38
Methodologies & Results for Methodologies & Results for Broadband Spectrum Surveys Broadband Spectrum Surveys ISART 2010 • Boulder , CO • July 2010 ISART 2010 • Boulder , CO • July 2010 Frank Sanders Chief Telecommunications Theory Division Frank Sanders Chief Telecommunications Theory Division Chief , Telecommunications Theory Division U.S. Department of Commerce, NTIA/ITS [email protected] 303.497.7600 Chief , Telecommunications Theory Division U.S. Department of Commerce, NTIA/ITS [email protected] 303.497.7600 Institute for Telecommunication Sciences – Boulder, Colorado [email protected] 303.497.7600 [email protected] 303.497.7600

Methodologies Results for Broadband Spectrum Surveys€¦ · Data Analysis Requirements • Post‐data‐collection analysis of results for ultimate report preparation and perhaps

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Methodologies Results for Broadband Spectrum Surveys€¦ · Data Analysis Requirements • Post‐data‐collection analysis of results for ultimate report preparation and perhaps

Methodologies & Results for Methodologies & Results for Broadband Spectrum SurveysBroadband Spectrum Surveys

ISART 2010 • Boulder, CO • July  2010ISART 2010 • Boulder, CO • July  2010, y

Frank SandersChief Telecommunications Theory Division

, y

Frank SandersChief Telecommunications Theory DivisionChief, Telecommunications Theory DivisionU.S. Department of Commerce, NTIA/ITS

[email protected] • 303.497.7600

Chief, Telecommunications Theory DivisionU.S. Department of Commerce, NTIA/ITS

[email protected] • 303.497.7600

Institute for Telecommunication Sciences – Boulder, Colorado

[email protected]   [email protected]   303.497.7600

Page 2: Methodologies Results for Broadband Spectrum Surveys€¦ · Data Analysis Requirements • Post‐data‐collection analysis of results for ultimate report preparation and perhaps

BackgroundBackground

• Mid‐1970s: U.S. Dept. of Commerce decides to develop p pbroadband, computer‐controlled radio measurement systems 

Question: Use capability for enforcement … or  use capability as a research tool to improve Federal spectrum management?research tool to improve Federal spectrum management?

Answer: From the very beginning, technical emphasis on computer‐controlled measurements with well‐designed RF front ends

• First Radio Spectrum Measurement System of the modern era built into a Travco motor home by HP (RSMS‐1 and RSMS‐2)

S b t RSMS i b ilt i k t k b d (RSMS 3)• Subsequent RSMS versions built on pickup truck body (RSMS‐3), custom‐built truck (RSMS‐4), and various suitcase configurations

Institute for Telecommunication Sciences – Boulder, ColoradoJuly 2010 2

Page 3: Methodologies Results for Broadband Spectrum Surveys€¦ · Data Analysis Requirements • Post‐data‐collection analysis of results for ultimate report preparation and perhaps

1927 Radio Car1927 Radio Car

This early system incorporated many features still needed todayy y p y y

Institute for Telecommunication Sciences – Boulder, ColoradoJuly 2010 3

.

Page 4: Methodologies Results for Broadband Spectrum Surveys€¦ · Data Analysis Requirements • Post‐data‐collection analysis of results for ultimate report preparation and perhaps

RSMS‐1 and 2: 1974–1990RSMS 1 and 2: 1974 1990

• ARS‐400: 1st computer‐controlled spectrum measurement systemp p y• Custom‐built hardware 

• 8566A/B based on this design

Institute for Telecommunication Sciences – Boulder, ColoradoJuly 2010 4

Page 5: Methodologies Results for Broadband Spectrum Surveys€¦ · Data Analysis Requirements • Post‐data‐collection analysis of results for ultimate report preparation and perhaps

RSMS‐3: 1990 – presentRSMS 3: 1990  present

Took advantage of more compact hardware but retainedTook advantage of more compact hardware but retained measurement features of 1 and 2

Institute for Telecommunication Sciences – Boulder, ColoradoJuly 2010 5

Page 6: Methodologies Results for Broadband Spectrum Surveys€¦ · Data Analysis Requirements • Post‐data‐collection analysis of results for ultimate report preparation and perhaps

RSMS‐4: 2002 – presentRSMS 4: 2002  present

Continues to use specialized hardware and software to perform p pNTIA’s spectrum management mission, including broadband spectrum surveys, interference analysis, and EMC studies

Institute for Telecommunication Sciences – Boulder, ColoradoJuly 2010 6

Page 7: Methodologies Results for Broadband Spectrum Surveys€¦ · Data Analysis Requirements • Post‐data‐collection analysis of results for ultimate report preparation and perhaps

RSMS Suitcase SystemsRSMS Suitcase Systems

•Shrinking hardware and computersShrinking hardware and computers →NTIA development of a wide variety of suitcase systems for surveys on rooftops, in deserts, and in small vehicles

Institute for Telecommunication Sciences – Boulder, ColoradoJuly 2010 7

Page 8: Methodologies Results for Broadband Spectrum Surveys€¦ · Data Analysis Requirements • Post‐data‐collection analysis of results for ultimate report preparation and perhaps

Spectrum Survey PurposesSpectrum Survey Purposes

• Establish spectrum usage patterns —maximum / minimum / p g p / /average

• Resolve ongoing RF interference problems at specific localities

• Identify unauthorized usage (now a rare event in the U.S.)

• Provide information for spectrum and new spectrum systems planners, via NTIA Technical Reports

Broadband survey results published for Denver, San Francisco, Los Angeles, and San DiegoAngeles, and San Diego

Land mobile radio (LMR) and general survey results been published for Atlanta Olympics, Denver, and Washington, DC

Institute for Telecommunication Sciences – Boulder, ColoradoJuly 2010 8

Page 9: Methodologies Results for Broadband Spectrum Surveys€¦ · Data Analysis Requirements • Post‐data‐collection analysis of results for ultimate report preparation and perhaps

Site Requirements forS t SSpectrum Surveys

•Outdoor:Outdoor:A good radio horizon — usually a site at the top of a high hill or mountain

Suitcase systems may be located on rooftops

Commercial power

( i i l) i d i l i h i diNo (or minimal) strong transmitted signals in the immediate vicinity  to ameliorate RF front‐end overload problems

Reasonably good securityReasonably good security

• Indoor:Commercial power

Institute for Telecommunication Sciences – Boulder, Colorado

Commercial power

July 2010 9

Page 10: Methodologies Results for Broadband Spectrum Surveys€¦ · Data Analysis Requirements • Post‐data‐collection analysis of results for ultimate report preparation and perhaps

Indoor vs. Outdoor SurveysIndoor vs. Outdoor Surveys

Outdoor IndoorOutdoor• Shows patterns already known from allocation tables

Indoor

• Should show less of formal allocation patterns due to 

• ISM band occupancy patterns are strongly dependent on exact location of the measurement 

unlicensed and unintentional emissions indoors

• Important to understandsystem (e.g., San Francisco survey)

• Aside from ISM bands one

• Important to understand environment for short‐range wireless systems

• Aside from ISM bands, one survey in a metro area probably shows representative patterns for entire area

Institute for Telecommunication Sciences – Boulder, Colorado

for entire area

July 2010 10

Page 11: Methodologies Results for Broadband Spectrum Surveys€¦ · Data Analysis Requirements • Post‐data‐collection analysis of results for ultimate report preparation and perhaps

Number of Locations Needed f O td Sfor Outdoor Surveys

• Based on past results, crowding might be a significant problem in p , g g g p

only about 15 major U.S. metropolitan areas

• Uniform nation‐wide allocations → usage patterns in cities tend to g p

replicate from one to the next → fewer than 15 cities probably need 

to actually be measured

• 1 outdoor survey / city probably enough to characterize crowding in each metro area, barring very local variability in ISM patterns

• Highest usage and most crowding historically shown around coastal 

cities: Seattle, San Francisco, Los Angeles, San Diego, Boston, New 

Y k W hi t (DC) Phil d l hi J k ill

Institute for Telecommunication Sciences – Boulder, Colorado

York, Washington (DC), Philadelphia, Jacksonville

July 2010 11

Page 12: Methodologies Results for Broadband Spectrum Surveys€¦ · Data Analysis Requirements • Post‐data‐collection analysis of results for ultimate report preparation and perhaps

Number of Locations Needed f I d Sfor Indoor Surveys

• Geographic location or region not anticipated to be a significant factor for indoor spectrum behavior

• Indoor environments are what count for indoor surveys

• Distinguishable environments of interest probably fewer than 10, include: 

High‐rise office buildings Office parksHigh rise office buildings

Low‐rise office buildings

Warehouses

Office parks

Apartment buildings

Urban/suburban residential

Light industrial areas

• Number of surveys required to obtain representative data for each environment: still to be determined

Institute for Telecommunication Sciences – Boulder, Colorado

environment: still to be determined

July 2010 12

Page 13: Methodologies Results for Broadband Spectrum Surveys€¦ · Data Analysis Requirements • Post‐data‐collection analysis of results for ultimate report preparation and perhaps

Spectrum MeasurementS D i B iSurvey Design Basics

• Spectrum surveys only show what they are designed to show

• What a measurement survey does not show can be more important than what it does show

• Survey design must take into account the characteristics of the signals that are intended to be observed

Usually these are the signals for which each band is allocatedUsually these are the signals for which each band is allocated 

Critical to match measurement parameters to signals to be observed, especially bandwidth and detection

• Use the wrong bandwidth, detection technique or measurement algorithm and a band that’s full of activity can be made to look “empty” or “fallow”

Institute for Telecommunication Sciences – Boulder, ColoradoJuly 2010 13

Page 14: Methodologies Results for Broadband Spectrum Surveys€¦ · Data Analysis Requirements • Post‐data‐collection analysis of results for ultimate report preparation and perhaps

Matching of Measurement P t t Si l TParameters to Signal Types

Signal Type Bandwidth Detection

LMR about 10 kHz Average with selection of median from multiple samples

Digital about 1 MHz Peakg

Radar 100 kHz to 20 MHz, depending on radar Peak

Sample to gather noise

• If a band contains multiple signal types, a survey may need to run 

Noise As wide as possible Sample, to gather noise statistics

through the band multiple times, with different sets of measurement parameters on each run

• Apparent band activity varies dramatically as measurement

Institute for Telecommunication Sciences – Boulder, Colorado

Apparent band activity varies dramatically as measurement parameters vary

July 2010 14

Page 15: Methodologies Results for Broadband Spectrum Surveys€¦ · Data Analysis Requirements • Post‐data‐collection analysis of results for ultimate report preparation and perhaps

Matching Measurement Al ith t Si l TAlgorithms to Signal Types

• Algorithms used to examine each band are just as important as measurement parameters

• The most conventional algorithm:Rooted in the original hardware design of swept‐LO analog spectrum analyzers

Sweeps frequencies across each measurement band

Successive sweeps are either recorded in clear‐write modes or in maximum‐hold modes. 

Max‐hold mode is not the same as peak detection!

• Even modern vector signal analyzers behave as if they are frequency‐sweeping —but really doing FFTs on fast time‐domain samples

• Some signals will not show up this waySome signals will not show up this wayExample: to see radar signals, need to step from one measured frequency to the next, dwelling for many seconds at each frequency and recording and storing the single highest power that occurs during each frequency step otherwise, radar bands will be mis‐measured and look empty

Institute for Telecommunication Sciences – Boulder, ColoradoJuly 2010 15

Page 16: Methodologies Results for Broadband Spectrum Surveys€¦ · Data Analysis Requirements • Post‐data‐collection analysis of results for ultimate report preparation and perhaps

Different Ways to See a Radar Band (Ri ht W ?)(Right vs. Wrong?)

Institute for Telecommunication Sciences – Boulder, ColoradoJuly 2010 16

Page 17: Methodologies Results for Broadband Spectrum Surveys€¦ · Data Analysis Requirements • Post‐data‐collection analysis of results for ultimate report preparation and perhaps

Different Ways to See Air Traffic C t l B Si lControl Beacon Signals

Institute for Telecommunication Sciences – Boulder, ColoradoJuly 2010 17

Page 18: Methodologies Results for Broadband Spectrum Surveys€¦ · Data Analysis Requirements • Post‐data‐collection analysis of results for ultimate report preparation and perhaps

Different Ways to SeeISM B dan ISM Band

Institute for Telecommunication Sciences – Boulder, ColoradoJuly 2010 18

Page 19: Methodologies Results for Broadband Spectrum Surveys€¦ · Data Analysis Requirements • Post‐data‐collection analysis of results for ultimate report preparation and perhaps

Example of a Misleading “S t ” Pi t“Spectrum” Picture

Institute for Telecommunication Sciences – Boulder, ColoradoJuly 2010 19

Page 20: Methodologies Results for Broadband Spectrum Surveys€¦ · Data Analysis Requirements • Post‐data‐collection analysis of results for ultimate report preparation and perhaps

Hardware Requirements: Off th Sh lf A l ?Off‐the‐Shelf Analyzers?

• Inherent limitations of off‐the‐shelf analog spectrum analyzers, digital spectrum analyzers, real‐

time spectrum analyzers, vector signal analyzers, etc. used for spectrum survey measurements:

Poor sensitivity (high noise figures);

Limited dynamic range (usually about 60‐70 dB);

Little or no front‐end RF filtering to reject strong off‐frequency signals.

• Most off‐the‐shelf analyzers have modes that can overcome some of these problems some of 

the time —we have yet to find one that solves all of these problems all of the timey p

Some have good, tunable RF front‐end filtering — but only across limited frequency ranges (e.g., above 3 

GHz)

Some have built‐in low noise amplification for good sensitivity — but only across other frequencies (e.g., 

below 3 GHz)

None give more than ≈ 60 dB of instantaneous dynamic range — inadequate for measurements of many 

transmitters, including radars, where 100 dB to 120 dB may be required for interference assessment and 

EMC studies

Institute for Telecommunication Sciences – Boulder, Colorado

EMC studies

July 2010 20

Page 21: Methodologies Results for Broadband Spectrum Surveys€¦ · Data Analysis Requirements • Post‐data‐collection analysis of results for ultimate report preparation and perhaps

Hardware Requirements: Custom RF F t E d NRF Front Ends are Necessary

S i l RFSpecial RF front‐ends between the measurement antenna(s) and theand the analyzer overcome the li it ti flimitations of off‐the‐shelf analyzers

Institute for Telecommunication Sciences – Boulder, ColoradoJuly 2010 21

Page 22: Methodologies Results for Broadband Spectrum Surveys€¦ · Data Analysis Requirements • Post‐data‐collection analysis of results for ultimate report preparation and perhaps

Data Analysis RequirementsData Analysis Requirements

• Post‐data‐collection analysis of results for ultimate report preparation and perhaps on‐line data dissemination — a factor that is consistently forgotten

• Substantive thought needs to go into data structures, analysis procedures and algorithms before a surveyand algorithms before a survey

It takes about 10 times longer to analyze recorded data than it does to acquire it

Data needs to be recorded so as to allow Data acquisitionData needs to be recorded so as to allow fast review of results and prep for analysis

Bad data records (inevitable!) must be quickly and easily identified and discarded

Data analysis

• Survey data doesn’t benefit taxpayers if it’s not published: analysis needs to lead to report publication and on‐line data dissemination

Institute for Telecommunication Sciences – Boulder, ColoradoJuly 2010 22

Page 23: Methodologies Results for Broadband Spectrum Surveys€¦ · Data Analysis Requirements • Post‐data‐collection analysis of results for ultimate report preparation and perhaps

Design Requirements for Spectrum S M tSurvey Measurements

• Any and all spectrum survey measurements are very costly in time, personnel, hardware and financial resources

• A badly‐performed survey will cost about as much as a well‐performed surveyperformed survey

• For proper and effective performance, before a survey marshal and verify:y

hardware (commercial / custom‐built)

band‐specific algorithms

t t d t ti i t d f d t i itiautomated computer routines scripted for data acquisition

analysis software and algorithms

plan for report prep and on‐line data dissemination

Institute for Telecommunication Sciences – Boulder, ColoradoJuly 2010 23

Page 24: Methodologies Results for Broadband Spectrum Surveys€¦ · Data Analysis Requirements • Post‐data‐collection analysis of results for ultimate report preparation and perhaps

Example: 108‐138 MHz BandExample: 108 138 MHz Band

VHF Omnirange-VOR Air Traffic Control (ATC) comms g ( )

40-dB attenneeded to preventoverload

Swept/m3 algorithm with sample detector:

Sample detector gives instantaneous values. /

7,000 sweeps across the 108‐138 MHz range at San Diego, CA, 1995

Swept/m3 saves the maximum, mean, and minimum values at each measured frequency.

Institute for Telecommunication Sciences – Boulder, Colorado

Band event 11, swept/m3 algorithm, sample detector, 10‐kHz bandwidth

July 2010 24

Page 25: Methodologies Results for Broadband Spectrum Surveys€¦ · Data Analysis Requirements • Post‐data‐collection analysis of results for ultimate report preparation and perhaps

Example: 138‐162 MHz BandExample: 138 162 MHz Band

Military LMR amateur Mil LMR Commercial Land Mobile Radioy

7,000 sweeps across the 138‐162 MHz range at San Diego, CA, 1995

Institute for Telecommunication Sciences – Boulder, Colorado

Band event 11, swept/m3, sample detector, 10‐kHz bandwidth

July 2010 25

Page 26: Methodologies Results for Broadband Spectrum Surveys€¦ · Data Analysis Requirements • Post‐data‐collection analysis of results for ultimate report preparation and perhaps

Example: 162‐174 MHz BandExample: 162 174 MHz BandFederal Land Mobile Radio (LMR)

52,500 sweeps across the 162‐174 MHz range at San Diego, CA, 1995 

Institute for Telecommunication Sciences – Boulder, Colorado

Band Event 12, swept/m3 algorithm, sample detector, 10‐kHz bandwidth

July 2010 26

Page 27: Methodologies Results for Broadband Spectrum Surveys€¦ · Data Analysis Requirements • Post‐data‐collection analysis of results for ultimate report preparation and perhaps

Example: 174‐216 MHz BandExample: 174 216 MHz Band

VHF television broadcastingChan 7 Chan 8 Chan 9 Chan10 Chan 11 Chan 12 Chan 13Chan 7 Chan 8 Chan 9 Chan10 Chan 11 Chan 12 Chan 13

18,500 sweeps across the 174‐216 MHz range at San Diego, CA, 1995

Institute for Telecommunication Sciences – Boulder, ColoradoJuly 2010 27

p g gBand event 13, swept/m3 algorithm, sample detector, 100‐kHz bandwidth

Page 28: Methodologies Results for Broadband Spectrum Surveys€¦ · Data Analysis Requirements • Post‐data‐collection analysis of results for ultimate report preparation and perhaps

Example: 806‐902 MHz BandExample: 806 902 MHz Band

LMR mobile ps cellular mobile am LMR base ps cellular base amLMR mobile ps cellular mobile am LMR base ps cellular base am

4,020 sweeps across the 806‐902 MHz range at San Diego, CA, 1995

Institute for Telecommunication Sciences – Boulder, ColoradoJuly 2010 28

p g gBand event 22, swept/m3 algorithm, sample detector, 10‐kHz bandwidth

Page 29: Methodologies Results for Broadband Spectrum Surveys€¦ · Data Analysis Requirements • Post‐data‐collection analysis of results for ultimate report preparation and perhaps

Example: 902‐928 MHz Band(ISM d d )(ISM and radar)

Military radars, ISM devices, automatic vehicle monitoring (AVM), spread spectrum devices, amateur, microwave ovensp , ,

Swept algorithm, Max‐hold detector:

60 successive sweeps across band with M h ld d t t lt bi d i tMax‐hold detector, results combined into a graph showing max, mean, and min results.

16,800 sweeps across the 902‐928 MHz range at San Diego, CA, 1995

Institute for Telecommunication Sciences – Boulder, ColoradoJuly 2010 29

p g gBand event 23, swept algorithm, maximum‐hold detector, 10‐kHz bandwidth

Page 30: Methodologies Results for Broadband Spectrum Surveys€¦ · Data Analysis Requirements • Post‐data‐collection analysis of results for ultimate report preparation and perhaps

Example: 1215‐1400 MHz BandExample: 1215 1400 MHz Band

Long range L-band search radars, fixed & mobile above 1350

28 scans across the 1215‐1400 MHz range at San Diego, CA, 1995

Institute for Telecommunication Sciences – Boulder, ColoradoJuly 2010 30

g gBand event 06, stepped algorithm, +peak detector, 1000‐kHz bandwidth

Page 31: Methodologies Results for Broadband Spectrum Surveys€¦ · Data Analysis Requirements • Post‐data‐collection analysis of results for ultimate report preparation and perhaps

Example: 1710‐2300 MHz BandExample: 1710 2300 MHz Band

Govt pt-pt commercial pt-pt Aux BC TV com pt-pt Govt mixed

Azimuth scan, using swept max‐hold algorithm:Use high‐gain dish antenna aimed at horizon.  For each pointing angle, sweep across frequency range using maximum‐hold detector to save highest signal seen at each frequency Re aim dish antenna onehighest signal seen at each frequency.  Re‐aim dish antenna one beamwidth and repeat frequency sweep.  Continue moving to new antenna angle until 360‐degree horizon has been measured.

Azimuth‐scan graph of the 1710‐2300 MHz range at San Diego, CA, 1995

Institute for Telecommunication Sciences – Boulder, ColoradoJuly 2010 31

g p g gBand event 10, swept algorithm, maximum‐hold detector, 100‐kHz bandwidth

Page 32: Methodologies Results for Broadband Spectrum Surveys€¦ · Data Analysis Requirements • Post‐data‐collection analysis of results for ultimate report preparation and perhaps

Example: 2300‐2500 MHz BandExample: 2300 2500 MHz Band

Mobile/TM 2.3-2.4, Govt radar 2.3-2.45, ISM 2.4-2.5, pt-pt 2.45-2.5

Microwave ovens

28,800 sweeps across the 2300‐2500 MHz range at San Diego, CA, 1995

Institute for Telecommunication Sciences – Boulder, ColoradoJuly 2010 32

p g gBand event 11, swept algorithm, maximum‐hold detector, 100‐kHz bandwidth

Page 33: Methodologies Results for Broadband Spectrum Surveys€¦ · Data Analysis Requirements • Post‐data‐collection analysis of results for ultimate report preparation and perhaps

Example: 2900‐3100 MHz BandExample: 2900 3100 MHz Band

Maritime and military radars

48 scans across the 2900‐3100 MHz range) at San Diego, CA, 1995

Institute for Telecommunication Sciences – Boulder, ColoradoJuly 2010 33

g ) gBand event 14, stepped algorithm, +peak detector, 1000‐kHz bandwidth

Page 34: Methodologies Results for Broadband Spectrum Surveys€¦ · Data Analysis Requirements • Post‐data‐collection analysis of results for ultimate report preparation and perhaps

Example: 3100‐3700 MHz BandExample: 3100 3700 MHz Band

Military radars Sat downlink 3.6-3.7

46 scans across the 3100‐3700 MHz range at San Diego, CA, 1995

Institute for Telecommunication Sciences – Boulder, ColoradoJuly 2010 34Institute for Telecommunication Sciences – Boulder, Colorado

g gBand event 15, stepped algorithm, +peak detector, 3000‐kHz bandwidth

Page 35: Methodologies Results for Broadband Spectrum Surveys€¦ · Data Analysis Requirements • Post‐data‐collection analysis of results for ultimate report preparation and perhaps

Example: 4200‐4400 MHz Band

Radar altimeters

Example: 4200 4400 MHz Band

32,500 sweeps across the 4200‐4400 MHz range at San Diego, CA, 1995

Institute for Telecommunication Sciences – Boulder, ColoradoJuly 2010 35

p g gBand event 17, swept/m3 algorithm, +peak detector, 300‐kHz bandwidth

Page 36: Methodologies Results for Broadband Spectrum Surveys€¦ · Data Analysis Requirements • Post‐data‐collection analysis of results for ultimate report preparation and perhaps

Example: 5250‐5925 MHz BandExample: 5250 5925 MHz Band

C-band radars: maritime, weather, military. ISM: 5725-5875

22 scans across the 5250‐5925 MHz range at San Diego, CA, 1995

Institute for Telecommunication Sciences – Boulder, ColoradoJuly 2010 36

g gBand event 20, stepped algorithm, +peak detector, 3000‐kHz bandwidth

Page 37: Methodologies Results for Broadband Spectrum Surveys€¦ · Data Analysis Requirements • Post‐data‐collection analysis of results for ultimate report preparation and perhaps

Example: 8.5‐10.5 GHz BandExample: 8.5 10.5 GHz Band

X-band radars: maritime, airborne, airborne weather, racons, etc.

23 scans across the 8500‐10550 MHz range) at San Diego, CA, 1995

Institute for Telecommunication Sciences – Boulder, ColoradoJuly 2010 37

g ) gBand event 23, stepped algorithm, +peak detector, 3000‐kHz bandwidth

Page 38: Methodologies Results for Broadband Spectrum Surveys€¦ · Data Analysis Requirements • Post‐data‐collection analysis of results for ultimate report preparation and perhaps

BibliographyBibliography

‐ Broadband Spectrum Survey at Denver, Colorado, NTIA Report TR‐95‐321, Sep. 1995. F. H. Sanders, V.S. Lawrence and R. L. Hinkle. http://www.its.bldrdoc.gov/pub/surv_dnv/index.php

‐ Broadband Spectrum Survey at San Diego, California, NTIA Report TR‐97‐334, Dec. 1996. F. H. Sanders, B. J. Ramsey and V. S. Lawrence. http://www.its.bldrdoc.gov/pub/surv sdg/index.phpand V. S. Lawrence. http://www.its.bldrdoc.gov/pub/surv_sdg/index.php

‐ Broadband Spectrum Survey at Los Angeles, California, NTIA Report TR‐97‐336, May 1997. F. H. Sanders, B. J. Ramsey and V. S. Lawrence. http://www.its.bldrdoc.gov/pub/ntia‐rpt/97‐336/index.php

B db d S t S t S F i C lif i NTIA R t TR 99 367 M 1997 F H S d‐ Broadband Spectrum Survey at San Francisco, California, NTIA Report TR‐99‐367, May 1997. F. H. Sanders, B. J. Ramsey and V. S. Lawrence. http://www.its.bldrdoc.gov/pub/ntia‐rpt/99‐367/index.php

‐ Land Mobile Radio Channel Usage Measurements at the 1996 Summer Olympic Games, Feb. 1998, NTIA Report TR‐98‐357. F. H. Sanders, G. R. Hand and V.S. Lawrence.  http://www.its.bldrdoc.gov/pub/ntia‐rpt/98‐357/index.php

‐Measurements to Characterize Land Mobile Channel Occupancy for Federal Bands 162-174 MHz and 406-420 MHz in the Washington, D.C. Area, NTIA Report TR‐07‐448, Jul. 2007. J. R. Hoffman, R. J. Matheson and R. A. Dalke. http://www.its.bldrdoc.gov/pub/ntia‐rpt/07‐448/

Institute for Telecommunication Sciences – Boulder, ColoradoJuly 2010 38