22
Metallicity and Black Hole Masses of Redshift 6 Quasars Jaron Kurk (MPIA, D) The evening star (Mucha, 1902) The moon (Mucha, 1902) Fabian Walter, Dominik Riechers (MPIA, D) Laura Pentericci (Monte Porzio, I) Xiaohui Fan (Steward, AZ) In the Universe at z > 6.0 0.5 In the Universe at z > 6

Metallicity and Black Hole Masses of Redshift 6 Quasars

  • Upload
    tejana

  • View
    54

  • Download
    0

Embed Size (px)

DESCRIPTION

Metallicity and Black Hole Masses of Redshift 6 Quasars. In the Universe at z > 6. In the Universe at z > 6.0  0.5. Jaron Kurk (MPIA, D). Fabian Walter, Dominik Riechers (MPIA, D) Laura Pentericci (Monte Porzio, I) Xiaohui Fan (Steward, AZ). The moon (Mucha, 1902). - PowerPoint PPT Presentation

Citation preview

Page 1: Metallicity and Black Hole Masses of Redshift 6 Quasars

Metallicity and Black Hole Masses of Redshift 6

Quasars

Jaron Kurk (MPIA, D)

The evening star (Mucha, 1902) The moon (Mucha, 1902)

Fabian Walter, Dominik Riechers (MPIA, D)Laura Pentericci (Monte Porzio, I)

Xiaohui Fan (Steward, AZ)

In the Universe at z > 6.0 0.5In the Universe at z > 6

Page 2: Metallicity and Black Hole Masses of Redshift 6 Quasars

Introduction

J1148+5251 z = 6.4(Barth et al. 2003)J0836+0054 z = 5.8J1030+0524 z = 6.3J1044--0125 z = 5.8(Freudling et al. 2003)

Fig. by G. Djorgovski et al.

J1030+0524 z = 6.3J1044--0125 z = 5.8J1048+4637 z = 6.2J1148+5251 z = 6.4J1306+0356 z = 6.0(Maiolino et al. 2004)

J1030+0524 z = 6.3J1306+0356 z = 6.0(Pentericci et al. 2002)

J1148+5251 z = 6.4(Willott et al. 2003)

Page 3: Metallicity and Black Hole Masses of Redshift 6 Quasars

Introduction

Fig. by G. Djorgovski et al.

J0005--0006 z = 5.9J0836+0054 z = 5.8J1030+0524 z = 6.3J1306+0356 z = 6.0J1411+1217 z = 6.0(Kurk et al., in prep.)

Large(r) sample with higher S/N and coverage of both CIV and MgII

Page 4: Metallicity and Black Hole Masses of Redshift 6 Quasars

NIR spectroscopy

• Sample of five QSOs at z > 5.8 observable with VLT

• ISAAC MR spectroscopy in SZ, J, and K bands

• Texp ~ 3 hours per object per bandQSO z* z Reference

J0836+0054

18.74 5.82 Fan et al.

(2001)J1306+03

5619.47 5.99 Fan et al.

(2001)J1411+12

1719.64 5.95 Fan et al.

(2004)J1030+05

2420.05 6.28 Fan et al.

(2001)J0005-0006

20.54 5.85 Fan et al.

(2004)

Page 5: Metallicity and Black Hole Masses of Redshift 6 Quasars

Long spectrum (hidden title)

Kz’ SZ

Fan et al.

Page 6: Metallicity and Black Hole Masses of Redshift 6 Quasars

Mean SDSS QSO SpectrumVanden Berk et al. (2001)

PL-slope = --1.56

z = 1.253_

Page 7: Metallicity and Black Hole Masses of Redshift 6 Quasars

SDSS Iron Template (hidden title)

Vanden Berk et al. (2001)

Power-law continuum

Balmer continuum

SDSS “FeII” template

Page 8: Metallicity and Black Hole Masses of Redshift 6 Quasars

Vestergaard & Wilkes FeII template

FeII emission under MgII line

Sigut & Pradhan (2003)

Vestergaard & Wilkes (2001)

Page 9: Metallicity and Black Hole Masses of Redshift 6 Quasars

Smoothed Vestergaard templateMean SDSS QSO template

MgII line

FeII template Comparison

Page 10: Metallicity and Black Hole Masses of Redshift 6 Quasars

ISAAC MR K-band

MgII spectra

Page 11: Metallicity and Black Hole Masses of Redshift 6 Quasars

SDSS “FeII” template

Simultaneous fit of power-law continuum, Balmer pseudo-continuum and template

MgII spectra

Page 12: Metallicity and Black Hole Masses of Redshift 6 Quasars

Vestergaard template

Simultaneous fit of power-law continuum, Balmer pseudo-continuum and template

MgII spectra

Page 13: Metallicity and Black Hole Masses of Redshift 6 Quasars

MgII line fit

After subtraction of continua and template

MgII spectra

Page 14: Metallicity and Black Hole Masses of Redshift 6 Quasars

CIV spectra

SZ and J band spectra

Page 15: Metallicity and Black Hole Masses of Redshift 6 Quasars

CIV spectra

SZ and J band spectra

Lorentzian curves fitted with underlying polynomial

Page 16: Metallicity and Black Hole Masses of Redshift 6 Quasars

Long spec again (hidden title)

Page 17: Metallicity and Black Hole Masses of Redshift 6 Quasars

Long spec with fit (hidden title)

Page 18: Metallicity and Black Hole Masses of Redshift 6 Quasars

Redshifts• CIV emission 0 < v < 4000 km s-1 blueward of MgII• MgII and Ly can differ by z = 0.02• New redshift accuracy on the order of z ~ 0.002

QSO zREF zMgII zFEII zCIV

J0836+0054 5.82 5.80

75.807

J1306+0356 5.99 6.01

56.030

6.007

J1411+1217 5.95 5.89

85.936

5.815

J1030+0524 6.28 6.30

06.315

6.282

J0005-0006 5.85 5.84

25.856

5.861

Page 19: Metallicity and Black Hole Masses of Redshift 6 Quasars

Black Holes Masses

• MgIIMcLure & Jarvis (2002)

• CIVVestergaard (2002)

• EddWandel, Peterson & Malkan (1999)

Page 20: Metallicity and Black Hole Masses of Redshift 6 Quasars

Black Holes Masses

QSO zREF MBH,MgII MBH,CIV MBH,Edd

J0836+0054

5.82 1.2 6.5

J1306+0356

5.99 1.1 1.6 2.0

J1411+1217

5.95 0.3 0.2 1.5

J1030+0524

6.28 0.7 1.3 1.9

J0005-0006

5.85 0.2 0.3 0.7

Black hole masses in 109 M

Page 21: Metallicity and Black Hole Masses of Redshift 6 Quasars

FeII/MgII ratios2.2 < FeII/MgII < 4.7, consistent with solar

metallicity

Dietrich et al. (2003)

Dietrich et al. (2003) Wills, Netzer, & Wills (1985) Thompson et al. (1999) Iwamuro et al. (2002) Freudling et al. (2003)

Page 22: Metallicity and Black Hole Masses of Redshift 6 Quasars

Conclusions

• Black Hole masses from 0.2 to 1.6 109 M– not only the most massive galaxies– therefore MBH-BULGE relation can hold up to the highest redshifts

• No evolution in FeII/MgII ratios up to z = 6– star formed at z > 10– or indication for decline?

• BH masses differ much more than enrichment

• Accurate redshifts for follow-up and better HII region determination

• Not mentioned: power-law slopes, absorption by intervening gas and/or gas within the system

The morning star (Mucha, 1902) The pole star (Mucha, 1902)