18
Methodology for Characterisation of Glass Fibre Composite Architecture J. Zangenberg 1,2 , J. B. Larsen 2 , R. C. Østergaard 2 , and P. Brøndsted 1 1 Materials Research Division, Risø DTU, Frederiksborgvej 399, 4000 Roskilde, Denmark 2 LM Wind Power, Jupitervej 6, 6000 Kolding, Denmark September 4, 2012 Abstract The present study outlines a methodology for micro-structural char- acterisation of fibre reinforced composites containing circular fibres. Digital micrographs of polished cross-sections are used as input to a numerical image processing tool that determines a spatial mapping and radii detection of the fibres. The information is used for different anal- yses to investigate and characterise the fibre architecture. As an ex- ample, the methodology is applied to glass fibre reinforced composites with varying fibre content. The different fibre volume fractions affects the number of contact points per fibre, the communal fibre distance, and the local fibre volume fraction. The fibre diameter distribution and packing pattern remain somewhat similar for the considered ma- terials. The methodology is a step towards a better understanding of the com- posite micro-structure, and can be used to evaluate the interconnection between the fibre architecture and composite properties. Keywords: Glass fibres; Scanning electron microscopy (SEM); Composite micro-structure; Microstructural characterisation. 1 Introduction The fibre volume fraction (FVF) is considered being the most crucial micro- structural parameter for describing a fibre reinforced composites. The pa- * This paper is part of a special issue on Deformation and fracture of polymers and their composite Corresponding author. Tel.: +45 5138 8407. Fax: +45 4677 5758. Email: [email protected] and [email protected] 1

Methodology for Characterisation of Glass Fibre

Embed Size (px)

DESCRIPTION

Image Analysis

Citation preview

MethodologyforCharacterisationofGlassFibreCompositeArchitecture J.Zangenberg1,2,J.B.Larsen2,R.C.stergaard2,andP.Brndsted11MaterialsResearchDivision,RisDTU,Frederiksborgvej399,4000Roskilde,Denmark2LMWindPower,Jupitervej6,6000Kolding,DenmarkSeptember4,2012AbstractThe present study outlines a methodology for micro-structural char-acterisationof brereinforcedcomposites containingcircular bres.Digital micrographsof polishedcross-sectionsareusedasinputtoanumerical image processing tool that determines a spatial mapping andradii detection of the bres. The information is used for dierent anal-ysestoinvestigateandcharacterisethebrearchitecture. Asanex-ample,themethodology isapplied toglass bre reinforced compositeswithvarying brecontent. Thedierentbrevolumefractionsaectsthenumberof contactpointsperbre, thecommunal bredistance,andthelocal brevolumefraction. Thebrediameterdistributionandpackingpatternremainsomewhatsimilarfortheconsideredma-terials.The methodology is a step towards a better understanding of the com-posite micro-structure, and can be used to evaluate the interconnectionbetweenthebrearchitectureandcompositeproperties.Keywords: Glassbres;Scanningelectronmicroscopy(SEM);Compositemicro-structure;Microstructuralcharacterisation.1 IntroductionThe bre volume fraction (FVF) is considered being the most crucial micro-structural parameterfordescribingabrereinforcedcomposites. Thepa-This paperis part of aspecial issueonDeformationandfractureof polymers andtheircompositeCorresponding author. Tel.: +45 5138 8407. Fax: +45 4677 5758. Email:[email protected]@lmwindpower.com1rameterforms the basis forthe well-knownrule of mixtures fordeterminingthe in-plane stiness of a composite material,see e.g. Jones [1]. Commonly,theFVFisdeterminedonbasisoftheweightfractionsandthedensitiesoftheindividual constituents, andyieldsanaveragelaminateparameter fortheentirecomposite. However,onalocalscaletheFVFattainslargerval-uese.g. insideindividual bundles wherethebre concentrationisenlarged.Itisevidentthatthereexistsothermicro-structuralparametersthatchar-acterise a bre reinforcedcomposite e.g. packing pattern, neighbouringdistance, clustering, etc. Informationabout theseparameters canbeex-tracted from measurements on cross-sections of the given composite. Digitalimage-analysisand-processingaretoolstobeusedtoidentifythematerialmicro-structure. Attempts have been made in order to characterise the full 3dimensionalstructureof(glass)brecomposites(FVF,bremisalignment,waviness,bre curvature, etc.) using a sectioning approachbased on micro-scope images. This analysis requires great accuracy in the sectioning processandinindetingtheindividualbres. Themethodistimeconsuming,butserveswellinordertodescribethelocalappearanceofthemicro-structure.This 3D characterisationhas been carried out by severalresearchers, see forinstancePaluch[2]orClarkeetal. [3]. Thesestudiesalsoincludedetermi-nationofthebre misalignmentangleinspiredbytheideasofYurgartis[4]wherethemisalignmentangleisdeterminedbymeasurementsoftheellip-tical bre-shapethatappearsonaninclinedcrosssectioncomparedtotheprincipalbredirection. Usingnumericalroutines,Creightonetal. [5]andKratmann et al. [6] determined the misalignment angle for much lower reso-lutionimages,andthussavingtheprocessingtime. Thedierencebetween2Dand3Dcharacterisationisoutlinedinthe,tosomeextend,personalac-countofExner[7].Basedondigital micrographs of aplanar andpolishedcross-sectionof auni-directional brecomposite, this studypresents amethodologywhichdetectsthespatialdistributionandradiiofthebres. Thismappingofthebres isusedtodene anumberofparametersthatareconsideredrelevantforamicro-structural characterisationof brereinforcedcomposites. Themethodis capableof analysinglocal regions as well as entirebundles orcross-sections. Forillustratingtheapplicability,themethodologyisappliedtodierentglassbrereinforcedcompositeswithavaryingbrecontent.Theideaspresentedareinspiredbythereviewworkof Guild&Summer-scales[8] whodiscussanumberof dierentapproachesforimageanalysisofbrecomposites, Pyrz[9]whoquantitativelyinvestigatedthecompositemicro-structurebystatistical tools, andPaluch[2]whomadea3Dcharac-terisationbasedon2Dimagetechniques. Thisstereological approachforinvestigatingthe3Dmicro-structurebasedon2Dimageshasbeenusedex-tensively,but it seems that the methods and ideas have not been brought toany practicalexperiences. Forinstance when the composite micro-structureisinvestigatednumericallyusingrepresentativevolumeelements (RVEs),2general assumptions are made on the bre distribution and packing pattern,communal bredistance, boundaryconditions, etc. Wongsto&Li [10] in-vestigatedthe eect of boundary condition on the RVE and made numericalsimulation of a random distributed bre arrangement. The bre randomnesswasfurtherinvestigatedbyMelroet. al [11] whodevelopedastatisticallycharacterisedalgorithmtogeneraterandomcompositecross-sections. Thepredictions fromthealgorithminterms of eective compositepropertiesagreedwell withexperimental data. TheideaofrandombredistributionwasalsousedbyMishnaevsky&Brndsted[12]who,inanumericalstudy,considered fatigue damage of unidirectional bre reinforced composites. On-going work will extend the knowledge of the interplay betweenfatiguedam-ageandbrearchitecturesincedetailsinthebrearchitecturehasproventobedetrimentalforthefatigueperformance.2 MethodShapedetectionalgorithmsarewell-knownwithintheeldofdigitalimageanalysis, andthereexistsnumerousalgorithmsdependingonthepurpose.AcommonprocedureistheHoughtransformation, Hough[13], whocameup with the idea of shape detection of lines based on a parameter space. Thework was further developedby Duda & Hart [14] where the shape detectionwas extended to include circular objects. This method is commonly referredto as the Circular Hough Transformation, and a more profound presentationcanbefoundinShapiroetal. [15]. Themagnitudeoftheparameterspacefor the shape detectiondepends on the shapes considered. For instance, linedetectionuses a2parameter space(slopeandintersection), circledetec-tion3(centre(x,y)andradius), andellipses5(minor/majoraxis, centre(x,y), andorientation). Increasingtheparameterspaceheavilyincreasesthecomputational requirements. ThecurrentmethodisbasedontheCir-cularHoughTransformationfordetectionofcircularshapes.The analysis is split up into three dierent steps: pre-processing, processing,andpost-processingaspresentedinFig. 1andthefollowingsub-sections.31Specimenpreparation2.1Image preparation andacquisition2.2Shapedetectionandbremapping3Geometry analysesPre-processingProcessingPost-processingFigure1: Flowchartfordetectionofcompositemicro-structure.2.1 Pre-processingThepreparationof thetestsamplesiscrucial inordertoobtainthebestpossibleimagequality. Standardmicroscopespecimensareusedwherearepresentativematerialsampleofthecompositelaminateiscutandcastinanepoxyresintoformacylinderwithadiameterof 30mm. Thereupon,thespecimensarepolishedinagrinderwithabrasivepapervaryingfrom#250to#4000ingrainsize. Thepolishingtimeisadjustedaccordingtothegrainsize. Itisevidentthatthesamplesurfaceappearsasplaneandsmoothaspossible.2.2 ProcessingTo obtain the best image quality,it is recommended to use a Scanning Elec-tronMicroscope(SEM), anEnvironmental ScanningElectronMicroscope(ESEM), or a Low Vacuum Scanning Electron Microscope (LVSEM) for im-ageacquisition. IfaSEMisused,thespecimensneedtobecoatedduetotheir non-conductingsurface. Itispossibletouseanoptical microscope,but this requires evenmoresensitivityinthepre-processing stepdue tothelowerresolution, lowerdepth-of-eld, andpoorerlightingconditionsinanoptical microscope compared to an electron microscope. In the present workaLVSEMisused.Themagnicationof themicroscopeshouldbeadjustedsothemisinter-pretationintheradiidetectionisreduced,seefurtherdiscussioninSection2.4. Tominimisecomputationalrequirements,theshapedetectionisbasedon8-bitgreyscaleimages. Uponacquisitionofthemicrographs,theshapedetectionisdividedintotwoindependentsteps: aCannyedgedetectionofthe image,Canny [16], and a circle detectionbased on these edges using theCircularHoughTransformation. TheCannyedgedetectionlocates edgesby searching for a local maxima of the colour gradient within the consideredimage. AnexampleisillustratedinFig. 2wherethegreylevel intensityisillustratedalongagivenpathintheimage. Itisevidentthattheedgeof4thebresaredetectableduetotheobviouscolourgradient.50m(a) SEMmicrograph of glass bres (lightpart) andmatrix(darker part) inaUDre-inforcedcomposite. Thearrowindicatesthedirectionfor the greylevel intensityinFig.2(b).0 10 20 30 40 50050100150200Distance [m]Grey value [](b)Greylevelintensityalongthe pathshowninFig. 2(a). Whitelevel is 255, blackis 0.Notethattheinterfacialregiongivesrisetoalargergreyvaluethanthebre.Figure2: Identicationof breedgesinauni-directional (UD)brerein-forcedcompositebasedonaSEMmicrograph.Oncetheedges of thebres aredetected, theCircular HoughTrans-formationis appliedbyavotingproceduretoidentifythebest matchingcircles. Theinputparametersforthetransformationcanbeadjustedde-pending onthe imagequality(thresholdlevel,searchrange,andmagnitudeofsearchlter). Theresultsofthedetectionarethein-planebrelocation(x,y-coordinates)andthebreradius,r.Duetothenumerical processingpowerthereisalimitfortheimagesizethatcanbe analysedby theCircular HoughTransformation. Therefore,forlargerimagesizes(approximatelylargerthan1000 1000pixels)theentireimageissplitupintoanumberofuserdenedsegmentsthatareanalysedseparately, andtheresultsarestoredforeachsegment. Anaveragevaluefor the entireimage is evaluatedonce allsegments havebeen analysed. Thesegmentation procedure can also be used to characterise the micro-structureacrossabrebundle,eectsofclusteringduetostitchingtension,etc.2.3 Post-processingCirclesetsonaplanearedenedif thepositionsandradii of thecirclesareknown. Characterisingthesecirclesetsrequiresknowledgeaboutthenumberofcircles,circlediameterdistribution,communaldistancebetweenthecircles, clustering, packingpattern, andcirclesincontact. Whentheseparametersareknownitispossibletomakeafull characterisationof thecircleset. ThefollowinganalysesareconsideredbasedonthebrecentreandradiiobtainedfromtheCircularHoughTransformation:5 globalbrevolumefraction voidcontent brediameterdistribution numberofcontactpointsperbre nearestneighbourdistance breclusteringparameter numberofneighboursandlocalbrevolumefraction.Eachoftheaboveanalysesareoutlinedinthefollowing.FibrevolumefractionThe FVF is considered a fundamental parameter,whichisusedincharacterisingandcalculatingmechanical propertiesofbrereinforcedcomposites. Inthepresentwork,theFVFisdeter-minedusingthreedistinctprocedures:1. Knowingtheindividualbreradiiandthetotalimagesize,itispossibletodeterminetheFVFof thedetectedbres. Itisas-sumed that the position and diameter of the bres do not vary inthe normal directionof the bres. Hence,the FVF is determinedas:FVF =N

i=1Vi,fibreVtotal=N

i=1Ai,fibreAimage=N

i=1r2iAimage, (1)whereV is thevolume, Ais thearea, Nis thenumber of -bres, andriis theindividual breradius. This procedurefordeterminingtheFVFisreferredtoasFVF1.2. Asimple procedure toevaluatethe FVFisby athresholdanaly-sis. Theimageistransformedintoablack/whiteimagewhereastheresinappearsasblackpixelsandthebresaswhitepixels.TheFVFisfoundastheratiobetweenthewhitepixelsandthetotalnumberofpixels. ThisprocedureisreferredtoasFVF2.3. ItislikelythattheCircularHoughTransformationdoesnotde-tect every bre inthe cross-section especially near the imageboundary wherethebres arecuto. This proceduresimply re-movesthedetectedbres(usedinprocedureone)andperformsathresholdanalysis(asinproceduretwo)ontheremainingun-detectedbres. ThisprocedureisreferredtoasFVF3.ItisgiventhatthesumoftheFVFsfromproceduresoneandthreeshouldmatchproceduretwo.6Voidcontent Voidsmaybepresentinthematerials, andthesevoidsareknowntoinuencethemechanical properties. Sincevoidsappearasblackregionsinthemicrographs, theseareidentiedifapixel valueis lowerthan a user dened threshold. The totalvoidcontentis foundasthesumofthesepixelsinrelationtothetotalnumberofpixels.FibrediameterdistributionItis oftenassumedinnumerical analysesof brereinforcedcompositesthatthebrediameterdistributionisuniform, whichisoftennotthecaseinpractice. The bre diameterismeasured by the Circular Hough Transformation and assumed normaldistributed meaning that it is characterised by the mean value and thestandarddeviation.NumberofcontactpointsperbreContactbetweensurfaces leads tostressconcentrations; therefore, contact betweenbresisconsideredasapotentialzoneforcrackinitiation,seee.g. Wongsto&Li[10]. Acontactconditionbetweentwocircles(bres)isdenedifthecentre-to-centre distance between two adjacent circles i and j, dij, is less thanthesumof theirindividual radii, ri + rj. However, duetothebresurface roughness, interface, and inaccuracy in the circle detection, thecontact condition is given as dij (ri+rj) where the factor = 1.01follows from the work of Mishnaevsky & Brndsted [12]. Denoting thetotal number of circle contact conditions as c, the total number ofcontactpoints,CPtotal,isdeterminedas:CPtotal=c N2, (2)wherethefactoroftwoisincludedtoavoidrepeatedcontactpoints.Since the total number of contact points in Eq. (2) is dependent on thenumber of inclusions, the totalnumber of contactpoints is normalisedwiththenumberofdetectedbres,N,inordertogetthenumberofcontactpointsperbre,CP.Fortwocommonbrepackingpatterns,thenumberofcontactpointsperbreandFVFisillustratedinFig.3foraninnitebrearray.7(b)Hexagonal array.2rRFVF=23

rR

2(a)Squarearray.FVF=

rR

2R2rCP=2(R = 2r)CP=3(R = 2r)Figure 3: Typical bre packing patterns in a uni-directional composite alongwithbrevolumefraction(FVF) andnumberof contact pointsperbre(CP).NearestneighbourdistanceSeparation distance between the bres mayminimise the stress concentration, and this analysis determines the dis-tancetothenearestneighbour. TheNeighbouringDistancebetweenbres i andj is denedas NDij=dij ri rj, andtheshortestdistanceisfoundbythesolutiontotheclassical TravellingSalesmanProblem(TSP)usingaTSP-algorithm. FurtherinformationontheTSPcanbefounde.g. inLawleretal. [17]. Theresultoftheanaly-sisistheshortestroutethroughallbres,andtherebytheNearestNeighbouringDistances, NND. Forquantication, thenearestneigh-bourdistanceisassumedtofollowalog-normalbehaviourwithmeanandstandarddeviationmeaningthatthelimitsareexpressedasexp (log() log()).FibreclusteringClusteringof bres leads toregions that inuencethemechanical behaviour. Inordertoestimatethebreclustering, thesimple relationdue toClark & Evans [18] is used asa measure for thebreclustering. Originally, thetheorywas usedintermsof spatialrelationsin populations, but it is directly appliedin the current studyeventhoughtherearesomelimitations. Theclusteringparameter,R,isexpressedas:R = rA rE, rA=

NNDNand rE=12(3)with rAbeing the mean of the series of distances to the nearest neigh-bour,and rEisthemeandistancetothenearestneighbourexpectedinaninnitelylargerandomdistributionwithdensity. Inthecur-rentcase, thesumof thenearestneighbouringdistances,

NND, isfoundastheshortestroutebetweenbrecentrementionedabove.Thebredensityisfoundas =N/Aimage.8The convenient thing about the clustering parameter is its easily acces-sible interpretationsince it is bound by the limits 0 R 2.15wherethe lower limit follows fromanintermediate neighbouringdistanceequal tozero(fullyclustered)andtheupperlimitisforahexagonalarraywithequidistantdistancetootherneighbours. ForR=1thepackingpatternisrandom.Numberofneighboursandlocal brevolumefractionOftenwhenmodelling the composite micro-structure an idealised bre packing pat-ternisassumedtobeinthearraysshowninFig. 3. Thesepackingpatterns are seldomlyfoundinpractice, andthe followinganalysisestimatesthepackingpatternintermsof thenumberof neighboursand a local bre volume fraction. More sophisticated methods may beusedtocharacterisethepackingpatterne.g. thesecondorderinten-sityfunctionasproposedbyPyrz[9]andGhostetal. [19].ThenumberofneighboursisfoundfromaDelaunaytriangulationofthebrecentrepoints, andthelocal FVFisdeterminedasthebreareainrelationtotheareaof Voronoi cell associatedtoeachbre.Inbrief,aVoronoitessellationisadecompositionofascatter(inthiscasepointsontheplane)intoacellstructureeachcontainingexactlyonepoint. Thepropertyofthecellisthatanypointinsidethecellisclosertothatpointthantoanyothersite. ADelaunaytriangulation,ontheotherhand, is sortofthedual problem totheVoronoitessella-tion such that no point sets are inside the circumcircle of any triangle.The two principles are illustrated for a generatedbre arrangement inFig. 4. ForamoreprofoundpresentationseeOkabe[20].Fibre centreVoronoiDelaunayFibreFigure4: SketchoftheVoronoitessellationandDelaunaytriangulationforarandompointsetintheplane.9Inthepresentanalysis, theVoronoi cellsareusedtodeterminealo-cal FVF(referredtoFVF4)foreachbre, sincetheareaof thecell,Avoronoi, can be considered as an area parameter associated to each -bre with area, Afibre. Thereby, the local FVF is determined asAfibreAvoronoi.Theareaof theVoronoi cells alongtheimageboundarycannot beevaluated explicitly,which is why the boundary bres are disregarded.Thelocal FVFisassumedtofollowanormal distributiondescribedbythemeanvalueandthestandarddeviation. Thecentrepointsofthe detectedbres areusedas input for the triangulationinordertondthenumberof neighbours, herepresentedasthemeanvalueandstandarddeviation,respectively. Similaranalyseshavebeenusedpreviouslye.g. intheworkofPaluch[2].2.4 ImplementationThe programming language MATLAB is used for the implementationof themethodology. TheCircularHoughTransformationandtheTSP-algorithmcanbefoundattheMathWorksFileExchange[21].The algorithm and implementation have been tested on two selected bres onseveralimageswithdierentmicroscopemagnicationinordertoestimatethe accuracy of the circle detection. The bres are shown in Fig. 5(a) whereFibre A is completelyisolated,and Fibre B is surrounded by severalothers.TheresultfromtheanalysisisshowninFig. 5(b)wherethedetectedbrediameterisplottedasfunctionofmicroscopemagnication.10100mFibreAFibreB(a)Fibresconsideredintheaccuracyanalysis.0 5 10 15141516171819Pixels per micronFiber diameter [m] Fibre AFibre B(b) Detected bre diameter as afunction of microscope magnica-tion.Figure5: Accuracyanalysisfordetectionofthebreradius.For low magnication images below 5 pixels per micron there is a scatterin the measured bre diameters. However, in order to get sucient accuracyandamountof bresperimage, avalueof 1.64pixelspermicronisusedinthefollowingwellawarethatthisgivesrisetoanon-negligibledeviationindeterminationof the bre volumefractioninprocedure FVF1mentionedabove.Depending on the image shape, image size, and number of bres, the numberofcontactpointsisaected. Therefore, atestiscarriedouttoinvestigatetheimageshape/sizesensitivity. Thetestiscarriedoutforasquarebrepackingarrangementwithnointermediatedistancebetweenthebres. Foravaryingimageshape/size, itturnsoutthatforalow numberof bres(say, lessthan50bresinanarrowshapedimage)thenumberof contactpointsisaected.113 ApplicationTwo-layered glass/polyester composites with varying bre content were man-ufacturedusingtheVacuumAssistedResinTransferMoulding(VARTM)process, andthespecimens areanalysedbythemethodologyoutlinedinSection2. All imagesareacquiredwithinabundlewithoutanyresinrichzonesneartheedges. AtypicalresultofthecircledetectionispresentedinFig. 6.(a)Basis for image analysis: SEM micrographofapolishedcross-section.(b) Spatial mapping of the bres with de-tectedradii usingtheCircularHoughTrans-formation.Figure 6: Typical images for analysing the micro-structure of a uni-directional glassbrereinforcedcomposite. Thepresentedimagesareseg-mentsoftheanalysedimages.Close examination of the detected circles shown in Fig. 6(b) reveals thatthealgorithmdetects anumber of non-existingbres; nonetheless, thesebres are removedinthe post-processingstepbyevaluationof the greylevelintensityatthecentreofthe(mis)detectedbre. Thepost-processinganalyses are carried out as mentioned in the previous section and the resultsarepresentedinTable1andFigs. 7and8. anddenotethemeanvalueandstandarddeviation,andalldataareassumedtobenormal/log-normaldistributed and independent. Table 1 presents the number of detected bresandthebrediameterdistribution.12Table1: Resultof imageanalysis: numberof detectedbresandbredi-ameterdistribution. Meanandstandarddeviation.No. NoFaFD/[-] [m/m]1 4745 17.19/1.462 4605 17.17/1.453 4797 17.21/1.574 3335 16.96/1.445 7679 17.32/1.50aNoF NumberofFibresFD FibreDiameterFig. 7presentstheobtainedFVFsforthedierentanalyses, andtheresults are normalisedwiththevalue fromFVF3(thresholdanalysis) insamplenumberone.1 2 3 4 50.9511.051.11.15Sample no.Norm. FVF [] FVF1FVF2FVF3FVF4Figure7: Resultsofimageanalyses: brevolumefractionbasedondier-entprocedures. FVF1: radii of bres. FVF2: boundaryanalysis. FVF3:thresholdanalysis. FVF4: local(Voronoi).Fig. 8showsthenumberof contact pointsperbre, CP, thenearestneighbour distance, NN, the clusteringparameter, ClP, andthe numberofneighbours,NoNasafunctionoftheobtainedFVF. Again, theFVFisnormalised with the value from FVF3 (threshold analysis) in sample numberone.130.95 1.00 1.05 1.10 1.15 1.200.50.550.60.650.70.750.8Norm. FVF []CP [](a)0.95 1.00 1.05 1.10 1.15 1.20147101316Norm. FVF []NN [m](b)0.95 1.00 1.05 1.10 1.15 1.201.961.971.981.9922.012.02Norm. FVF []ClP [](c)0.95 1.00 1.05 1.10 1.15 1.2055.566.57Norm. FVF []NoN [](d)Figure8: ResultsofimageanalysesfordierentFVFs. (a)Contactpointsper bre, CP. (b) Nearest neighbour distance, NN. (c) Clustering parameter,ClP.(d)Numberofneighbours,NoN.Thevariationinthebrediametersissmall,andthemeasurementsarealmost constant in the range around df 17m, which is also the prescribeddiameterbythemanufacturer.As mentioned in the previous section, the sum of the FVFs determined fromprocedures FVF1andFVF2shouldbeequal totheFVFdeterminedbyprocedureFVF3. ThisisillustratedinFig. 7wherethedeviationbetweenthemethods is within 1.2%, whichis regardedas asucient accuracyinthe shape detection. It is worthnoticingthat the local bre volumefraction, FVF4, isconsistentlylargerthantheFVFsdeterminedfromtheotheranalyses. Novoidsarefoundinthesamplesinvestigated.For a heavier bre compaction, it is found that the number of Contact Pointsper bre(CP) increases as well as theNearest Neighbour distance(NN)decreases, seeFig. 8. ThepackingpatternremainsthesameindependentoftheFVF,whichisreectedintheNumberofNeighbours(NoN)andtheClustering Parameter (ClP) approaching the upper limit of 2.15. This meansthatthepackingpatternconvergesagainstapseudo-hexagonalarray.144 DiscussionFromthenumberofbresdetected(seee.g. Table1)andtheimagesizesused,theimagesizesensitivityinrelationtothenumberofcontactpointsper bre is limited for the samples considered. The number of contact pointsperbreincreasesforincreasingbrevolumefraction,whichinaccordancetowhat isreportedby Mishnaevsky & Brndsted[12]inanumericalstudy.Eventhoughtheactual brepackinginFig. 6(a) doesnotappeartobesystematic, thebrestendtoarrangeinwhatisreferredtoasapseudo-hexagonal packingpattern. UsingtheDelaunaytriangulation, Paluch[2]madeasimilarconclusioninrelationtothepackingpattern.Pyrz[9]carriedoutaquantitativestudy onthemicro-structureofcompos-ites based on statisticalanalyses. In specic, a probability investigationwasmadebetweenthenearestneighbouringdistancefordierentFVFs. ThetrendisobviouslythatthelargerFVF, thesmallerameannearestneigh-bouring distance and standard deviationis observed. The same ndings areconcludedinthepresentstudy.The clustering parameterdescribed in the work of Clark & Evans [18] is de-terminedbasedonthebrecentrewithoutinformationregardingthebreradius. Therefore, thebasisof usingthisanalysisismisleadingsincetheunderlyingstatistical theoryisbasedonpointsetsratherthancircles. Ithas not been possible at this stage of the study to nd a suitable descriptionforclusteringofcircleswheretheindividualradiiareincluded.It is apparent that it wouldbemore accurate todeterminethe Voronoidiagramsintermsof circlesetsonaplaneratherthanpointsduetothecircularcrosssectionofthebres,seee.g. presentationbyKimetal. [22].However, basedontheworkofPaluch[2]andtoeasetheimplementation,thepresentedmethodisconsideredtobesucient.The local FVF (FVF4)predicts a largervalue comparedto the globalFVF,whichisincontradictiontowhatcouldbe expectedfrom the idealisedbrearrangementsinFig. 3thatproducessimilarresultsforalocal andglobalFVF. Still, themagnitudesof thedeviationisinsimilarrangetowhatisfound from Ghosh etal. [19] based onsimulationsof uniform bre distribu-tionswithFVFintherangeupto32.4%.Theoptimumsolutiontothetravellingsalesmanproblemhasbeeninves-tigated by several researchers, and there exist numerous of dierent solutiontechniquesfortheproblem. However, theproblemofndingtheoptimumsolutionisfarfromtrivial. InthecaseofNbres,thenumberofdierentroutes is given as(N1)!2, which indicates the increasing problem complexityfor largeN. Therefore, approximatedmethodsareoftenusedwheretheroutemightnotbetheoptimumonebutsomewhatcloseto. Suchanalgo-rithm is used in the present,and as a result the shortest route might not betheoptimum.155 ConclusionAnewmethodologyispresenteddealingwithshapedetectionandmicro-structuralanalysisofcompositematerialscontainingcircularbres. Basedon digital micrographs and numerical image processing, the bre architecture/micro-structure isevaluatedfora number of dierent parameters. Fordemonstra-tion, themethodologyis shownuseful toidentifyandtocomparemicro-structural parameters for dierent glass bre reinforcedcomposites withvaryingbre content. The followingmicro-structural parameters are af-fected by changes in the bre volume fraction: the number of contactpointsper bre, nearest neighbour distance, andthelocal brevolumefraction(thebreareainrelationtotheareaof theassociatedVoronoi cell). Forincreasingbrevolumefraction, thenumberof contactpointperbrein-creaseswhereasthenearestneighbourdistancedecreases. Thelocal brevolumefractionissomewhatlarger thantheglobal brevolumefraction.Voidsarenotfoundinthesamples. Independentofthebrevolumefrac-tion, the bres are arranged in a pseudo-hexagonal array with approximatelysixneighboursperbre.References[1] R. M. Jones.Mechanicsofcompositematerials.Hemisphere Pub, 1999.[2] B. Paluch. Analysisof geometricimperfectionsaectingthebersinunidirectional composites. Journal of compositematerials, 30(4):454,1996.[3] A.R. Clarke, G. Archenhold, andN.C.Davidson. Anovel techniquefordeterminingthe3Dspatial distributionof glassbresinpolymercomposites. Compositesscienceandtechnology,55(1):7591, 1995.[4] S. W. Yurgartis. Techniques for the quantication of compositemesostructure. Composites science and technology, 53(2):145154,1995.[5] C. J. Creighton, M. P. F. Sutclie, andT. W. Clyne. Amultipleeldimageanalysis procedurefor characterisationof brealignmentincomposites. Composites Part A: AppliedScienceandManufactur-ing,32(2):221229, 2001.[6] K. K. Kratmann, M. P. F. Sutclie, L. T. Lilleheden, R. Pyrz, andO.T.Thomsen. Anovelimageanalysisprocedureformeasuringbremisalignment inunidirectional brecomposites. Composites ScienceandTechnology,69(2):228238, 2009.16[7] H. E. Exner. Stereologyand3Dmicroscopy: Useful alternatives orcompetitors inthequantitative analysis of microstructures? ImageAnalysis&Stereology,23(2):7382, 2004.[8] F. J. GuildandJ. Summerscales. Microstructural imageanalysisap-plied to bre composite materials: a review. Composites, 24(5):383393,1993.[9] R.Pyrz. Quantitativedescriptionofthemicrostructureofcomposites.PartI: Morphologyof unidirectional compositesystems. Compositesscienceandtechnology,50(2):197208, 1994.[10] A. Wongsto andS. Li. Micromechanical FEanalysis of UDbre-reinforced composites with bres distributed at random overthe trans-versecross-section. CompositesPartA:AppliedScienceandManufac-turing,36(9):12461266, 2005.[11] A.R. Melro, P.P. Camanho, andS.T. Pinho. Generationof randomdistributionof bresinlong-brereinforcedcomposites. CompositesScienceandTechnology,68(9):20922102, July2008.[12] L. Mishnaevsky Jr. and P. Brndsted.Statistical modelling of compres-sionandfatiguedamageof unidirectional berreinforcedcomposites.CompositesScienceandTechnology,69(3-4):477484, 2009.[13] P.V.C.Hough. Methodandmeansforrecognizingcomplexpatterns.Technicalreport,1962.[14] R. O. Duda and P. E. Hart. Use of the Hough transformationto detectlines and curves in pictures.CommunicationsoftheACM, 15(1):1115,1972.[15] L.G.ShapiroandG.C.Stockman. ComputerVision. 2000.[16] J. Canny.A computational approach to edge detection. PatternAnaly-sis and Machine Intelligence,IEEE Transactionson, (6):679698,1986.[17] E. L. Lawler, A. H. Rinnooy-Kan, J. K. Lenstra, andD. B. Shmoys.Thetravelingsalesmanproblem: aguidedtour of combinatorial opti-mization,volume3. WileyNewYork,1985.[18] P. J. Clark and F. C. Evans.Distance to nearest neighbor as a measureofspatialrelationshipsinpopulations. Ecology,35(4):445453, 1954.[19] S. Ghosh, Z. Nowak, andK. Lee. QuantitativecharacterizationandmodelingofcompositemicrostructuresbyVoronoicells. ActaMateri-alia,45(6):22152234, June1997.17[20] A. Okabe. Spatial tessellations: concepts andapplications of Voronoidiagrams. JohnWiley&SonsInc,2000.[21] MathWorksInc. MATLABCentral -Files. March2011.[22] D. S. Kim, D. Kim, andK. Sugihara. Voronoi diagramofacirclesetfromVoronoi diagramof apointset: II. Geometry. ComputerAidedGeometricDesign,18(6):563585, 2001.18