Metals Framework 1

  • Upload
    jisti

  • View
    218

  • Download
    0

Embed Size (px)

Citation preview

  • 7/31/2019 Metals Framework 1

    1/14

    METALS AND METALWORKINGA research framework for archaeometallurgy

    HMS Occasional Publication No 6

  • 7/31/2019 Metals Framework 1

    2/14

  • 7/31/2019 Metals Framework 1

    3/14

    i

    Metals and MetalworkingA eseach famewok for achaeometallugy

    Te Historical Metallurgy SocietyOccasional Publication No 6 2008

    Compiled and edited by Justine Bayley, David Crossley and Matthew Ponting

  • 7/31/2019 Metals Framework 1

    4/14

    ii

    Metals & Metalworking: A research ramework or archaeometallurgy

    First published in the UK in 2008 by Te Historical Metallurgy Society Ltd.Registered Oce: 1, Carlton House errace, London SW1 5DB.

    Copyright Te Historical Metallurgy Society Ltd 2008. All rights reserved. No part o this book maybe reproduced, stored or introduced into a retrieval system, or transmitted in any orm or by any means(electronic, mechanical, photocopying, recording or otherwise) without the express permission o TeHistorical Metallurgy Society Ltd.

    ISBN 978-0-9560225-0-9

    Tis book is available direct rom HMS Publication Sales:22 Windley Crescent, Darley Abbey, Derby DE22 1BZ

    ypeset by Moiety Publishing, Little Crag, Crook, Kendal, Cumbria, LA8 8LE.Printed by Te Charlesworth Group, Flanshaw Way, Flanshaw Lane, Wakeeld WF2 9LP.

    Set in Minion Pro 11/13.2 and Miriad Pro 10/12

  • 7/31/2019 Metals Framework 1

    5/14

    iii

    3.1 Prehistoric metallurgy in the British Isles 39Copper mines 39Lead mines 40in 41Precious metals 41Bronze Age metalworking 41Arteact analyses 42Iron Age bronze-working 42

    3.2 Te beginnings o iron technology 43Iron slags 44

    3.3 Roman ironworking in the Weald 453.4 Te introduction, development and spread o brass 47Brass production 47Uses o brass 48

    3.5 Brass in the early medieval period: the case ordiscontinuity and decline 49

    3.6 Copper: the medieval gap 51Copper mining 51Working o copper alloys 52

    3.7 Bole to cupola: lead and silver production romthe medieval period onwards 53

    Bole smelting 53Ore-hearth lead smelting 54Te coal-red cupola 54Processing argentierous lead ores 56

    3.8 Te development o iron and steel technologyrom the Middle Ages to the 19th century 57Te unpowered bloomery 57Medieval iron and steel technology: solid orliquid? 57Water-powered bloomeries 58Te charcoal blast urnace 59Te use o mineral uel by the iron industry 61Pre-Bessemer steel making 62Bulk steel making: Bessemer, open hearthand electric arc 63

    3.9 Te archaeology o metals in the 20th century 64

    Part 4 : Conclusions and agenda

    4.1 Conclusions 674.2 A research agenda or archaeometallurgy in Britain 67Multi-period themes 67Prehistoric topics 68Roman topics 68Early medieval topics 68High medieval topics 68Post-medieval topics 68

    4.3 owards a strategy or archaeometallurgyin Britain 69

    4.4 National and regional research rameworks 70National agendas 70English regional agendas 70

    4.5 Further reading 71

    BibliographyIndex

    Part 1: Te resource

    1.1 Geological background 31.2 Landscapes 3

    Recognizing landscapes 3Surace landscapes 6ownscapes and communities 7Below-ground eatures 8

    1.3 Recording metallurgical evidence 10Sites 10

    Evidence or metal production 11echnological debris 12Raw materials 12Structural materials 12Crucibles and moulds 12Slags 13Metals 14

    1.4 Arteacts 14Analysis and study 14A way orward 15

    1.5 Documentary resources 16Lists o ironworks 17Commercial records 17Estate records 17Other nancial records 17

    Litigation 18Sources or technology 181.6 Managing the resource 19

    Statutory protection o sites 19Historic Environment Records 19Portable Antiquities Scheme 20Curation o archives 21Current threats 21

    Part 2: Methods in historical metallurgy

    2.1 Introduction 23Te context 23

    2.2 Fieldwork methods 23Fieldwalking 24

    Geophysics and archaeomagnetic dating 24Environmental and geochemical survey 26Excavation 26

    2.3 Sampling 27Landscapes 27Sites and residues 28Brown-eld sites 29Arteacts 30

    2.4 Laboratory investigations 31What should be analysed? 31Analytical techniques 32

    X-radiography 32Microscopy 33Chemical analysis 33Micro-beam techniques 35

    Isotopic analysis 35Dating techniques 362.5 Experimental archaeology 36

    contents

    List o fguresList o tablesList o examplesAcknowledgements

    SummaryRsumZusammenassung

    Introduction Part 3: Knowledge and understandingPage Page

    23

    3

    67

    73

    81

    391

  • 7/31/2019 Metals Framework 1

    6/14

    iv

    1 he blast urnaces at Stanton, Derbyshire, beingdemolished in 1976.

    2 Maps showing the mineral deposits o the BritishIsles. a) Iron (excluding bog ores): grey tone = theCarbonierous coalelds, with claystone and blackbandsedimentary ironstones; red = the Weald, Cretaceousclaystone ironstones; yellow spots = oxide iron oresassociated with the SW mineral province, includinggossan and oxides aer siderite; red spotsoxide iron oresassociated with epigenetic mineralization on Mesozoicbasin margins; stars = sedimentary ooidal ironstones oMesozoic age; squares = other sedimentary ironstoneso Mesozoicertiary age. b) Lead, zinc and silver:areas indicate main lead-zinc oreelds. Tose in blackalso produced signicant quantities o silver. c) Copper.d) in: working o alluvial tin deposits in SW England

    took place over a wider area than the distribution othe primary mineralization. e) Gold. ) Coal.

    3 A rake (an opencast mine ollowing a vein containinglead ore) rom which the minerals have been removed,at Dirtlow, Castleton, Derbyshire.

    4 Farmhouse with attached smithy (second building romthe right) at Dungworth, near Sheeld, Yorkshire.

    5 Remains o 18th-century blast urnaces at the WorldHeritage Site at Blaenavon, Gwent, South Wales.

    6 A view o the Shea valley, Sheeld in the mid 19thcentury showing many small workshops with theirorge chimneys.

    7 A tenement workshop in the Birmingham Jewellery

    Quarter.8 Drawing o Dream mine, Wirksworth, Derbyshireshowing two shas, the one to the le with a windlass.Aer Buckland 1823.

    9 Te sub-surace o a lead-mining landscape at GunnersideGill, North Yorkshire. Tis engine house is on Sir FrancisLevel 240 below the valley (Fig 35}. wo Davey hydraulicengines were installed in 1880: one (centre le) workedthe pumps (two large vertical pipes) and another (behindcamera viewpoint) the winding gear. One cage is sus-pended just below oor level.

    10 A small-scale 17th- and 18th-century mining land-scape at Bonsal Moor, Derbyshire. Te upcast (spoil)around the mine shas dominates the view.

    11 Te Crowns engine house, Botallack mine, Cornwall isset at the oot o a cli on an outcrop o a rich tin andcopper lode. Tis mine was worked rom at least the16th century.

    12 Chingley blast urnace, Kent, under excavation, show-ing the bellows area in the oreground and the urnacehearth beyond.

    13 Plan o Chingley blast urnace with bellows area at thetop and the wheel pit to the right, discharging into theculverted tail race.

    14 Drawings o common crucible orms dating rom IronAge to the post-medieval periods. 1: Iron Age, 23:Roman, 46: early medieval, 7: later medieval, 8: post-

    medieval. Te grey tone represents added clay, servingeither as lids (2 and 6) or extra outer layers (3 and 7).

    list of fiGURes

    15 Base o excavated Iron Age bloomery urnace at CrawcwelltWest, Gwynedd. Te red-burnt clay shows the walls were

    originally ~200mm thick. Scale bar 0.5m.16 ap slag, showing its characteristic ow-orm suracestructure.

    17 Blast-urnace slags are usually glassy in appearance andcan range in colour rom blue/green through to grey/brown. Tey were oen re-used as hardcore and so canbe ound in small pieces ar away rom urnace sites.

    18 Plan o excavated eatures at the Roman site at SheptonMallet, Somerset, where both iron smelting (yellowshading) and smithing (red spots) were taking place.Note the partial spatial separation between the twoactivities.

    19 Hoard o complete and ragmentary precious-metalIron Age torcs rom Snettisham, Norolk.

    20 Frequency plot o alloys used to make dierent typeso late-Roman crossbow brooches. Te early examples(191A) are mainly leaded bronzes while the latest(192) have only a minority o leaded bronzes but manybrasses and other lead-ree alloys, many o which weremercury gilded.

    21 Section through knie blade showing seven layers inthe shear steel. Image width ~1mm.

    22 Section through knie blade. Te varied texture to thele shows the incorporation o several pieces o scrapmetal. Image width ~1.5mm.

    23 Sketch, probably rom the mid-17th century, showingLittle Rowsley lead-smelting mill on the Smelting

    House Brook that owed west into the River Derwent,Derbyshire (bottom), and the woodland (top) thatprovided uel or the smelter (Chatsworth H304/43).

    24 Water-powered stamp mill crushing ore in Germany inthe 16th century rom Agricolas De re metallica. AerHoover and Hoover 1950.

    25 20th-centur y ore stamps rom Zennor, Cornwall.Compare with Figure 24 and note how little haschanged in 400 years.

    26 Sketch o Maryport blast urnace, Cumbria, romAngersteins diary. Aer Berg and Berg 2001.

    27 wo linear slag tips at Crowdundle Beck, Cumbria;the le-hand one is being eroded by the beck. Tisbloomery site was identiied by Davies-Shiel and

    probably dates to the 17th century.28 Metal-detectorists collected this later 3rd century

    copper-alloy waste rom the manuacture o Romano-British coinage, and reported it through the PortableAntiquities Scheme.

    29 Cabinet containing polished metallurgical samples madebetween 1863 and 1865 by Henry Cliton Sorby, thepioneer Sheeld metallographer. Now in the collectionso the South Yorkshire Industrial History Society.

    30 Red-hot wrought iron being rolled at the re-erectedrolling mill at Blists Hill, Ironbridge. raditionalmetalworking skills are preserved as living history.

    31 Magnetometer survey at Geli Goch, Gwynedd using a

    4m-square rame at a sensor height o 320mm. o theright o the urnace is the working pit, with the last runo tap slag still in situ.

    1

    5

    6

    6

    7

    7

    8

    9

    9

    10

    11

    12

    12

    13

    13

    14

    14

    14

    14

    15

    16

    16

    17

    18

    19

    19

    20

    20

    21

    24

    25

    Figure Page Figure Page

  • 7/31/2019 Metals Framework 1

    7/14

    v

    32 Le: High-resolution magnetometer survey resultsor a 4m square containing a urnace at Crawcwellt.Right: Calculated map o multiple dipoles (stars markthe centre o each dipole) which closely models thesurvey, allowing the direction o the calculated dipoles

    to be used to estimate the date o last ring. Positivecontours solid at 100n, negative contours dashed at10n. Aer Crew 2002.

    33 Schematic plan o an Iron Age round house at Billown,Isle o Man, overlaid with areas o enhanced magneticsusceptibility (a), and geochemical survey results orcopper (b), showing that metalworking activities wererestricted to the NW part o the structure.

    34 Iron-smelting urnace 137 at Stanley Grange, Derbyshireaer the removal o supercial material and the ll othe slag-tapping pits. Scale bars 1m and 0.3m. AerChallis 2002.

    35 Gunnerside Gill, North Yorkshire: the surace o a leadmining landscape. Virtually the whole surace on both

    sides o the valley and on the high moorland beyond isoccupied by a palimpsest o hushes, shas, levels, ore-dressing oors, and their associated waste tips, watersupplies and transport networks.

    36 Plot o hammerscale distribution in workshop R atWesthawk Farm, Kent, in relation to other eatures. Soilsamples were collected on a grid and the hammerscaleextracted; warmer tones show increased hammerscaleconcentrations. Aer Paynter 2007a.

    37 Buildings at Jessops Brightside steelworks, Sheeld, setinto large-scale metalworking waste (dark soil consist-ing o ash, crucible waste, cinders and slag). Scale bar2m.

    38 Elemental maps o tin (upper) and copper (lower)in a cross-section o a prehistoric bronze sheet. Tewarmer colours (yellow and red) indicate high levelso each element. It is easy to see that there are areas otin enrichment towards the suraces o the section thatalso correspond to areas o lower copper concentration.A surace analysis gave a result o 19% tin whereas abulk analysis o an interior area revealed the correcttin content as 8%.

    39 X-radiograph o a post-medieval crucible in section,with the metal-rich slag on the inside surace show-ing as bright zones, and metal droplets as white spots,especially in the thickness o the base.

    40 X-radiograph o a Roman dagger sheath plate made o

    iron and decorated with tin (which shows as brighterlines). Te round rivet heads are also tinned. Bothmetals are totally mineralized but X-radiographyprovides a simple and non-destructive method oinvestigation. Length 105mm.

    41 X-radiograph o early medieval knie with pattern-weld-ing visible in the back o the blade. Length 178mm.

    42 hree medieval arrowheads: let: bodkin point, ype7; centre: compact winged and socketed, ype 16;right: ype 10. ypology ater London Museum1967.

    43 Micrograph o pure erritic iron. Image width 1mm.44 Micrograph o unhardened steel containing 0.7%

    carbon. Image width 1mm.45 Inductively-coupled plasma atomic emissionspectrometer.

    46 Scanning electron microscope in use. Te main screenshows an image o the sample in the chamber to thele at high magnication, while the screen to the rightdisplays the results o EDS analysis.

    47 Lead-isotope plot o data rom Mendip lead (red

    lozenges) and Roman silver denarii (blue squares)superimposed on data rom other ore elds.48 Experimental iron smelting at Plas an y Bwlch, North

    Wales.49 View o the mining landscape at Copa Hill, Cwmystwyth.

    Te Bronze Age workings are at the top o Comet lode(running vertically down the hillside in the centre othe picture).

    50 Map showing nds o stone hammers, and known Britishprehistoric mining sites in relation to ore bodies.

    51 Plano-convex copper ingot rom Edins Hall broch,Borders. Diameter 260mm.

    52 Early Bronze Age cannel coal and lead necklace, asexcavated, Peebleshire.

    53 wo Bronze Age gold discs imitating the gold-boundamber discs o Wessex. Found as a grave group o theFood Vessel Period, Barnhill, Broughton Ferry, Angus.

    54 Iron Age sword with brass appliqus rom Isleworth,Middlesex. Length 750mm.

    55 Iron Age slag heap at Moores Farm, Welham Bridge,East Yorkshire, during excavation. Aer Halkon 1997.

    56 Roman urnace at Laxton, Northamptonshire. Te basalslags have been removed and the lower deposit o orenes sectioned. Te right hand side o the urnace hasbeen damaged by a recent pit. Aer Crew 1998b.

    57 Backscattered SEM image o Late Iron Age/Roman ironslag (slag cake) showing metallic iron (white) and wstite

    (iron oxide, light grey) in a dark glassy matrix.58 Map showing the location o Roman iron-smeltingsites in the Weald. he our sizes o red squaresrepresent sites with over 10,000m3 o iron slag, 1,00010,000m3, 1001,000m3, and under 100m3 o iron slagrespectively.

    59 he stamp on a Classis Britannica roo tile romBeauport Park, East Sussex.

    60 A Romano-British bloomery (iron-smelting urnace)at Little Furnace Wood, Mayeld, East Sussex.

    61 Early Roman brass-making crucibles rom Culver Street,Colchester, Essex (le) and Palace Street, Canterbury,Kent (right). Aer Bayley 1984.

    62 Graph showing alloy composition o dierent 1st-

    century brass brooch types. Aer Bayley and Butcher2004.

    63 Te zinc content o Roman brass coins dropped steadilyrom the 1st century AD onwards. Aer Dungworth1996b.

    64 Anglo-Saxon copper-alloy square-headed brooch romWest Heslerton, Yorkshire, decorated with mercurygilding and soldered-on silver oils. Length 245mm.

    65 Bar-chart o copper alloys in use rom the Romanconquest to the Industrial Revolution. Based on datarom Dungworth 1997 and Blades 1995.

    66 Obverse and reverse o a Northumbrian brass styca,now in Manchester Museum.

    67 Te upper valve o a piece mould which was used tocast a bronze penannular brooch at Dunadd, Argyll.Length ~50mm.

    35

    36

    37

    40

    40

    40

    41

    41

    43

    43

    44

    45

    45

    46

    47

    47

    48

    49

    50

    50

    50

    51

    25

    26

    27

    28

    29

    30

    30

    32

    33

    33

    34

    3434

    35

    Figure Page Figure Page

  • 7/31/2019 Metals Framework 1

    8/14

    vi

    68 Agricolas illustration o 16th-century copper smeltingin Germany. Aer Hoover and Hoover 1950.

    69 Coniston copper mines: the site descends rom theMines Royal opencast at Simons Nick (skyline right ocentre), through later adits and spoil tips to the 18th- and

    19th-century ore-dressing oors in the oreground.70 16th-century crucibles used or melting copper, romthe ower o London. Note the increased size com-pared with the earlier crucibles in Figure 14.

    71 wo small lead smelting bales beside Fell End mine,Swaledale, Yorkshire. Aer Murphy and Baldwin 2001.

    72 Reconstruction o a Derbyshire 16th-century lead-smelting bole. In the stone enclosure (G) were placedwood (shankerds B and blocks D), with blackwork(part-smelted ore C), beneath ore and small wood (A).Te smelted lead owed by channels (E) to a mould (F).Aer Kiernan 1989.

    73 Backscattered SEM image o lead-smelting slag romthe earlier (16th century) deposits at Combe Martin,

    Devon. Te dendrites are olivine and the bright drop-lets are sulphides o lead, copper, iron and zinc in aglassy matrix.

    74 Backscattered SEM image o lead smelting slag romthe 19th-century deposits at Combe Martin, Devon.Te bright phase is spinel (hercynite), the dark needle-like crystals are corundum (Al

    2O

    3) and the mid-grey

    phase is anorthite (CaAl2Si

    2O

    8).

    75 Fragment o the lining o a 13th-century cupellationhearth impregnated with lead oxide (also known as alitharge cake) rom Tetord, Norolk.

    76 A bone ash cupel rom Cripplegate, London with the silverthat was assayed in it still in position. Scale in mm.

    77 Reconstruction o the blacksmiths orge on Site 31at Hamwic (Saxon Southampton), Hampshire. AerMacket al2000.

    78 Rockley, Yorkshire. Plan showing the bloomery urnace(A1), bellows house (A2) and water-wheel (A3). Te stringhearth (B1) or reheating blooms also had bellows (B2)worked by a water-wheel (B3). Te purpose o the thirdwheel-pit (C) is uncertain, being too ar rom the anvil tobe likely to have powered a hammer. Te overow (F) tookwater rom the pond (H) over the dam (G) to the tail-race(E). Aer Crossley 1990.

    79 Part o the water-wheel in position in the wheel pit atRockley, Yorkshire.

    80 16th-century gun ounding: an illustration rom

    Biringuccios Pirotechnia showing how castings werebored.

    81 Early-18th-century gun-boring mill at Pippingord,East Sussex. wo o our trolley wheels are shown, withrotted timber rails. Te hemispherical object is a chuckto hold a boring-bar, as seen in Fig 80.

    82 Drawing o a French conversion orge showing a neryhearth (le) and water-powered orge hammer andchaery hearth (right). Aer Diderot (Gillispie 1959).Tis can be compared with Fig 83.

    83 Chingley nery orge under excavation, showing thedam at the top, water courses on both sides, the nery(lower le) and chaery (lower right). Te hammer

    area is in between, with the anvil base in the centre(under the 3 scale). In the rst phase, it appeared tobe driven rom a wheel to the le, with ulcrum posts

    surviving, and in the second rom a wheel to the right(in the same race as the chaery) with the base-rameshowing. Figure 82 shows the same arrangement otwo wheel-races.

    84 he bellows arch o Abraham Darbys urnace at

    Coalbrookdale, Shropshire.85 Reconstruction o the charcoal-uelled blast urnace atDuddon, Cumbria, built in 1736.

    86 he early-18th-century cementation urnace atDerwentcote, Co Durham with attached workingbuildings.

    87 Te interior o the cone o the cementation urnaceat Derwentcote showing internal ues rom the ringchamber beneath.

    88 Casting a bell weighing about 5 tons or the SanFrancisco re station in 1860 at the Naylor, Vickersand Company works at Millsands in Sheeld. AerBarraclough 1976.

    89 Te gun shop at Vickers River Don works in Sheeld,

    c1900. Aer Barraclough 1976.

    61

    61

    63

    63

    64

    64

    51

    52

    53

    53

    54

    55

    55

    56

    57

    58

    58

    59

    60

    60

    60

    60

    Figure Page Figure Page

  • 7/31/2019 Metals Framework 1

    9/14

    vii

    list of tables

    1 Finds associated with common metalworking 27processes

    2 Commonly-used analytical techniques 323 Early Bronze Age mine sites 394 Sites with evidence o copper-alloy working 435 Excavated water-powered bloomeries 59

    Metallierous resources in Britain 4Making sh hooks in Kings Lynn 7Evidence or urban metal industries 8Metal industries in Cornwall 1118th/19th-century knie manuacture in Sheeld 16Ironworks records up to the mid 18th century 17How magnetometer surveys can date urnaces 25Hammerscale distribution in a smithy 29X-radiography can reveal metallographic structures 33non-destructivelyMetallography o medieval arrows 34Scientic investigation o Roman iron smelting 46Lead smelting at Combe Martin 55

    list of eXaMPles

    PagePage

    acknowledGeMents

    he Archaeology Committee o the Historical MetallurgySociety would like to thank warmly all those who have con-tributed to the document by providing inormation orillustrations, or by reading and commenting on earlier dras:Anna Badcock, Justine Bayley, Paul Belord, Mark Bennett,Chris Carey, Peter Claughton, Jane Cowgill, revor Cowie, PaulCraddock, David Cranstone, Peter Crew, David Crossley, MaryDavis, David Dungworth, Vanessa Fell, Brian Gilmour, AdamGwilt, Andrew Heald, Jeremy Hodgkinson, Jon Hoyle, FraserHunter, Gill Jule, Peter King, Susan La Niece, Rod Mackenzie,Adrian Marsden, Gerry McDonnell, Cath Mortimer, SamMurphy, Stuart Needham, Peter Northover, Sarah Paynter,

    Matthew Ponting, Tilo Rehren, Martin Roe, Chris Salter,Adam Sharpe, Sue Stallibrass, David Starley, Simon imberlake,Lynn Willies and im Young.

    Te ollowing individuals and institutions are thanked or givingpermission or the reproduction o copyright illustrations:ARCUS: Fig 37.Justine Bayley: Figs 30, 61, 84 and cover image 9.Te British Museum: Fig 54.Keith Challis: Fig 34.Te Chatsworth Settlement rustees: Fig 23.David Cranstone: Figs 27, 35, 69, 86 and 87.Peter Crew: Figs 15, 31, 32, 48 and 56.David Crossley: Figs 1, 3, 4, 5, 12, 13, 25, 78, 79, 81 and 83.Roger Doonan: Fig 33.David Dungworth: Figs 63 and 65.

    Peter Halkon: Fig 55.English Heritage: Figs 14, 16, 17, 18, 20, 39, 40, 41, 46, 62, 64,70, 75, 76 and cover images 1 and 3.Jeremy Hodgkinson: Figs 58, 59 and 60.John Hodgson and Southhampton Archaeology: Fig 77.David Kiernan: Fig 72.Rod Mackenzie: Figs 21 and 22.Sam Murphy: Fig 71.Irit Narkiss: Fig 66.National Monuments Record, English Heritage: Fig 7.Te National Museum o Scotland: Figs 51, 52 and 67.Norwich Castle Museum: Fig 19.

    Sarah Paynter: Figs 36, 57, 73 and 74.Matthew Ponting: Figs 28, 38, 45 and 47.Martin Roe: Fig 9.rustees o the Royal Armouries: Figs 42, 43 and 44.Adam Sharpe: Fig 11.South Yorkshire Industrial History Society: Fig 29.Joan aylor: Fig 53.Simon imberlake: Figs 49 and 50.Alison Whitby and the Lake District National Park Authority:Fig 85.Lynn Willies: Fig 10.im Young: Fig 2.

    Te Historical Metallurgy Society is grateul to English Heritageor providing a generous publication grant.

  • 7/31/2019 Metals Framework 1

    10/14

    viii

    sUMMaRYMetals and metalworking: A research frame-work for archaeometallurgy

    Te volume provides a research ramework or archaeometal-lurgy in Britain, including a resource assessment, a researchagenda and an outline research strategy. he irst sectionidenties the nature o the resource. Te evidence ranges inscale rom landscapes and townscapes to sites and structures;it includes arteacts and residues rom production as well asdocumentary sources. Tis section is particularly directed atcurators and planners as it also deals with the management andprotection o the resource, or which they have responsibility.

    he second section, on methods in historical metallurgy,demonstrates that the subject goes beyond the work o thelaboratory-based specialist, whose methods o examinationand analysis are described. Also essential are the methods

    o eld archaeology, landscape survey, geo-prospection andexperimental archaeology, and the skills o metal-smiths andpalaeo-environmentalists. Te current pattern o development-led archaeology, in particular work on brown-eld sites (whichmay be regarded as contaminated land), threatens the losso sub-surace archaeological evidence or metal industries;appropriate methodological approaches to investigation,recording and sampling are discussed. he strengths andweaknesses o methods are examined, and areas or urtherdevelopment are outlined.

    Te third section summarises what is known about metalwork-ing in the past, ocusing on selected topics which illustrateeither the considerable progress that has recently been made,or the need or urther research. Te examples include botherrous and non-errous metalworking o all periods. Teearliest metallurgy in the British Isles belongs to the BronzeAge and Iron Age. For the Bronze Age the concentration is onmetal mining because so much new inormation has recentlycome to light. For the Iron Age, the ocus is on the introductiono iron as an everyday metal, though copper alloys continued inuse. Te Roman period saw increasing use o metal and hencemetalworking; the two examples given are the iron industry othe Weald, and the widespread adoption o brass as a commoncopper alloy. In the medieval period the lack o evidence orcopper production is highlighted and the use o various copperalloys is discussed. Medieval methods o steel production

    are considered, as are later steel-making processes. Aer themedieval period there is a major change o scale, with theindustrialisation o many metal industries. Relevant categorieso documentary evidence are outlined, emphasising thosewhich complement the archaeological record. An overview ispresented o current knowledge o two metal industries import-ant in post-medieval and modern Britain: lead production andthe iron and steel industry. Archaeometallurgical studies canshow how these industries, and the questions surrounding theirdevelopment, are linked to changes in British society and thelives o its people.

    Finally, the research agenda identies major gaps in knowledgeand suggests how they might best be lled. Tese comprisemulti-period topics relating to methods in ieldwork andscientic examination, and other topics divided by period,

    rom prehistoric to the present day. Tis section also outlinesa strategy or promoting best practice in the discipline.

    RsUM

    Mtaux et mtallurgie: un cadre de recherchepour larchomtallurgie.

    Ce volume propose un cadre de recherche pourlarchomtallurgie en Grande-Bretagne, prsentant dans cecontexte une valuation des ressources, un agenda de recherche,ainsi quun rsum de la stratgie de recherche tablie. Lapremire partie rpertorie la nature des ressources : celles-cisont prsentes direntes chelles et varient de paysages etscnes urbaines des sites et structures archologiques. Ellesincluent galement des artacts et des rsidus de productionainsi que des sources documentaires. Cette section est toutparticulirement destine aux archologues et historiens

    locaux ainsi quaux principaux entrepreneurs impliqus dansdes projets de dveloppement et travaillant pour la communeou tout autre autorit locale, puisquelle est aussi consacre la gestion et la protection de ces ressources, pour lesquellesils sont responsables.

    La deuxime partie concerne les mthodes utilises en mtal-lurgie historique et montre que le thme abord va plus loinque le travail dun spcialiste, uniquement tabli dans sonlaboratoire, dont les techniques dinvestigation et danalysesont dcrites. Les mthodes darchologie de terrain, dereconnaissance du paysage, de go prospection et darchologieexprimentale, ainsi que les comptences des artisans du mtalet des palo environnementalistes sont tout aussi essentielles.La tendance actuelle de larchologie mene dans le cadrede projets de dveloppement, en particulier les travaux surdes sites urbains labandon (qui pourraient tre considrscomme des terrains contamins), menace dentraner la pertedindices archologiques lis des industries mtallurgiques,qui sont prsents dans les sous-couches de surace ; di-rentes approches mthodologiques adaptes linvestigation,larchivage et lchantillonnage dans ce contexte sont discutes.Les atouts et aiblesses de chaque mthode sont examins et lesdomaines permettant de dvelopper plus avant ces problm-atiques sont exposs.

    La troisime partie rsume les connaissances que nous avons

    du travail du mtal comme il tait ralis dans le pass, mettantlaccent sur des thmes bien dinis, qui illustrent, soit leprogrs considrable qui a t ralis rcemment, soit le besoinpour des recherches plus approondies. Les exemples choisiscomprennent aussi bien le travail du er que les non erreuxde toutes les poques. La mtallurgie la plus ancienne des lesbritanniques date de lge du bronze et de lge du er. Pourlge du bronze, lemphase a t mise sur les travaux miniersen raison du nombre important de nouvelles donnes qui ontrcemment t mises au jour. Concernant lge du er, lattentionsest plus particulirement tourne vers lintroduction et lusagedu er dans la vie de tous les jours, alors que les alliages decuivre taient encore utiliss. Lpoque romaine voit une aug-mentation de lutilisation des mtaux et par consquent dutravail des mtaux ; les deux exemples choisis pour cet ouvragesont lindustrie du er du Weald, et ladoption trs rpandue du

  • 7/31/2019 Metals Framework 1

    11/14

    ix

    laiton comme alliage courant de cuivre. Durant le Moyen Age,le manque de preuves lies la production du cuivre est misen avant, et lusage des dirents alliages de cuivre est discut.Les mthodes mdivales de production dacier sont galementexpliques, tout comme les procds plus rcents utiliss ensidrurgie. A la suite du Moyen Age, un changement dchellemajeur sest produit, en raison de lindustrialisation de nom-

    breuses usines travaillant le mtal. Les catgories pertinentesde sources crites sont prsentes, mettant particulirementlemphase sur celles qui complmentent les preuves arch-ologiques. Une vue densemble de la connaissance actuellede deux industries du mtal qui ont t importantes dansla Grande-Bretagne mdivale et moderne sont prsentes: la production du plomb et la sidrurgie. Les tudes arch-omtallurgiques peuvent montrer comment ces industries etles questions, qui entourent leur dveloppement, peuvent trelies des changements au sein de la socit britannique et aumode de vie de sa population.

    En conclusion, cet agenda de recherche identie les lacunes

    majeures de nos connaissances et suggre comment ellespourraient tre combles au mieux. Celles-ci impliquent desthmes qui comprennent plusieurs poques et qui sont lis desmthodes de travail de terrain et de recherche scientique, ainsique dautres sujets diviss par poques, allant de la prhistoire aujourdhui. Cette section prsente aussi succinctement unestratgie permettant la promotion de la meilleure voie suivredans cette discipline qui est larchomtallurgie.

    ranslated by Aude Mongiatti.

    ZUsaMMenfassUnGMetall und Metallhandwerk: Ein Rahmenplanzur Forschung in Archometallurgie

    Der vorliegende Band prsentiert einen Rahmenplan rarchometallurgische Forschung in Grobritannien, bestehendaus einer Bewertung der vorhandenen Datenbasis, einemForschungsplan, und einer bergreienden Forschungsstrategie.Der erste Abschnitt beschreibt die Natur der Datenbasis,

    von spezischen Landschaen und Stadtanlagen zu indivi-duellen Gebuden und Strukturen; er umasst Fundeund Produktionsablle ebenso wie extquellen. DieserAbschnitt richtet sich speziell an Denkmalbeautragte

    und Planungsbehrden, da er auch die Verwaltung undUnterschutzstellung der Datenbasis betrif, r die diese dieVerantwortung tragen.

    Der zweite Abschnitt, ber Methoden in der historischenMetallurgie, zeigt da das Arbeitsgebiet mehr umasst als nurdie Arbeit des laborgebundenen Spezialisten dessen Methoden

    der Untersuchung und Analyse beschrieben werden. Methodender Feldarchologie, Landschats- und geophysikalischenProspektion und experimentellen Archologie, und dieErahrungen von praktizierenden Metallhandwerkern undUmwelthistorikern sind alle ebenso wichtig. Der momentanerend von Baumanahmen-getriebener Archologie, undinsbesondere die Regeneration von Industriebrachen (ein-schlielich kontaminierter Bden), bedroht die Erhaltung vonBodendenkmalen der Metallindustrie; angemessene Methodender Erorschung, Erassung und Beprobung werden diskutiert.Vor- und Nachteile bestimmter Methoden werden abgewogen,und Gebiete zukniger Entwicklung skizziert.

    Der dritte Abschnitt gibt eine Zusammenassung desWissensstandes ber Metallverarbeitung in der Vergangenheit,mit Schwerpunkt au ausgewhlten hemen die entwederdie beachtlichen Fortschritte beschreiben, die in jngererZeit gemacht wurden, oder die der weiteren Forschungbesonders bedren. Die Beispiele umassen Eisen- undNichteisenmetallurgie aus allen Epochen. Die rheste

    Metallurgie in Grobritannien gehrt in die Bronze- undEisenzeit. Fr die Bronzezeit liegt der Schwerpunkt audem Metallbergbau, wo in den letzten Jahren viele neueInormationen zutage gekommen sind. Fr die Eisenzeitliegt der Schwerpunkt au der Einhrung von Eisen alsalltglichem Metall, obwohl Kuperlegierungen weiter inGebrauch blieben. Die Rmerzeit sah einen generellen Anstiegvon Metallnutzung und verarbeitung; die zwei Beispiele hierbetreen die Eisenindustrie im Weald und die Verbreitung

    von Messing als wichtiger Kuperlegierung. Das Fehlen vonHinweisen au Kuperverhttung bei gleichzeitiger Nutzung

    von verschiedenen Kuperlegierungen im Mittelalter wirdhervorgehoben und diskutiert. Mittelalterliche und sptereMethoden der Stahlherstellung werden prsentiert. Nach demEnde des Mittelalters ndert sich mit der Industrialiserungder Umang der Metallproduktion ganz erheblich. RelevanteKlassen von extquellen werden skizziert, unter Betonungderjenigen die die archologischen Quellen ergnzen. Dermomentane Wissensstand r zwei wichtige nachmittelalter-liche und neuzeitliche Metallindustrien wird als bersichtprsentiert: Bleigewinnug und Eisen- und Stahlindustrie.Archometallurgische Forschung kann zeigen, wie dieseIndustrien, und Fragen bezglich ihrer Entwicklung, einge-bunden sind in nderungen der Gesellschat und derLebensbedingungen der Bevlkerung.

    Der Forschungsplan benennt abschlieend wesentliche Lcken

    im Wissensstand und macht Vorschlge, wie diese gelltwerden knnen. Dies beinhaltet zeitunabhngige Aspekte derFeld- und Labormethoden ebenso wie zeitspezische Temenvon der Vorgeschichte bis zur Neuzeit. Dieser Abschnitt skizziertauch Strategien zur Verbreitung vorbildlicher Praxis.

    ranslated by Tilo Rehren.

  • 7/31/2019 Metals Framework 1

    12/14

    x

  • 7/31/2019 Metals Framework 1

    13/14

    1

    INTRODUCTION

    Knowledge o the sources, production and uses ometals is a central theme in the development o almostall societies and cultures, so understanding the historyo metals and metalworking is a route to the heart ounderstanding our past. Tis history, which we callarchaeometallurgy, is thereore a signicant body oknowledge, and this volume is intended to aid the

    understanding o the subject and to demonstrate itsplace in the national research agenda or archaeology.

    Te need or archaeological research rameworks iswidely accepted but the archaeometallurgical contento the emerging national and regional research rame-works (see section 4.5) has been uneven. Tere is thusa need or a research ramework or metal productionand use throughout Britain, spanning all regions and allperiods, rom the origins o metallurgy to the decline othe metal industries in the 20th century (Fig 1). Te

    Historical Metallurgy Society has thereore producedthis volume which provides a research assessment andan agenda or uture work.

    Te current pattern o development-led archaeologyplaces particular stress on the need to know more aboutour metallurgical past. In particular, the developmento brown-eld sites threatens the loss o important sub-surace evidence or the archaeology o industry. Whatis generally regarded as contaminated ground oenpreserves a signicant archaeological record, which

    requently relates to metal industries. Tis situation isuelling an imperative to develop a new methodologicalapproach to the investigation and recording o suchsites. I archaeologists, curators, planners and policy-makers, oen with little previous interest in metallurgy,are aware o the problems involved in securing asatisactory record o metallurgical processes, then theinormation provided by structures, residues and arte-acts can be eectively captured. Tis volume has beencompiled to assist them.

    What qualies the Historical Metallurgy Society toundertake this work? Te Societys membership drawson three areas o expertise and experience, the rsttwo o which are amiliar to archaeology. Tere are

    academic researchers andother specialist archaeo-metallurgists, many o themuniversity-based or workingwithin agencies such as Eng-lish Heritage, but also includ-ing independent consultants.Te second group are cura-torial proessionals, includ-ing those rom museumswho are responsible or thearteactual component othe record and those work-ing with eld-based agenciessuch as local authorities,who have responsibility ormanagement and protectiono sites. Te third area oexpertise is perhaps unique

    to the society, and comprisesproessional metallurgistsFigure 1: The blast furnaces at Stanton, Derbyshire, being demolished in 1976.

  • 7/31/2019 Metals Framework 1

    14/14

    2

    INTRODUCTION

    who have spent their lives working within the metalindustries. Tis group has specialist knowledge o morerecent processes, which extends the infuence o thesociety beyond that more usually represented withina specialist archaeological society and provides a con-tinuum between past and present.

    Te volume has been divided into our parts, each view-ing our metallurgical past rom a dierent perspective.Te rst part deals with the resource. Te evidenceranges rom landscapes and sites to structures andtownscapes. It also includes o moveable material, arte-acts and the debris rom production. Tese resourcesare recorded, inventoried and audited; they are studiedand communicated to the wider community. Tis sec-tion is primarily directed at curators and planners whohave responsibility or the management and protection

    o the resource.

    Te second part deals with methods in historicalmetallurgy. It has been included to demonstrate thatthe subject goes ar beyond the work o the labora-tory-based specialist, examining and analysing min-ute samples o metals and metallurgical debris with

    ever-increasing precision. Te repertoire incorporatesthe skills o eld archaeologists, landscape specialists,palaeo-environmentalists, those with geo-prospectionskills, metal-smiths and those involved in experi-mental archaeology. With this range o skills, the toolsavailable or the study o metallurgy are expanding.

    Tis section examines the strengths and weaknesseso our methods and fags those areas where urtherdevelopment is needed.

    Te third part reviews the present state o our knowl-edge. Given the scope o the subject, this cannot covereverything. Te attempt here has been to select not onlythose subject areas about which we have a good degreeo understanding but also those areas which high-light our lack o knowledge and the need or urtherresearch.

    Tese three parts can be viewed as a resource assess-ment, providing an overview o current knowledge andpractice. Te nal part builds on those that have gonebeore, and provides a research agenda that identiesmajor gaps in our knowledge and suggests how theymight best be lled.