penulisan Ilmiahs2ekopert.ulm.ac.id/wp-content/uploads/2018/08/MUTHIA... · 2018. 8. 28. · Pelatihan Penulisan Jurnal Internasional, Magister Ekonomi Pertanian, ULM, Banjarbaru

Material and Methods

Segala sesuatu yangdilakukanuntukmembuktikan hipotesis:• Eksperimen,• pengembangan programkomputer,• pengambilan sampel statistik,• questioner,• survei,dll

Page 24: Metode Penulisan Ilmiahs2ekopert.ulm.ac.id/wp-content/uploads/2018/08/MUTHIA... · 2018. 8. 28. · Pelatihan Penulisan Jurnal Internasional, Magister Ekonomi Pertanian, ULM, Banjarbaru

Material and MethodsCatatan:1) Untukmenjawabpertanyaan-pertanyaan:

a) Material apa yang digunakanb) Bagaimana caramenggunakannyac) Di mana dan kapan pekerjaan dilakukan

2) Harus menulis secara detail. Jika orang lain ingin mengulang, tidak adainformasi yanghilang3) Harus ditulis secara naratif,bukan daftar instruksi seperti di cook-book

Page 25: Metode Penulisan Ilmiahs2ekopert.ulm.ac.id/wp-content/uploads/2018/08/MUTHIA... · 2018. 8. 28. · Pelatihan Penulisan Jurnal Internasional, Magister Ekonomi Pertanian, ULM, Banjarbaru

nanoparticles together, thus meeting one of the most importantcriteria of inorganic hollow fibers. However, the major drawbacksof high-temperature thermal processing of inorganic oxides aregrain growth and phase transformation. This well-known phe-nomenon is attributed to the thermodynamic stability of theinorganic oxides at high temperature range.

Inorganic-based hollow fibers containing carbon [5e8], stain-less steel [9,10], ceramic [11e15], perovskites [16e18], and hybrid[19e23]materials with unique functionalities and expressions haveoffer unprecedented properties in nichemembrane applications forgas processing and water treatment. In particular, the research anddevelopment of titanium dioxide (TiO2) hollow fibers continue toattract a great deal of attention owing to their remarkable photo-catalytic properties for degrading a broad spectrum of organicpollutants in wastewater, thus reducing the membrane fouling is-sues [2,24e26]. Also, by incorporating the TiO2 catalyst into thehollow fiber configuration, the photocatalytic membranes willovercome the technical barriers of post-separation and catalystagglomeration, further minimizing their potential release into theenvironment. At the same time, it will enable water separation andrecovery for recycling and reuse. Nevertheless, one should takecaution when designing TiO2 hollow fibers as the photocatalyticefficiency of the TiO2 is known to strongly dependent on thecrystalline phase morphology to confer the desire functionalities.For instance, when hollow fibers are heated above temperatures inexcess of 800 !C, the anatase phase of TiO2 changes completely torutile and brokite phases [2]. Such transformation is undesirable forphotocatalysis as the efficiency is known to decrease in the order ofanatase > rutile > brokite TiO2 crystal phase [27]. Despite of this,the mechanical strength of the TiO2 hollow fibers significantlyimproved due to the grain growth during the sintering process. Inother words, there is a clear trade-off between the photocatalyticefficiency and the mechanical strength of TiO2 hollow fibers as afunction of sintering temperature [2].

Another class of inorganic membranes is the carbon hollow fi-bers [5e8]. They are prepared under a carefully controlled condi-tion, typically under an inert atmosphere in excess of 600 !C,depending on the types of polymers as carbon precursors and thedesired morphologies and properties [28,29]. The utility of carbonmembranes is wide-reaching, including molecular sieves for gas[30e32] and vapor [33,34] separations, catalytic reactors [7],membrane supports for fuel cells [35e37] and protein ultrafiltra-tion [38] applications. These studies have capitalized on theintrinsic molecular sieving features of the carbon nanomaterials, ofwhich the pore apertures are in the range of 5e7 Å with highmicroporosity, surface area, and excellent pore size control [5,39].Moreover, carbon membranes are mechanically strong, thermallyrobust and chemically stable against high pressure, high tempera-ture and organic liquids (acids, bases, and solvents) [5]. Theseproperties make carbon membranes very attractive for the sepa-ration of water (kinetic diameter of 2.89 Å) from organic mixturesfor water treatment applications [33,34,40].

In this study, in order to overcome the trade-off of photo-catalytic efficiency for the mechanical strength of TiO2 hollow fi-bers, carbonaceous char is incorporated into the hollow fibers by asimple, single-step partial pyrolysis at temperatures below 600 !C.Two series of robust hollow fiber membranes consist of char andanatase titania composite matrix were produced. The char wasderived from the polymer binder to co-exist with the titania as astructural support in order to offer mechanical stability andmicroporosity as well as reduce TiO2 aggregation and phasetransformation. This is achieved by systematically varying the py-rolysis conditions based on temperature (500e600 !C for 8 h) andtime (3e12 h at 550 !C). By limiting the ceiling temperature to600 !C, the formation of the composite hollow fiber membranes

with an enhanced strength and photocatalysis for efficient photo-degradation of organic hazardous dye and water separation isachieved.

2. Experimental

2.1. Chemicals and materials

In this study, all the chemicals and reagents were from SigmaAldrich (ACS grade) and used without further purification. Thespecific details of the Degussa P25 titanium dioxide (TiO2) nano-particles were reported in an earlier study [41].

2.2. Fabrication of hollow fiber membranes

To prepare the hollow fibers, a spinning-pyrolysis techniquewasemployed [2]. Briefly, Degussa P25 TiO2 powder was mixed withpoly(ether imide) (PEI) and solvent (1-methyl-2-pyrrolidinone(NMP)) in a 18:25:75 ratio (w/w) for 24 h until homogenous andthen degassed by vacuum for another 24 h. The spinning dope wasthen extruded through a tube-in-orifice spinneret (OD ¼ 2.5 mmand ID ¼ 0.8 mm). The pressure in the spinning dope and airgapwas maintained at 4 bars and 50 mm, respectively. Phase inversionwas induced from the inner side of the hollow fiber followed by theoutside in deionized (DI) water bath, where the green fiber was leftimmersed for 24 h. Then, the TiO2/PEI green fiber was dried for24 h at 60 !C. Before pyrolysis, the green fiber was placed inside adouble open-ended quartz tube (length ¼ 20 cm; OD ¼ 8 mm) tominimize the geometric curvature, and then heated at a tempera-ture in the range of 500e600 !C for a fixed 8 h holding time, or550 !C for 3e12 h using a muffle furnace without the introductionof any specialized gases. PEI was gradually pyrolysed into char withpartial decomposition during the thermal process to afford the finalcomposite char TiO2 hollow fibers.

2.3. Characterization techniques

The morphological structure of the pyrolysed composite hollowfibers was examined using a field-emission scanning electron mi-croscope (FESEM JEOL 7001F operating at 10 kV). The crystalstructure and phase composition of the hollow fibers (aftergrinding) were analyzed by a powder X-ray diffraction system(XRD, Bruker AXS D8 advance, Cu-Ka radiation). The outer surfaceof the hollow fibers was examined by X-ray photoelectron Spec-troscopy using a Kratos Axis ULTRA XPS incorporating an incidentmonochromatic radiation Al Ka X-rays (1486.6 eV) at 225W (15 kV,15 mA). The high resolution scans of Ti 2p and C 1s were takenwith0.05 eV steps and 250 ms dwell time at pass energy of 20 eV. XPSspectra were analysed using CasaXPS software and curve fittingwas carried out using individual peaks of constrained width andshape with a 70:30 Gaussian/Lorentzian line shape. Nitrogensorption measurement of the hollow fibers was performed usingMicromeritic TriStar 3000 instrument after degassing the samplesat 200 !C overnight under vacuum on a VacPrep061. The specificsurface area was determined from Brunauer, Emmett and Teller(BET) method and total pore volume was taken from the last pointof the adsorption isotherm (ca. 0.94 P/Po). The cumulative porevolume distributionwas determined from adsorption branch of theisotherms using the Density Functional Theory (DFT) model of cy-lindrical pores with oxide surfaces. Dubinin-Astakhov and Barrett-Joyner-Halendamethods were taken to determine the average porediameter of microporous and mesoporous materials, respectively.The char residue content of the pyrolysed hollow fibers wasdetermined by thermal gravimetric analyzer (TGA, Mettler ToledoTGA/DSC 1 Stare System) from room temperature to 1000 !C at a

D.K. Wang et al. / Carbon 109 (2016) 182e191 183

Wang, D. K., Elma, M., Motuzas, J., Hou, W.-C., Schmeda-Lopez, D. R., Zhang, T., & Zhang, X. (2016). Physicochemical and photocatalytic properties of carbonaceous char and titania composite hollow fibers for wastewater treatment. Carbon, 109, 182-191. doi:http://dx.doi.org/10.1016/j.carbon.2016.08.001

Page 26: Metode Penulisan Ilmiahs2ekopert.ulm.ac.id/wp-content/uploads/2018/08/MUTHIA... · 2018. 8. 28. · Pelatihan Penulisan Jurnal Internasional, Magister Ekonomi Pertanian, ULM, Banjarbaru

Result

a) Meringkas data dari ekperimen tanpa mendiskusikanimplikasinya.

b) Tabel, grafik, foto, dll harus memiliki penjelasan di text.c) Pilih bentuk yang paling informatif bagi pembaca.d) Data dalam tabel tidak diduplikasikan di gambar atau grafik,

dan sebaliknya.e) Setiap gambar dan tabel harus memuat legenda untuk

menjelaskan simbol, singkatan-singkatan atau metodekhusus yang digunakan.

f) Gambar atau tabel sedapat mungkin bersifat self-explanatory.

Page 27: Metode Penulisan Ilmiahs2ekopert.ulm.ac.id/wp-content/uploads/2018/08/MUTHIA... · 2018. 8. 28. · Pelatihan Penulisan Jurnal Internasional, Magister Ekonomi Pertanian, ULM, Banjarbaru

Discussion

a) Tidak melulu merupakan pernyataan ulang dari bagian Hasil.b) Harus memuat interpretasi dari data.c) Mengaitkan dengan teori yang ada (jika makalah anda hasil

eksperimen) dan mengaitkan dengan eksperimen yang ada(jika makalah anda adalah makalah teori)

d) Menjelaskan apa arti dari hasil yang anda peroleh danmengapa berbeda dengan hasil orang lain.

e) Jika anda mendapatkan hasil yang tidak sesuai ataubertentangan dengan hasil pengamatan yang dilaporkanorang lain anda harus menjelaskannya mengapa?

Page 28: Metode Penulisan Ilmiahs2ekopert.ulm.ac.id/wp-content/uploads/2018/08/MUTHIA... · 2018. 8. 28. · Pelatihan Penulisan Jurnal Internasional, Magister Ekonomi Pertanian, ULM, Banjarbaru

heating rate 5 !C min" 1 and 80 mL min" 1flow rate of air. A three-

point-bending test was performed using Instron 5543 universalmachine with a set strain rate of 1 mm min" 1 to measure themechanical strength of the composite hollow fibers. Care has beentaken to ensure the hollow fiber maintains horizontally on the3-point fixture and perpendicularly to the axis of the pressure andsupport rolls prior to measurement for each test (see Fig. S1 insupplementary information). The maximum bending strength wascalculated by using the following expression for a simple tubeadapted from Ref. [42]:

s ¼ 8FLDp!D4 " d4

"

where, s is the bending strength (MPa), F is the load applied (N),and L, D and d are the span, outer diameter and the inner diameter(mm) of the hollow fiber, respectively.

2.4. Photocatalysis evaluation of the hollow fibers

The photocatalytic activity of the composite hollow fibers wasevaluated using four UV-A lamps (SYLVANIA Blacklite F8W/BL350,330e370 nm emission; 8 Watt each) as the UV source. Acid Orange7 (AO7) was used as a model colour dye due to its excellent stabilityunder UV irradiation [43]. 25ml of AO7 (20 ppm; pH 6.5) in a quartzreactor vessel was placed concentrically at 15 cm away from the UVlamps in the UV chamber to minimize the heating effect of the UVlamps. A single hollow fiber membrane weighing about 50 mg(membrane surface area: approximately 1.5 $ 10" 4 m2) weresubmerged in the AO7 solution in the reactor. 30 min dark sorptionexperiment was performed prior to switching on the UV lamps.During the photocatalysis under UV exposure, the temperature ofthe reactor gradually increased from room temperature (22 !Cunder air condition) to about 40 ± 1 !C, of which the impact on thephoto-degradation of the AO7 dye is considered insignificant basedon our observations, and hence, the effect is neglected in this study[2,44]. The UVeVis spectrum of the feed solution was recordedfrom 220 to 620 nm by a UVeVis spectrophotometer (Evolution220, Thermo Scientific). The concentration of AO7 was determinedby measuring the absorbance at 485 nm based on an establishedcalibration standard curve. The photocatalytic activity of themembrane can be determined by the percent degradation of AO7 inthe feed solution based on the equation, AO7 degradation (%) ¼ (C0e Ct)/C0 $ 100%, where C0 and Ct are the AO7 concentration in thereactor solution before photocatalysis (after dark sorption) and atreaction time t, respectively.

3. Results and discussion

3.1. Mechanical and physical properties

Two series of char TiO2 composite hollow fibers were producedby systematically varying the temperature between 500 and 600 !Cfor 8 h, or changing the time between 3 and 12 h using a holdingtemperature of 550 !C. The rationales of focusing this work on thistemperature range and pyrolysis duration within 500e600 !Cwindow are two folds. Firstly, it is envisaged that the PEI polymerbinder will form an amorphous carbonaceous char by partialdecomposition within this prescribed condition, and secondly,titania oxides will retain the desired anatase phase below 600 !C forthe intended photocatalysis [45]. This approach is aimed to createcomposite hollow fibers with improved mechanical and photo-catalytic properties.

In Fig. 1, the mechanical bending stress (MBS) of hollow fibersdetermined from a sample batch of five replicates with respect to

pyrolysis temperature (blue data series: bottom x-axis) and time(red data series: top x-axis). The corresponding linear regressionlines are also presented. From here onwards in every figure unlessindicated otherwise, the temperature hollow fibre series will berepresented by the blue data series the bottom x-axis and the timehollow fibre series will be represented by the red data series the topx-axis.

As shown in Fig. 1, when both the temperature and time in-creases, the MBS value of hollow fibers decreases linearly from 95.5to 12.4 MPa, and 75.3 to 1.6 MPa for the temperature and the timeseries respectively. The linear regression line is added to show thatthe trend has a high degree of correlation coefficient of r2 > 0.950 inboth cases. From the lines of regression, the mechanical strength(MBS value) of the hollow fibers can be predicted using thefollowing equations,

Temperature series; MBS ¼ " 0.748 XTemp þ 463.8 MPaTime series; MBS ¼ " 8.747 XTime þ 106.7 MPa

Therefore, the mechanical integrity of the hollow fiber in thiswork demonstrated that the mechanical strength can be easilyestimated by the above equations with high certainty and repro-ducibility within the prescribed pyrolysis conditions.

To further understand the trend ofmechanical strength data, thecomposite hollow fibers after pyrolysis are subjected to TGA anal-ysis to determine how much of the carbonaceous char is formedinside each of the fibers. This data is derived from the TGAmass lossprofile of the hollow fibers as shown in Fig. S2 and Table S1 (sup-porting information). Since the TGA experiments were carried outin air, it is assumed that the change inmass of the composite hollowfibers is directly due to the mass loss associated with the oxidativecombustion of the char matrix and not due to the oxides of titania.As shown in Fig. 2, the change in mass of the hollow fibers deter-mined from the mass loss of the samples at 1000 !C is plotted withrespect to the pyrolysis conditions (temperature and time). FromFig. 2, it is evident that the amount of char formed in the composite

Fig. 1. Maximum bending stress (MPa) of hollow fibers as a function of pyrolysistemperature (500e600 !C for 8 h) and time (3e12 h at 550 !C) with best fitting line forboth sets of data obtained with r2 correlation of & 0.950. Data and error bar representthe mean ± two standard deviations (95% confidence interval) from five replicates foreach sample. (A colour version of this figure can be viewed online.)

D.K. Wang et al. / Carbon 109 (2016) 182e191184

Wang, D. K., Elma, M., Motuzas, J., Hou, W.-C., Schmeda-Lopez, D. R., Zhang, T., & Zhang, X. (2016). Physicochemical and photocatalytic properties of carbonaceous char and titania composite hollow fibers for wastewater treatment. Carbon, 109, 182-191. doi:http://dx.doi.org/10.1016/j.carbon.2016.08.001

Page 29: Metode Penulisan Ilmiahs2ekopert.ulm.ac.id/wp-content/uploads/2018/08/MUTHIA... · 2018. 8. 28. · Pelatihan Penulisan Jurnal Internasional, Magister Ekonomi Pertanian, ULM, Banjarbaru

Conclusions

❖ Dalam bentik paragraph

Page 30: Metode Penulisan Ilmiahs2ekopert.ulm.ac.id/wp-content/uploads/2018/08/MUTHIA... · 2018. 8. 28. · Pelatihan Penulisan Jurnal Internasional, Magister Ekonomi Pertanian, ULM, Banjarbaru

microporous, mesoporous to macroporous structure as demon-strated by the N2 physisorption results. Nevertheless, the optimalpyrolysis conditions were found to be around 550 !C for the 6h and8h durations where the composite hollow fibers possess adequatemechanical strength with highest photoactivity due to the neces-sary surface exposure and phase morphology of the TiO2nanoparticles.

4. Conclusions

In this work, two series of robust hollow fiber membranesconsist of a composite matrix of carbonaceous char derived frompolymeric PEI binder and photocatalytic titania nanoparticles weresynthesized by partial pyrolysis as a function of temperature(500e600 !C for 8 h) and time (3e12 h at 550 !C). The results showthat the relationship between structure-property-performance canbe easily tailored. There are two important findings in this work.Firstly, increasing pyrolysis temperature or time resulted in aconsistent decrease of the mechanical bending strength of thehollow fibers because of a systematic loss of carbonaceous char,which plays an important role of binding the nanoparticles.Furthermore, the lower thermal processing conditions led to a highdegree of crystallinity of anatase titania. Secondly, the photo-degradation performance of the hollow fiber membranes demon-strated that a critical window of temperature (550e575 !C) andtime (6e8 h) is required to partially pyrolyse the PEI polymer inorder to achieve the surface exposure of the anatase titania nano-particles for maximum photocatalysis, yet still maintains highmechanical strength. The optimized hollow fibers (550-6h and550-8h) with a bending modulus of 52 MPa and a very high pro-portion of the anatase TiO2 phase (79%) reached a 90.4% photo-degradation of AO7. In this study, the systematic investigation oflow-temperature pyrolysis conditions opens up a new avenue ofresearch for future development of composite hollow fibers withcontrolled properties and performance to reduce the processingand energy requirements for membrane fabrication and waste-water treatment.

Acknowledgments

The authors acknowledge the facilities, the scientific and tech-nical assistance, of the Australian Microscopy & Microanalysis

Research Facility at the Centre for Microscopy and Microanalysis,The University of Queensland (UQ). W.C. Hou is supported by agrant (104-2628-E-006-001-MY2) from theMinistry of Science andTechnology, Taiwan. X. Wang thanks the fellowships provided byAustralian Research Council (ARC) via Australian Research Fellow-ship (DP110103533) and Monash University Larkins Fellowship.D.K. Wang thanks the awards given by UQ-Early Career Researcher(ECR608054), ARC via Discovery Early Career Researcher Award(DE150101687) and American Australian Association ChevronFellowship.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.carbon.2016.08.001.

References

[1] N. Peng, N. Widjojo, P. Sukitpaneenit, M.M. Teoh, G.G. Lipscomb, T.S. Chung,J.Y. Lai, Evolution of polymeric hollow fibers as sustainable technologies: past,present, and future, Prog. Polym. Sci. 37 (2012) 1401e1424.

[2] X. Zhang, D.K. Wang, D.R.S. Lopez, J.C. Diniz da Costa, Fabrication of nano-structured TiO2 hollow fiber photocatalytic membrane and application forwastewater treatment, Chem. Eng. J. 236 (2014) 314e322.

[3] X. Tan, S. Liu, K. Li, Preparation and characterization of inorganic hollow fibermembranes, J. Membr. Sci. 188 (2001) 87e95.

[4] S. Liu, X. Meng, L. Liu, X. Tan, Preparation of porous inorganic hollow fibremembranes by a combined phase inversion and sintering method forwastewater treatment, in: Physical, Chemical and Biological Treatment Pro-cesses for Water and Wastewater, 2015, pp. 189e210.

[5] A.F. Ismail, L.I.B. David, A review on the latest development of carbon mem-branes for gas separation, J. Membr. Sci. 193 (2001) 1e18.

[6] K.I. Okamoto, S. Kawamura, M. Yoshino, H. Kita, Y. Hirayama, N. Tanihara,Y. Kusuki, Olefin/paraffin separation through carbonized membranes derivedfrom an asymmetric polyimide hollow fiber membrane, Ind. Eng. Chem. Res.38 (1999) 4424e4432.

[7] E. Barbosa-Coutinho, V.M.M. Salim, C.P. Borges, Preparation of carbon hollowfiber membranes by pyrolysis of polyetherimide, Carbon 41 (2003)1707e1714.

[8] C.W. Jones, W.J. Koros, Carbon molecular sieve gas separation membranes-I.Preparation and characterization based on polyimide precursors, Carbon 32(1994) 1419e1425.

[9] D.R. Schmeda-Lopez, S. Smart, E.H.M. Nunes, D. Vasconcelos, W.L. Vasconcelos,M. Bram, W.A. Meulenberg, J.C. Diniz Da Costa, Stainless steel hollow fibres -sintering, morphology and mechanical properties, Sep. Purif. Technol. 147(2015) 379e387.

[10] H. Li, J. Song, X. Tan, Y. Jin, S. Liu, Preparation of spiral porous stainless steelhollow fiber membranes by a modified phase inversion-sintering technique,J. Membr. Sci. 489 (2015) 292e298.

[11] Z. Wu, R. Faiz, T. Li, B.F.K. Kingsbury, K. Li, A controlled sintering process formore permeable ceramic hollow fibre membranes, J. Membr. Sci. 446 (2013)286e293.

[12] B.F.K. Kingsbury, K. Li, A morphological study of ceramic hollow fibre mem-branes, J. Membr. Sci. 328 (2009) 134e140.

[13] S. Liu, K. Li, R. Hughes, Preparation of porous aluminium oxide (Al2O3) hollowfibre membranes by a combined phase-inversion and sintering method,Ceram. Int. 29 (2003) 875e881.

[14] S. Liu, K. Li, Preparation TiO2/Al2O3 composite hollow fibre membranes,J. Membr. Sci. 218 (2003) 269e277.

[15] Z. Wang, Y.M. Wei, Z.L. Xu, Y. Cao, Z.Q. Dong, X.L. Shi, Preparation, charac-terization and solvent resistance of g-Al2O3/a-Al2O3 inorganic hollow fibernanofiltration membrane, J. Membr. Sci. 503 (2016) 69e80.

[16] A. Leo, S. Smart, S. Liu, J.C. Diniz da Costa, High performance perovskite hollowfibres for oxygen separation, J. Membr. Sci. 368 (2011) 64e68.

[17] P. Haworth, S. Smart, J. Glasscock, J.C. Diniz da Costa, High performanceyttrium-doped BSCF hollow fibre membranes, Sep. Purif. Technol. 94 (2012)16e22.

[18] S. Liu, X. Tan, K. Li, R. Hughes, Preparation and characterisation ofSrCe0.95Yb0.05O2.975 hollow fibre membranes, J. Membr. Sci. 193 (2001)249e260.

[19] S. Husain, W.J. Koros, Mixed matrix hollow fiber membranes made withmodified HSSZ-13 zeolite in polyetherimide polymer matrix for gas separa-tion, J. Membr. Sci. 288 (2007) 195e207.

[20] X. Li, Y. Chen, X. Hu, Y. Zhang, L. Hu, Desalination of dye solution utilizing PVA/PVDF hollow fiber composite membrane modified with TiO2 nanoparticles,J. Membr. Sci. 471 (2014) 118e129.

[21] L.Y. Yu, Z.L. Xu, H.M. Shen, H. Yang, Preparation and characterization of PVDF-SiO2 composite hollow fiber UF membrane by sol-gel method, J. Membr. Sci.337 (2009) 257e265.

Fig. 9. Schematic representation of the hollow fiber formation during pyrolysis withincreasing temperature and time of treatment. (A colour version of this figure can beviewed online.)

D.K. Wang et al. / Carbon 109 (2016) 182e191190

Wang, D. K., Elma, M., Motuzas, J., Hou, W.-C., Schmeda-Lopez, D. R., Zhang, T., & Zhang, X. (2016). Physicochemical and photocatalytic properties of carbonaceous char and titania composite hollow fibers for wastewater treatment. Carbon, 109, 182-191. doi:http://dx.doi.org/10.1016/j.carbon.2016.08.001

Page 31: Metode Penulisan Ilmiahs2ekopert.ulm.ac.id/wp-content/uploads/2018/08/MUTHIA... · 2018. 8. 28. · Pelatihan Penulisan Jurnal Internasional, Magister Ekonomi Pertanian, ULM, Banjarbaru

AcknowedgementM. Elma acknowledges with thanks the The Ministries of Research, Technology, And Higher Education of Republic Indonesia for funding. The authors acknowledge the funding support from the Australian Research Council (ARC) Discovery Program (DP140102800). J. C. Diniz da Costa gratefully thanks the support given by the ARC Future Fellowship Program (FT130100405).

Page 32: Metode Penulisan Ilmiahs2ekopert.ulm.ac.id/wp-content/uploads/2018/08/MUTHIA... · 2018. 8. 28. · Pelatihan Penulisan Jurnal Internasional, Magister Ekonomi Pertanian, ULM, Banjarbaru

References

Page 33: Metode Penulisan Ilmiahs2ekopert.ulm.ac.id/wp-content/uploads/2018/08/MUTHIA... · 2018. 8. 28. · Pelatihan Penulisan Jurnal Internasional, Magister Ekonomi Pertanian, ULM, Banjarbaru

Acknowledgement

M. Elma acknowledges with thanks the higher degree scholarshipfrom The University of Queensland. The authors acknowledge thefunding support from the Australian Research Council (ARC) DiscoveryProgram (DP140102800). J. C. Diniz da Costa gratefully thanks thesupport given by the ARC Future Fellowship Program (FT130100405).

References

[1] M.C. Duke, S. Mee, J.C. Diniz da Costa, Performance of porous inorganic membranesin non-osmotic desalination, Water Res. 41 (2007) 3998–4004.

[2] B.P. Ladewig, Y.H. Tan, C.X.C. Lin, K. Ladewig, J.C. Diniz da Costa, S. Smart, Prepara-tion, characterization and performance of templated silica membranes in non-osmotic desalination, Materials 4 (2011) 845–856.

[3] C.X.C. Lin, L.P. Ding, S. Smart, J.C. Diniz da Costa, Cobalt oxide silica membranes fordesalination, J. Colloid Interface Sci. 368 (2012) 70–76.

[4] S. Wijaya, M.C. Duke, J.C. Diniz da Costa, Carbonised template silica membranes fordesalination, Desalination 236 (2009) 291–298.

[5] R. Xu, J. Wang, M. Kanezashi, T. Yoshioka, T. Tsuru, Development of robustorganosilica membranes for reverse osmosis, Langmuir 27 (2011) 13996–13999.

[6] L. Li, J. Dong, T.M. Nenoff, R. Lee, Desalination by reverse osmosis using MFI zeolitemembranes, J. Membr. Sci. 243 (2004) 401–404.

[7] J. Lin, S. Murad, A computer simulation study of the separation of aqueous solutionsusing thin zeolite membranes, Mol. Phys. 99 (2001) 1175–1181.

[8] M.C. Duke, J.C. Diniz da Costa, D.D. Do, P.G. Gray, G.Q. Lu, Hydrothermally robust mo-lecular sieve silica for wet gas separation, Adv. Funct. Mater. 16 (2006) 1215–1220.

[9] G.R. Gallaher, P.K.T. Liu, Characterization of ceramic membranes. I. Thermal and hy-drothermal stabilities of commercial 40 Å membranes, J. Membr. Sci. 92 (1994)29–44.

[10] Y.T. Chua, C.X.C. Lin, F. Kleitz, X.S. Zhao, S. Smart, Nanoporous organosilicamembrane for water desalination, Chem. Commun. 49 (2013) 4534–4536.

[11] M. Elma, D.K. Wang, C. Yacou, J.C. Diniz da Costa, Interlayer-free P123 carbonisedtemplate silica membranes for desalination with reduced salt concentrationpolarisation, J. Membr. Sci. 475 (2015) 376–383.

[12] M.C. Duke, J.C. Diniz Da Costa, G.Q. Lu, M. Petch, P. Gray, Carbonised template molec-ular sieve silica membranes in fuel processing systems: permeation, hydrostabilityand regeneration, J. Membr. Sci. 241 (2004) 325–333.

[13] R. Xu, J. Wang, M. Kanezashi, T. Yoshioka, T. Tsuru, Reverse osmosis performance oforganosilica membranes and comparison with the pervaporation and gas perme-ation properties, AIChE J. 59 (2013) 1298–1307.

[14] R. Igi, T. Yoshioka, Y.H. Ikuhara, Y. Iwamoto, T. Tsuru, Characterization of co-dopedsilica for improved hydrothermal stability and application to hydrogen separationmembranes at high temperatures, J. Am. Ceram. Soc. 91 (2008) 2975–2981.

[15] D. Uhlmann, S. Smart, J.C. Diniz da Costa, High temperature steam investigation ofcobalt oxide silica membranes for gas separation, Sep. Purif. Technol. 76 (2010)171–178.

[16] V. Boffa, D.H.A. Blank, J.E. Elshof, Hydrothermal stability of microporous silica andniobia–silica membranes, J. Membr. Sci. 319 (2008) 256–263.

[17] L. Liu, D.K. Wang, D.L. Martens, S. Smart, E. Strounina, J.C. Diniz Da Costa, Physico-chemical characterisation and hydrothermal stability investigation of cobalt-incorporated silica xerogels, RSC Adv. 4 (2014) 18862–18870.

[18] L. Liu, D.K. Wang, D.L. Martens, S. Smart, J.C. Diniz da Costa, Influence of sol-gelconditioning on the cobalt phase and the hydrothermal stability of cobalt oxidesilica membranes, J. Membr. Sci. 475 (2015) 425–432.

[19] C.J. Brinker, G.W. Scherer, Sol-gel Science: The Physics and Chemistry of Sol-gelProcessing, Academic Press, Boston, 1990.

[20] Pore Size Distribution and Porosity of Solid Materials by Mercury Porosimetry andGas Adsorption: Part 3, International Organization for Standardization, Geneva,2007.

[21] T.H.Y. Tran, H. Schut, W.G. Haije, J. Schoonman, Structural characterization and po-rosity analysis in self-supported porous alumina–silica thin films, Thin Solid Films520 (2011) 30–34.

[22] C. Lastoskie, K.E. Gubbins, N. Quirke, Pore size distribution analysis of microporouscarbons: a density functional theory approach, J. Phys. Chem. 97 (1993) 4786–4796.

[23] M. Wojdyr, Fityk: a general-purpose peak fitting program, J. Appl. Crystallogr. 43(2010) 1126–1128.

[24] M. Elma, C. Yacou, J.C. Diniz da Costa, D. Wang, Performance and long term stabilityof mesoporous silica membranes for desalination, Membranes 3 (2013) 136–150.

[25] S. Esposito, M. Turco, G. Ramis, G. Bagnasco, P. Pernice, C. Pagliuca, M. Bevilacqua, A.Aronne, Cobalt–silicon mixed oxide nanocomposites by modified sol-gel method, J.Solid State Chem. 180 (2007) 3341–3350.

[26] G. Ortega-Zarzosa, C. Araujo-Andrade, M.E. Compeán-Jasso, J.R. Martínez, F. Ruiz, Co-balt oxide/silica xerogels powders: X-ray diffraction, infrared and visible absorptionstudies, J. Sol-Gel Sci. Technol. 24 (2002) 23–29.

[27] C. Yacou, S. Smart, J.C. Diniz da Costa, Long term performance cobalt oxide silicamembrane module for high temperature H2 separation, Energy Environ. Sci. 5(2012) 5820–5832.

[28] A. Darmawan, J. Motuzas, S. Smart, A. Julbe, J.C. Diniz da Costa, Binary iron cobaltoxide silica membrane for gas separation, J. Membr. Sci. 474 (2015) 32–38.

[29] S. Wang, D.K. Wang, K.S. Jack, S. Smart, J.C. Diniz Da Costa, Improved hydrothermalstability of silica materials prepared from ethyl silicate 40, RSC Adv. 5 (2015)6092–6099.

[30] B. Zhu, Z. Hong, N. Milne, C.M. Doherty, L. Zou, Y.S. Lin, A.J. Hill, X. Gu, M. Duke, De-salination of seawater ion complexes by MFI-type zeolite membranes: temperatureand long term stability, J. Membr. Sci. 453 (2014) 126–135.

[31] M. Drobek, C. Yacou, J. Motuzas, A. Julbe, L. Ding, J.C. Diniz da Costa, Long termpervaporation desalination of tubular MFI zeolite membranes, J. Membr. Sci.415–416 (2012) 816–823.

[32] B. Zhu, L. Zou, C.M. Doherty, A.J. Hill, Y.S. Lin, X. Hu, H. Wang, M. Duke, Investigationof the effects of ion andwater interaction on structure and chemistry of silicalite MFItype zeolite for its potential use as a seawater desalination membrane, J. Mater.Chem. 20 (2010) 4675–4683.

[33] S. Battersby, S. Smart, B. Ladewig, S. Liu, M.C. Duke, V. Rudolph, J.C. Diniz da Costa,Hydrothermal stability of cobalt silica membranes in awater gas shift membrane re-actor, Sep. Purif. Technol. 66 (2009) 299–305.

[34] T. Tsuru, Development of metal-doped silica membranes for increased hydrother-mal stability and their applications to membrane reactors for steam reforming ofmethane, J. Jpn. Pet. Inst. 54 (2011) 277–286.

[35] T. Tsuru, R. Igi, M. Kanezashi, T. Yoshioka, S. Fujisaki, Y. Iwamoto, Permeationproperties of hydrogen and water vapor through porous silica membranes at hightemperatures, AIChE J. 57 (2011) 618–629.

[36] K.W. Lawson, D.R. Lloyd, Membrane distillation, J. Membr. Sci. 124 (1997) 1–25.[37] A.M. Alklaibi, The potential of membrane distillation as a stand-alone desalination

process, Desalination 223 (2008) 375–385.[38] D. Carta, M.F. Casula, A. Corrias, A. Falqui, D. Loche, G. Mountjoy, P. Wang, Structural

and magnetic characterization of Co and Ni silicate hydroxides in bulk and innanostructures within silica aerogels, Chem. Mater. 21 (2009) 945–953.

[39] M. Domínguez, E. Taboada, H. Idriss, E. Molins, J. Llorca, Fast and efficient hydrogengeneration catalyzed by cobalt talc nanolayers dispersed in silica aerogel, J. Mater.Chem. 20 (2010) 4875–4883.

315M. Elma et al. / Desalination 365 (2015) 308–315

Wang, D. K., Elma, M., Motuzas, J., Hou, W.-C., Schmeda-Lopez, D. R., Zhang, T., & Zhang, X. (2016). Physicochemical and photocatalytic properties of carbonaceous char and titania composite hollow fibers for wastewater treatment. Carbon, 109, 182-191. doi:http://dx.doi.org/10.1016/j.carbon.2016.08.001

Page 34: Metode Penulisan Ilmiahs2ekopert.ulm.ac.id/wp-content/uploads/2018/08/MUTHIA... · 2018. 8. 28. · Pelatihan Penulisan Jurnal Internasional, Magister Ekonomi Pertanian, ULM, Banjarbaru