16
1 Metale 2011 Metale Żelazo (Iron, Ferrum) Rok odkrycia: starożytność Temperatura Curie 770°C Liczba atomowa 26 Temperatura topnienia 1538°C Masa atomowa 55,847 Temperatura wrzenia 2800°C Twardość Brinella 650 Zawartość w … Gęstość 7870 kg/m 3 Ziemia 32,07 % Wytrzymałość na rozciąganie 250 MPa Skorupa ziemi 6,2 % Moduł Younga 200 GPa Wszechświat 0,136 % Rezystywność 9,7110 -8 m Człowiek 510 -3 % Konduktywność 10,310 6 S/m Współczynnik przewodzenia ciepła 80,3 W/(Km) Konfiguracja elektronowa [Ar] 3d 6 4s 2 Współczynnik rozszerzalności cieplnej 0,1210 -4 1/K K: 2, L: 8, M: 14, N: 2 Współczynnik cieplny rezystancji 4510 -4 1/K Główne izotopy: 52 Fe (8,3 h); 54 Fe (5,84 %, trwały); 55 Fe (2,7 a); 56 Fe (91,66 %, trwały); 57 Fe (2,17 %, trwały); 58 Fe (0,33 %, trwały); 59 Fe (54,5 d); 60 Fe (1,510 6 a). Minerały: magnetyt FeO 5 ·Fe 2 O; hematyt Fe 2 O 3 ; limonit Fe 2 O 3 ·nH 2 O; syderyt FeCO 3 ; piryt(markasyt) FeS 2 ; wiwianit Fe 3 (PO 4 ) 2 ·8H 2 O; chalkopiryt CuFeS 2 . Żeliwa Surówka – wyjściowy stop żelaza zawierający 3 .. 4,5 % węgla – otrzymuje się metodą wielkopiecową. Żeliwo – to przetopiona po raz drugi surówka ze złomem żeliwnym lub stalowym wraz z dodatkami (żelazokrzem, żelazomangan). Węgiel może występować w postaci grafitu lub węglika żelaza Fe 3 C, czyli cementytu. Żeliwo szare – (przewaga grafitu) – dobre właściwości odlewnicze, dobra obrabialność. Żeliwo białe – (przewaga cementytu) – twarde, kruche, trudno obrabialne. Żeliwo modyfikowane – żeliwo z dodatkiem krzemu, aluminium, żelazokrzemu, magnezu, miedzi lub niklu. Żeliwo ciągliwe – otrzymywane przez długie wyżarzanie, poprzez co otrzymuje właściwości podobne do właściwości stali. Stale i staliwa Stal – stop o zawartości węgla mniejszej niż 2 % . Otrzymuje się przez wypalanie węgla z surówki (świeżenie) w konwertorach Bessemera i Thomasa oraz piecach Simens-Martina (stal martenowska). Wyższe gatunki stali podlegają dalszej obróbce w piecach elektrycznych lub tyglowych. Stal węglowa – głównym składnikiem domieszek jest węgiel. Stal stopowa – oprócz węgla są inne domieszki: Nikiel – polepsza własności hartowania; Chrom – zwiększa twardość; Mangan – daje większą wytrzymałość na rozciąganie; Wolfram – daje drobnoziarnistość, twardość, odporność; Molibden – zwiększa głębokość hartowania, zmniejsza kruchość, daje odporność na odpuszczanie; Wanad – sprzyja drobnoziarnistości, zwiększa twardość, polepsz ostrość podczas ostrzenia; Kobalt – w stalach szybkotnących zwiększa twardość;

Metale 2011 Metale - ZSMEiEzsmeie.torun.pl/glowna/temat/mvs/progr/p02/p02.pdf · Zawartość w skorupie ziemskiej żelaza wynosi około 6% wagowych i zajmuje ono czwarte miejsce

Embed Size (px)

Citation preview

1

Metale 2011

Metale

Żelazo (Iron, Ferrum)

Rok odkrycia: starożytność Temperatura Curie 770°C

Liczba atomowa 26 Temperatura topnienia 1538°C

Masa atomowa 55,847 Temperatura wrzenia 2800°C

Twardość Brinella 650 Zawartość w …

Gęstość 7870 kg/m3 Ziemia 32,07 %

Wytrzymałość na rozciąganie 250 MPa Skorupa ziemi 6,2 %

Moduł Younga 200 GPa Wszechświat 0,136 %

Rezystywność 9,71⋅10-8

Ωm Człowiek 5⋅10-3

%

Konduktywność 10,3⋅106 S/m

Współczynnik przewodzenia ciepła 80,3 W/(K⋅m) Konfiguracja elektronowa [Ar] 3d6 4s

2

Współczynnik rozszerzalności cieplnej 0,12⋅10-4

1/K K: 2, L: 8, M: 14, N: 2

Współczynnik cieplny rezystancji 45⋅10-4

1/K

Główne izotopy: 52

Fe (8,3 h); 54

Fe (5,84 %, trwały); 55

Fe (2,7 a); 56

Fe (91,66 %, trwały); 57

Fe (2,17 %, trwały); 58

Fe

(0,33 %, trwały); 59

Fe (54,5 d); 60

Fe (1,5⋅106 a).

Minerały: magnetyt FeO5·Fe2O; hematyt Fe2O3; limonit Fe2O3·nH2O; syderyt FeCO3; piryt(markasyt) FeS2;

wiwianit Fe3(PO4)2·8H2O; chalkopiryt CuFeS2.

Żeliwa Surówka – wyjściowy stop żelaza zawierający 3 .. 4,5 % węgla – otrzymuje się metodą

wielkopiecową.

Żeliwo – to przetopiona po raz drugi surówka ze złomem żeliwnym lub stalowym wraz z dodatkami (żelazokrzem, żelazomangan). Węgiel może występować w postaci grafitu lub węglika

żelaza Fe3C, czyli cementytu.

Żeliwo szare – (przewaga grafitu) – dobre właściwości odlewnicze, dobra obrabialność.

Żeliwo białe – (przewaga cementytu) – twarde, kruche, trudno obrabialne.

Żeliwo modyfikowane – żeliwo z dodatkiem krzemu, aluminium, żelazokrzemu, magnezu, miedzi

lub niklu.

Żeliwo ciągliwe – otrzymywane przez długie wyżarzanie, poprzez co otrzymuje właściwości

podobne do właściwości stali.

Stale i staliwa Stal – stop o zawartości węgla mniejszej niż 2 % . Otrzymuje się przez wypalanie węgla z surówki (świeżenie) w konwertorach Bessemera i Thomasa oraz piecach Simens-Martina (stal

martenowska). Wyższe gatunki stali podlegają dalszej obróbce w piecach elektrycznych lub

tyglowych.

Stal węglowa – głównym składnikiem domieszek jest węgiel.

Stal stopowa – oprócz węgla są inne domieszki:

Nikiel – polepsza własności hartowania;

Chrom – zwiększa twardość;

Mangan – daje większą wytrzymałość na rozciąganie;

Wolfram – daje drobnoziarnistość, twardość, odporność;

Molibden – zwiększa głębokość hartowania, zmniejsza kruchość, daje odporność na odpuszczanie;

Wanad – sprzyja drobnoziarnistości, zwiększa twardość, polepsz ostrość podczas ostrzenia;

Kobalt – w stalach szybkotnących zwiększa twardość;

2

Metale 2011

Krzem – stosowany w stalach resorowych i sprężynowych, zmniejsza straty mocy podczas

przemagnesowania.

Staliwo to stal o niskiej zawartości węgla (0,1 .. 0,6 %).

Stale dzielą się na konstrukcyjne, narzędziowe i specjalne.

Żelazo (Fe)

Srebrzystobiałe żelazo jest bezwzględnie najważniejszym pierwiastkiem metalicznym cywilizacji.

Znane było już w czasach prehistorycznych. Najwcześniejsze ślady wykorzystywania żelaza, datowane

na 4000 r. p.n.e., znaleziono w Egipcie. Jest względnie miękkim, ciągliwym i kowalnym metalem

przejściowym. Występuje w trzech odmianach alotropowych. Jest dość reaktywne, ale różnie reaguje

z różnym pierwiastkami (z większością z nich dopiero po podgrzaniu). w zależności od temperatury

i stężenia substratów tworzą się różne produkty. Lite żelazo, w temperaturach pokojowych, nie ulega

reakcji w suchym powietrzu oraz w wolnej od dwutlenku węgla i powietrza wodzie. z tlenem utlenia

się w suchym powietrzu w temp. 150°C. w temperaturze poniżej 200°C reaguje tylko z fluorowcami. Suchy chlor nie reaguje z żelazem, dlatego też metal ten służy do jego transportu. w wysokich

temperaturach pierwiastek ten absorbuje wodór i azot. Ruguje inne, szlachetniejsze metale i wodór

z ich roztworów. Para wodna rozkłada się na tlenek żelaza (Fe3O4) i wodór w temperaturze 500°C.

Metal ten pokrywa się (jak wiele innych metali) chroniącą warstewką tlenków (pasywacja).

Rozpuszcza się w kwasach rozcieńczonych. Ważną cechą żelaza jest proces rdzewienia. Polega ono na

tworzeniu w wilgotnym powietrzu uwodnionego tlenku żelaza (ll) (FeO(OH)). Aby zaszła ta reakcja

musi być dostarczony tlen, woda i elektrolit. w wodzie, która nie zawiera powietrza żelazo nie

rdzewieje. Proces ten znacznie przyspiesza, zwłaszcza na terenach przemysłowych, obecność

w powietrzu dwutlenku siarki (SO2), a co za tym idzie kwasów siarkowych. Zapobiec rdzewieniu

można poprzez pokrywanie farbą, pokrywanie mniej szlachetnymi metalami (cynkowanie), które będąc anodą same korodują, stosowanie inhibitorów (fosforany żelaza) czy emaliowanie.

Żelazo jest ferromagnetykiem o temperaturze Curie około 800°C. Nazwa pochodzi od łacińskiego

słowa firmus, które oznacza coś silnego. Nazwa polska wywodzi się z sanskrytu (galga, nazwa rud

i metali).

Występowanie:

Zawartość w skorupie ziemskiej żelaza wynosi około 6% wagowych i zajmuje ono czwarte miejsce

pod względem występowania wśród wszystkich pierwiastków, a drugie po glinie wśród metali. Jest

także najbardziej rozpowszechnionym metalem ciężkim. w stanie wolnym występuje na Ziemi bardzo

rzadko (północna Grenlandia). Jest częstym składnikiem meteorów. Tworzy wiele rud, z których

najważniejsze to tlenki (magnetyt) i węglany. Występują one w mniejszym lub większym stopniu na całej planecie. Żelazo jest także ważnym składnikiem tkanek organizmów.

Otrzymywanie:

Metal ten otrzymuje się w wyniku tzw. procesu wielkopiecowego, w którym tlenek żelaza redukuje

się koksem. Węgiel jest jednocześnie paliwem, reduktorem oraz wchodzi w skład otrzymywanej

surówki zmieniając jej właściwości. Czyste żelazo otrzymuje się dzięki redukcji tlenku żelaza wodorem

lub dzięki elektrolizie czystych roztworów chlorku żelaza (ll) (FeCI2).

Wykorzystanie:

Czyste żelazo ma niewielkie zastosowanie. Używa się go głównie, jako rdzeni elektromagnesów (pętla

histerezy jest węższa im żelazo jest czystsze). Dopiero po dodaniu węgla i innych pierwiastków

(mangan, krzem, fosfor, siarka, nikiel, wanad i inne), w znacznym stopniu zmieniają się właściwości stopu. Nikiel daje stali ciągliwość i mały współczynnik rozszerzalności cieplnej, molibden -

wytrzymałość na zerwanie, mangan - twardość, chrom i wolfram - wielką twardość nawet w dużych

temperaturach, wanad - nierdzewność, a stal z krzemem wykazuje się dużą kwasoodpornością.

W organizmach zwierzęcych żelazo pełni bardzo ważną rolę w transporcie gazów. Będąc składnikiem

hemoglobiny służy do wiązania tlenu i transportuje go we krwi. Brak żelaza powoduje ogólne

3

Metale 2011

osłabienie organizmu człowieka i chorobę zwaną anemią. U roślin pierwiastek ten pełni ważną rolę

transportując tlen w procesie fotosyntezy. Związki żelaza występują bardzo szeroko, często mają one

ciekawe barwy. Pierwiastek ten występuje w wielu stopniach utlenienia (od -2 do +6), najczęściej

spotykane są stopnie +2 i +3. Tlenek żelaza (lll) (Fe2O3) wykorzystywany jest m.in. do polerowania,

jako czerwony pigment (czerwień wenecka) i jako substancja magnetyczna w taśmach i dyskach magnetycznych. Czarny, ferromagnetyczny, przewodzący prąd magnetyt (Fe3O4) jest mieszaniną

tlenków żelaza (ll) i żelaza (lll). Siarczek żelaza(ll) służy do produkcji siarkowodoru. Jony żelaza tworzą

kompleksy z cyjankami, które używane są, jako niebieskie pigmenty (błękit pruski i błękit Turnbulla).

4

Metale 2011

Miedź (Copper, Cuprum)

Rok odkrycia: starożytność Temperatura Curie diamagnetyk

Liczba atomowa 29 Temperatura topnienia 1085 °C

Masa atomowa 63,546 Temperatura wrzenia 2570 °C

Twardość Brinella 400 Zawartość w …

Gęstość 8950 kg/m3 Ziemia

Wytrzymałość na rozciąganie 200 MPa Skorupa ziemi

Moduł Younga 130 GPa Wszechświat 8,85⋅10-5

%

Rezystywność 1,71⋅10-8

Ωm Człowiek 4⋅10-4

%

Konduktywność 58,48⋅106 S/m

Współczynnik przewodzenia ciepła 401,0 W/(K⋅m) Konfiguracja elektronowa [Ar] 3d10

4s1

Współczynnik rozszerzalności cieplnej 0,162⋅10-4

1/K K: 2, L: 8, M: 18, N: 1

Współczynnik cieplny rezystancji 39⋅10-4

1/K

Główne izotopy: 61

Cu (3,4 h); 62

Cu (9,7 min); 63

Cu = 69,1 % (trwały); 64

Cu (12,7 h); 65

Cu = 30,9 % (trwały); 67

Cu

(2,6 d).

Minerały: chalkopiryt CuFeS2; chalkozyn Cu2S; bornit Cu5FeS4; kowelin CuS; kupryt Cu2O; malachit

Cu2(OH)2CO3; azuryt Cu3(OH)2(CO3)2.

Miedź (Cu) Miedź znana była już w czasach prehistorycznych, prawdopodobnie była pierwszym metalem, jaki

wykorzystywali ludzie. Samorodków tego metalu używano do robienia grotów broni. Łacińska nazwa

miedzi cuprum pochodzi od nazwy wyspy Cypr, gdzie eksploatowano ten pierwiastek już

w starożytności. Miedź jest brązowo-czerwonym, średniotwardym, kowalnym i ciągliwym metalem

przejściowym. Jest doskonałym przewodnikiem ciepła i elektryczności, ustępuje jedynie srebru. Jej

własności fizyczne zależą w dużej mierze od zawartości tlenu i technologii produkcji. Domieszki

pogarszają jej przewodnictwo, lecz zwiększają wytrzymałość. Wykazuje, jako metal półszlachetny,

dużą odporność na korozję. Pod wpływem tlenu atmosferycznego pokrywa się chroniącą warstwą

tlenku. Reaguje z fluorowcami, wilgotnymi fluorowcowodorami, siarką i dwutlenkiem siarki.

w wyniku działania substancji zawartych w atmosferze, pokrywa się charakterystyczną zielonkawą patyną będącą mieszaniną zasadowego węglanu (CuCO3(OH)2), siarczanu (VI) miedzi (CuSO4(OH)6)

oraz chlorku miedzi(II) (CuCl2). Kwasy nieutleniające atakują miedź tylko w obecności powietrza.

Szybko rozpuszcza się w stężonym kwasie siarkowym i azotowym. Miedź i jej związki są zabójcze dla

wielu mikroorganizmów.

Występowanie:

Występuje głównie w postaci siarczków, czasem tlenków. Sporadycznie spotyka się grudki czystego

metalu (około 1% ogólnej ilości miedzi) głównie na terenach Ameryki Północnej (Jezioro Górne, USA).

Znajdowano tam bryły miedzi o wadze dochodzącej nawet kilkudziesięciu ton. Najważniejsze złoża

miedzi występują w Chile, USA, Rosji, Polsce i niektórych państwach afrykańskich. w wierzchniej

warstwie skorupy ziemskiej (litosfera, hydrosfera, atmosfera) zajmuje pod względem występowania ok. 24 miejsca (procenty wagowe).

Otrzymywanie:

Produkcja miedzi jest skomplikowanym i dość kosztownym procesem. Głównym jej źródłem są

siarczki, które metodami termicznymi i reakcjami redoks doprowadza się do tlenku miedzi,

rozkładanego potem termicznie z wydzieleniem tzw. miedzi czarnej. Miedź taką można następnie

rafinować dwoma metodami: suchą (stopienie miedzi i utlenienie zanieczyszczeń przy użyciu drewna)

i mokrą, gdzie bardzo czystą miedź uzyskuje się dzięki elektrolizie. Ta ostatnia metoda, mimo że

droższa, pozwala na odzysk szlachetnych domieszek, występujących w rudzie miedzi (srebro, złoto,

platynowce). z powodu wysokich kosztów produkcji część miedzi jest na powrót odzyskiwana

5

Metale 2011

z odpadów. Rosnące zapotrzebowanie na ten metal powoduje powstawanie coraz to nowych metod

pozwalających na ekonomiczne wykorzystywanie coraz mniej zasobnych złóż. Istnieje nawet metoda

wykorzystywania drobnoustrojów do wzbogacania rud tego pierwiastka.

Wykorzystanie:

Miedź jest obecnie, obok żelaza i aluminium, jednym z najważniejszych metali używanych przez człowieka. Używa się jej głównie w elektrotechnice, choć zastępuje ją powoli aluminium. Duże

przewodnictwo cieplne miedzi znalazło zastosowanie przy produkcji elementów grzejnych

i wymienników ciepła. Odporność na korozję wykorzystuje się m.in. na morzu, w budownictwie

i przemyśle. Metal ten jest także ważnym katalizatorem. Stopy miedzi znane były od tysiącleci.

Najważniejsze z nich to brązy - stopy miedzi z cyną. Zawartość cyny waha się w nich od kilku do około

25 procent. Im większa jest zawartość cyny, tym brąz jest twardszy i wytrzymalszy. Brązy o zawartości

cyny do 10% są jeszcze kowalne. Brąz, z którego produkuje się dzwony, zawiera około 25% cyny.

Dodawanie niewielkich ilości innych pierwiastków znacznie zmienia właściwości brązu np. fosfor

(0,3%) znacznie zwiększa ciągliwość (brąz fosforowy), a dodanie kilku procent krzemu znacznie zwiększa wytrzymałość stopu przy stosunkowo niewielkim wzroście oporności (produkcja styków

elektrycznych). Stopy miedzi z cynkiem to tzw. mosiądze. Dzieli się je na kilka rodzajów w zależności

od zawartości cynku. Mosiądz czerwony o zawartości cynku 5÷20% cechuje się znaczną ciągliwością

i odpornością chemiczną. Mosiądz żółty (20÷% cynku) jest bardziej trwały i twardszy od czerwonego.

Kruchy mosiądz biały (>50% cynku) znalazł zastosowanie, jako formy odlewnicze. Inne stopy miedzi

to np. jednocześnie wytrzymały i ciągliwy stop z glinem (5÷10% Al), czy też bardzo odporny

chemicznie i wytrzymały stop Monela (70% Ni i 30% Cu). Popularny konstantan jest stopem miedzi

z niklem (40% Ni) i dzięki dużemu oporowi właściwemu, praktycznie niezależnemu od temperatury,

stosowany jest w elektrotechnice. Związki miedzi są szeroko stosowane w różnych dziedzinach.

Cyjanki tego metalu są ważnymi katalizatorami organicznymi. Związki kompleksowe miedzi używane są m.in. przy przetwarzaniu ropy naftowej. Związki miedzi(III) stosowane są, jako utleniacze. Roztwór

siarczanu (VI) miedzi (II) (CuSO4) jest środkiem grzybobójczym. Wodorotlenek miedzi(II) (Cu(OH)2) ma

właściwości rozpuszczania celulozy, którą można później wytrącić w postaci nitek tzw. jedwabiu

miedziowego. Tlenek miedzi (I) (Cu2O), ze względu na własności trujące dla niektórych organizmów,

jest używany, jako składnik farby do pokrywania dna statków. Utrudnia to przyczepianie się do niego

wodorostów. Tlenek ten jest także stosowany w chemii analitycznej (wykrywanie reduktorów

organicznych).

6

Metale 2011

Glin (Aluminium, Aluminium)

Rok odkrycia: 1825 Temperatura Curie paramagnetyk

Liczba atomowa 13 Temperatura topnienia 660,3 °C

Masa atomowa 26,9815 Temperatura wrzenia 2520 °C

Twardość Brinella 180 Zawartość w …

Gęstość 2700 kg/m3 Ziemia 1,41 %

Wytrzymałość na rozciąganie 64 MPa Skorupa ziemi 8,3 %

Moduł Younga 71 GPa Wszechświat 6,2⋅10-3

%

Rezystywność 2,711⋅10-8

Ωm Człowiek 5⋅10-5

%

Konduktywność 36,887⋅106 S/m

Współczynnik przewodzenia ciepła 237,0 W/(K⋅m) Konfiguracja elektronowa [Ne] 3s2 3p

1

Współczynnik rozszerzalności cieplnej 0,224⋅10-4

1/K K: 2, L: 8, M: 3

Współczynnik cieplny rezystancji 39⋅10-4

1/K

Główne izotopy: 26

Al (730⋅103 a);

27Al = 100 % (trwały);

28Al (2,3 min).

Minerały: boksyt AlO(OH); hydrargilit Al(OH)3; kriolit Na3AlF6; skaleń potasowy (ortoklaz) K(AlSi3O8); skaleń

sodowy (albit) Na(AlSi3O8); anoryt Ca(Al2Si2O8); muskowit KAl2(AlSi3O10)(OH,F)2; biotyt

K(Mg,Fe)3(AlSi3O10)(OH,F)2; kaoilin (kaolinit, glina) Al2O3·2SiO2·2H2O; korund (szmergiel) Al2O3. Glin (Al)

Ten lekki, srebrzystobiały metal o ciężarze około 1/3 ciężaru żelaza jest najbardziej

rozpowszechnionym metalem na kuli ziemskiej. Pełni największą rolę w przemyśle ze wszystkich

lekkich metali. Po raz pierwszy wyizolowany został w 1825 r. przez duńskiego chemika Hansa

Christiana Oersteda w procesie ulepszonym później przez niemieckiego chemika Fryderyka

Woehlera. Czystą postać tego metalu uzyskał w 1855 r. francuski uczony Henri Sainte-Claire Deville.

Wykonał on pierwszy przedmiot z tego metalu - grzechotkę dla syna Napoleona III. Czysty glin był

wówczas tak cenny jak złoto. Glin należy do bardzo reaktywnych pierwiastków. Na powietrzu

pokrywa się natychmiast ochronną warstwą tlenków. Jest silnym reduktorem. Tlenek glinu jest amfoteryczny, przejawia właściwości zarówno tlenków kwasowych jak i zasadowych (zależy to od

środowiska reakcji). Pierwiastek ten jest bardzo dobrym przewodnikiem ciepła i elektryczności.

w temperaturach bliskich zeru bezwzględnemu wykazuje własności nadprzewodzące. Ma relatywnie

duże ciepło topnienia. Jest łatwo ciągliwy i można go rozdrobnić na proszek. Jego nazwa pochodzi od

łacińskiego słowa alumen oznaczającego ałun glinowo-potasowy.

Występowanie:

Aluminium jest najbardziej rozpowszechnionym metalem w skorupie ziemskiej. Wyprzedzają go

jedynie tlen i krzem. Nie występuje w postaci wolnego metalu. Najczęściej tworzy krzemiany

zmieszane z krzemianami innych metali, lecz trudno wyizolować go z tych związków. Wydobywa się

go najczęściej w postaci uwodnionego tlenku i jego pochodnych. Otrzymywanie:

Dawniej otrzymywano glin poprzez redukcję chlorku glinu potasem. Od roku 1886 r. uzyskuje się go

poprzez elektrolizę tlenku glinu rozpuszczonego w stopionym kriolicie. Cały proces składa się z dwóch

części: otrzymania czystego tlenku glinu, a następnie jego elektrolizy.

Wykorzystanie:

Lekkość i wytrzymałość aluminium sprawia, że pierwiastek ten używany jest do budowy elementów

konstrukcyjnych wszędzie tam, gdzie wymagana jest szybkość i lekkość (samoloty, wagony

i samochody). Ze względu na dużą przewodność cieplną jest wykorzystywany do budowy tłoków

silników spalinowych. Używa się go do wyrobu przedmiotów gospodarstwa domowego. Lekkość glinu

wykorzystywana jest w transmisji energii elektrycznej. Długie, wiszące aluminiowe kable są o wiele lżejsze od porównywalnych pod względem przewodności, kabli miedzianych. Pierwiastek ten

7

Metale 2011

wykorzystywany jest także w architekturze, w przemyśle spożywczym, jako folia aluminiowa czy

materiał do produkcji opakowań (puszki). Odporność aluminium na korozyjne działanie wody

morskiej znalazła zastosowanie przy budowie kadłubów statków oraz innych podwodnych urządzeń.

Niewielkie pochłanianie neutronów przez ten pierwiastek wykorzystywane jest w reaktorach

niskotemperaturowych. Ze względu na wytrzymałość, której nie utrzymują w niskich temperaturach inne materiały, używany jest w technice kriogenicznej. w technice wojskowej wzrasta jego rola, jako

materiału do budowy pancerzy i powłok ochronnych. We wszystkich tych dziedzinach wykorzystuje

się przede wszystkim stopy glinu z innymi metalami.

8

Metale 2011

Srebro (Silver, Argentum)

Rok odkrycia: starożytność Temperatura Curie diamagnetyk

Liczba atomowa 47 Temperatura topnienia 962,0 °C

Masa atomowa 107,8682 Temperatura wrzenia 2155 °C

Twardość Brinella 250 Zawartość w …

Gęstość 10490 kg/m3 Ziemia - %

Wytrzymałość na rozciąganie 140 MPa Skorupa ziemi - %

Moduł Younga 74 GPa Wszechświat 1,6⋅10-7

%

Rezystywność 1,617⋅10-8

Ωm Człowiek - %

Konduktywność 61,843⋅106 S/m

Współczynnik przewodzenia ciepła 429,0 W/(K⋅m) Konfiguracja elektronowa [Kr] 4d10

5s1

Współczynnik rozszerzalności cieplnej 0,189⋅10-4

1/K K: 2, L: 8, M: 18, N: 18, O: 1

Współczynnik cieplny rezystancji 43⋅10-4

1/K

Główne izotopy: 105

Ag (41,3 d); 105m

Ag (7,2 min.); 106m

Ag (8,4 d); 107

Ag = 51,8 % (trwały); 108

Ag (2,4 min.); 108m

Ag

(130,0 a); 109

Ag = 48,2 % (trwały); 109m

Ag (39,8 s); 110

Ag (24,6 s); 110m

Ag (249,8 d); 111

Ag (7,47 d).

Minerały: argentyt Ag2S; pirargiryt Ag3SbS3; prustyt Ag3AsS3; chlorargiryt AgCl.

Srebro (Ag)

Srebro jest białym lśniącym metalem przejściowym o przewodności cieplnej i elektrycznej lepszej niż

jakikolwiek inny metal. Ten wartościowy i piękny metal znany był już w starożytności. Pierwsze

udokumentowane ślady wydobywania srebra pochodzą z Azji Mniejszej z 2500 r. p.n.e. Alchemicy nazywali ten metal Luną lub Dianą i przyporządkowali mu symbol sierpa księżyca. Srebro, pod

względem kowalności i plastyczności, ustępuje jedynie złotu. Jest twardsze niż złoto, lecz bardziej

miękkie niż miedź. Pierwiastek ten nie jest aktywny chemicznie. Jest nierozpuszczalny

w rozcieńczonych kwasach i w alkaliach, lecz rozpuszcza się w stężonym kwasie siarkowym(VI)

i azotowym(V). w normalnych temperaturach z wodą i tlenem nie reaguje. Siarka i siarczki atakują

srebro i niszczą jego powierzchnię tworząc siarczek srebra (Ag2S). Przekonać się o tym mogą ci,

którzy używają srebrnych łyżeczek do jedzenia jajek (żółtko jaj zawiera duże ilości siarki). Powstający

czarny siarczek srebra jest jedną z najbardziej nierozpuszczalnych soli i dlatego reakcja z siarką

wykorzystywana jest w chemii analitycznej do oznaczania ilości jonów srebra. Nazwa łacińska

pochodzi od słowa argentum, które wywodzi się z sanskryckiego agranta (jasny, biały). Występowanie:

Srebro występuje najczęściej w postaci związków razem z rudami ołowiu, miedzi, cynku i złota. Jako

czysty metal spotyka się je dość rzadko. Najbardziej znane, eksploatowane od wieków złoża,

występują w Peru i Norwegii. Srebro można spotkać w również jako naturalny stop ze złotem

nazywany elektrum. Pod względem występowania w wierzchniej warstwie skorupy ziemskiej

(litosfera, hydrosfera, atmosfera) zajmuje ok. 71 miejsca (procenty wagowe).

Otrzymywanie:

Metalurgia srebra polega głównie na przekształceniu w wysokiej temperaturze siarczków srebra

w siarczany, a następnie redukcji i wytrąceniu metalicznego srebra. Jedną z metod wyizolowywania

srebra jest metoda amalgamatu. Do rudy, która zawiera ten metal, dodaje się rtęć, która tworzy ze srebrem amalgamat. Amalgamat ten jest następnie wydzielany, a czyste srebro otrzymywane jest

drogą destylacji. Inną metodą ekstrakcji metalicznego srebra jest tzw. metoda liksydacyjna, w której

zawarty w rudzie pierwiastek rozpuszcza się w soli np. cyjanku sodu (NaCN), a następnie wydziela na

powierzchni metalicznego cynku lub glinu. z rud miedzi i ołowiu srebro izoluje się, wykorzystując

proces Parkera. Srebro techniczne otrzymuje się najczęściej metodami elektrolitycznymi.

Wykorzystanie:

9

Metale 2011

Powszechnie znanym wykorzystaniem srebra jest użycie go w wyrobach jubilerskich. Metal ten

zwykle stapia się z innymi w celu zwiększenia twardości i wytrzymałości stopu. Srebro

wykorzystywane jest również, jako warstwa odbijająca w niektórych lustrach. Ze względu na mały

opór elektryczny używane jest w przemyśle elektrotechnicznym. Niektóre związki tego pierwiastka są

stosowane są, jako środki antyseptyczne i bakteriobójcze. Ciemniejące na świetle związki srebra z fluorowcami używane są do produkcji błon światłoczułych. Rozpuszczają się one w tiosiarczanie

sodu (Na2S2O3), który pełni rolę utrwalacza.

10

Metale 2011

Złoto (Gold, Aurum)

Rok odkrycia: starożytność Temperatura Curie diamagnetyk

Liczba atomowa 79 Temperatura topnienia 1064 °C

Masa atomowa 196,96654 Temperatura wrzenia 2800 °C

Twardość Brinella 180 Zawartość w …

Gęstość 19280 kg/m3 Ziemia - %

Wytrzymałość na rozciąganie 130 MPa Skorupa ziemi - %

Moduł Younga 79 GPa Wszechświat 1,0⋅10-7

%

Rezystywność 2,234⋅10-8

Ωm Człowiek - %

Konduktywność 44,763⋅106 S/m

Współczynnik przewodzenia ciepła 317,0 W/(K⋅m) Konfiguracja elektronowa [Xe] 4f14

5d10

6s1

Współczynnik rozszerzalności cieplnej 0,142⋅10-4

1/K K: 2, L: 8, M: 18, N: 32, O: 18, P: 1

Współczynnik cieplny rezystancji 39,6⋅10-4

1/K

Główne izotopy: 194

Au (1,6 d); 195

Au (186,1 d); 195

mAu (30,5 s); 196

Au (6,2 d); 197

Au = 100 % (trwały); 198

Au (2,7

d); 199

Au (3,14 d).

Minerały: kawaleryt AuTe2.

Złoto (Au)

Cywilizacja ludzka zna ten połyskliwy metal już od około 3000 r. p.n.e. Złoto jest miękkim, jasnożółtym metalem przejściowym. Niczym niezanieczyszczone, jest najbardziej miękkie, kowalne

i ciągliwe ze wszystkich metali. Bardzo łatwo rozbija się je na super cienkie metaliczne błony i można

z niego formować bardzo cienkie druty. Udaje się osiągać błony o grubości 0,00001 cm, a około 30 g

złota rozciągnięto w drut o długości około 100 km. Jest doskonałym przewodnikiem ciepła

i elektryczności. Metal ten jest praktycznie obojętny na działanie zwykłych substancji. Rozpuszcza się

w wodzie królewskiej, w chlorkach, bromkach i niektórych jodkach. Symbol złota pochodzi od

łacińskiego słowa aurora (jutrzenka, zorza poranna).

Występowanie:

Złoto występuje w naturze w postaci zarówno czystego metalu jak i związków. Najczęściej spotyka się

je w osadach aluwialnych razem ze srebrem. Czasem tworzy z nim naturalny stop zwany elektrum. Złoto w związkach można spotkać w rudach telluru, ołowiu, antymonu, siarki i rtęci. Czasem, wraz ze

srebrem, towarzyszy pirytom (siarczkom żelaza). Wody oceanów zawierają duże ilości rozrzedzonego

złota (ok. 9 miliardów ton).

Otrzymywanie:

Najprostszym i głównym sposobem pozyskiwania złota jest wypłukiwanie czystego metalu z osadów.

Metoda ta sprawdza się z powodzeniem tak w przypadku zwykłej patelni poszukiwacza złota jak

i potężnych nowoczesnych kopalń. Umiejętnie kierowana woda unosi ze sobą piasek i inny

bezwartościowy materiał pozostawiając w zagłębieniach cięższe złoto. Inną metodą pozyskiwania

tego pierwiastka ze złotonośnego materiału jest przepłukiwanie substancjami go rozpuszczającymi:

rtęcią i cyjankami. Opłaca się wydobywać złoto, gdy stosunek jego zawartości do zawartości bezwartościowego materiału wynosi 1÷300000. Wielką rzadkością są tzw. samorodki złota, będące

bryłkami czystego metalu naturalnego pochodzenia. Największy znany samorodek tego metalu

odkryto w okolicy miasta Victoria w Australii w 1869 roku. Leżał on tuż przy powierzchni i został

przypadkowo odsłonięty przez koło wozu. Nazwano go "Mile widzianym przybyszem" (Welcome

Stranger). Ważył podobno około 71 kg. Państwa będące liderami w produkcji złota to przede

wszystkim RPA, USA, Rosja, Australia, Kanada, Chiny i Brazylia.

Wykorzystanie:

Od czasów prehistorycznych złoto, z racji swego pięknego połysku, koloru, odporności chemicznej,

było wartościowym metalem. Ważną cechą była względnie łatwa, w porównaniu do innych metali,

11

Metale 2011

obrabialność i łatwość oczyszczania. Względna rzadkość występowania złota spowodowała, że

pierwiastek ten od tysiącleci jest podstawą pieniądza. Znaczne ilości stopów złota z innymi metalami

wykorzystywane są w jubilerstwie i do produkcji monet (czyste złoto nie nadaje się do produkcji

monet ze względu na miękkość). Zawartość kruszcu w takich stopach wyrażana jest w karatach. Karat

ma dwie definicje. Pierwsza to jednostka wagi używana w jubilerstwie - równa 0,2 g; druga, to miara zawartości szlachetnego metalu w stopie. Mówiąc, że złoto jest np. dwudziestokaratowe mamy na

myśli to, że w 24 jednostkach masy stopu zawartych jest 20 jednostek masy czystego złota. Tak

zwany stop złota pierwszej próby ma 23 karaty. Drugiej próbie odpowiadają 18 karatów, a stop próby

trzeciej jest stopem czternastokaratowym. Czyste złoto jest oczywiście dwudziestoczterokaratowe.

Złoto używane do produkcji monet zawiera zwykle 10% srebra. Obecność innych metali zmienia

nieznacznie barwę stopu: zielonkawą daje miedź i srebro zaś białe złoto otrzymuje się stapiając je

z cynkiem, niklem lub platyną. Metal ten wykorzystuje się także do uzyskania specyficznych

barwników. Rozdrobnione złoto daje szkłu czerwonawe zabarwienie. Złoto używane jest również

w dentystyce oraz jako promieniotwórczy izotop, w medycynie, do leczenia raka (znacznik izotopowy).

Metale

Porównanie własności wybranyc

59,59

45,17

37,67

0

10

20

30

40

50

60

70

Srebro Miedź Złoto

Ag Cu Au

22,5621,45

19,3

0

5

10

15

20

25

Iryd Platyna Wolfram

Ir Pt W

4,2 14,1234,3

-268,9 -259,1 -38,8-500

0

500

1000

1500

2000

2500

3000

3500

4000

Hel Wodór Rtęć

He H Hg

Temperatura topnienia [K] i [

wybranych metali:

37,67

18,94 16,95 14,4310,41

Złoto Glin Wolfram Cynk Nikiel

Au Al W Zn Ni

Konduktywność [MS/m] (przewodność właściwa)

19,28

11,34 10,58,93 8,91

Wolfram Złoto Ołów Srebro Miedź Nikiel

Au Pb Ag Cu Ni

Gęstość [kg/m3] (masa właściwa)

234,3505,1

933,51 234,9 1 337,3 1 357,8

38,8

231,9 660,3961,8 1 064,2 1 084,6

Rtęć Cyna Glin Srebro Złoto Miedź

Hg Sn Al Ag Au Cu

Temperatura topnienia [K] i [°°°°C]

12

2011

8,70 8,00

Żelazo Cyna

Fe Sn

(przewodność właściwa)

7,87

2,7

Żelazo Glin

Fe Al

(masa właściwa)

1 811,2

3 687,2

1 084,6

1 538,0

3 414,0

Żelazo Wolfram

Fe W

Metale

Zadania:

Zadanie 1

Z m=1 kg miedzi (aluminium, żelaza) wykonano drut

otrzymanego drutu.

Dane: m=1 kg, d=1 mm

γCu=58,48⋅106 S/m

Szukane: RCu=?, RAl=?, RFe=?

Rozwiązanie: W celu obliczenia rezystancji otrzymanych odcinków drutu, najpierw należy obliczyć:

przekrój, objętość, długość

Odpowiedź: Wyniki obliczeń dla miedzi, aluminium

Metal Przekrój [mm

Miedź

0,7854 Aluminium

Żelazo

Zadanie 2

Jakie jest natężenie prądu wywołanego

Dane: x=6,242⋅1017, t=1

Szukane: I=?

Rozwiązanie: W celu obliczenia prądu posługujemy się wzorem definiującym natężenie prądu

w zależności od czasu i

Odpowiedź: Szukane natężenie prądu wynosi

1 1 1

0

2

4

6

8

Cu

miedzi (aluminium, żelaza) wykonano drut o średnicy d=1 mm. Obliczyć rezystancję

mm = 0,001 m, σCu=8950 kg/m3, σAl=2700 kg/m

3, σFe=7870

S/m, γAl=36,887⋅106 S/m, γFe=10,3⋅10

6 S/m.

=?

celu obliczenia rezystancji otrzymanych odcinków drutu, najpierw należy obliczyć:

przekrój, objętość, długość a dopiero później rezystancję:

4

3,14 · 0,001

4 7,854 · 10

1

8950 1,1173 · 10

1,1173 · 10

7,854 · 10 142,26

142,26

58,48⋅10 · 7,854 · 10 3,0973 Ω

Wyniki obliczeń dla miedzi, aluminium i żelaza przedstawia poniższa tabel

Przekrój [mm2] Objętość [10

-4 m

3] Długość [m]

1,1173 1 142,26 1

3,7037 3,31 471,57 3,8

1,2706 1,14 161,78 1,3

Jakie jest natężenie prądu wywołanego przepływem n=6,242⋅1017 elektronów w ciągu

=1 s, e=1,602⋅10-19 C.

celu obliczenia prądu posługujemy się wzorem definiującym natężenie prądu

zależności od czasu i ładunku:

·

1,602 · 10 · 6,242 · 10

1 0,01

Szukane natężenie prądu wynosi I=0,01 A.

3,31

1,14

3,8

1

5,26

Al

Objętość Długość

13

2011

. Obliczyć rezystancję

7870 kg/m3,

celu obliczenia rezystancji otrzymanych odcinków drutu, najpierw należy obliczyć:

żelaza przedstawia poniższa tabela.

Rezystancja [Ω]

3,0973 1

16,2772 5,26

19,9989 6,46

ciągu t=1 s?

celu obliczenia prądu posługujemy się wzorem definiującym natężenie prądu

1,3

6,46

Fe

Rezystancja

14

Metale 2011

Zadanie 3

Przez przewód o przekroju S=5 mm2 przepływa x=1020 elektronów w ciągu sekundy. Jaka jest wartość

gęstości i natężenia prądu?

Dane: n=1⋅1020, t=1 s, e=1,602⋅10-19 C, S=5 mm2 = 5⋅10-6 m2.

Szukane: j=?, I=?

Rozwiązanie: Korzystamy z definicji gęstości prądu:

=

= ∙ ∙

=1,602 ∙ 10 ∙ 1 ∙ 10

1 ∙ 5 ∙ 10= 3,2 ∙ 10

= 3,2

= 3,2

= ∙ = 3,2 ∙ 5 = 16

Odpowiedź: Gęstość prądu wynosi j=3,2 A/mm2, natężenie prądu I=16 A.

Zadanie 4

Obliczyć prędkość przemieszczania się elektronów podczas przepływu prądu o natężeniu I=12 A

w przewodzie miedzianym o przekroju S=1,5 mm2.

Dane: I=12 A, S=1,5 mm2 = 1,5⋅10-6 m2, e=1,602⋅10-19 C, na=8,5⋅1028 1/m

3, x=0,25.

Szukane: v=?

Rozwiązanie: Korzystamy z definicji natężenia prądu i po prostych przekształceniach otrzymujemy

zależność na prędkość poruszania się elektronów.

=

= ∙

=

∙ ∙

= ∙ ∙ ∙

= ∙ ∙ ∙ !

= " ∙

= ∙ ∙ ! → = ∙ ∙ !

! =

W powyższych wzorach:

I, j - natężenie prądu w [A], gęstość prądu w [A/m2];

q - ładunek elektryczny przenoszony przez prąd w [C];

t - czas w [s];

n - liczba elektronów;

na, ne - liczba atomów i swobodnych elektronów w jednostce objętości [1/m3];

x - względna liczba swobodnych elektronów przypadająca na atom;

V, S, l - objętość, przekrój i długość przewodu [m3, m2, m];

v - prędkość elektronów w [m/s].

Dane z zadania podstawiamy do powyższych wzorów i otrzymujemy:

=

=12

1,5 ∙ 10= 8 ∙ 10 = 8

= " ∙ = 0,25 ∙ 8,5 ∙ 10 = 2,125 ∙ 10

Metale

!

·

Odpowiedź: Prędkość poruszania się elektronów w

odpowiada v=2,35

Zadanie 5

Porównać przekrój i masę trzech przewodów o

aluminium oraz żelaza. Do obliczeń przyjąć długość

SCu=1,5 mm2.

Dane: l=100 m, SCu=1,5

σAl=2700 kg/m3,

Szukane: SCu : SAl : SFe =?, m

Rozwiązanie: Najpierw obliczamy rezystancję pr

przewodów aluminiowego i

a następnie masy wszystkich przewodów.

#

·

#

·

$

·

·

·

$

Odpowiedź: Stosunek przekrojów wynosi

równy mCu : mAl : m

0

2

4

6

Cu Al

Porównanie przekrojów S

8 · 10

2,125 · 10 · 1,602 · 10 0,00235

%

ruszania się elektronów w przewodzie wynosi v=0,00235

=2,35 mm/s.

masę trzech przewodów o tej samej długości i rezystancji, wykonanych z

aluminium oraz żelaza. Do obliczeń przyjąć długość l=100 m oraz przekrój przewodu miedzianego

mm2, γCu=56 MS/m, γAl=34 MS/m, γFe=10 MS/m,

, σFe=7870 kg/m3.

mCu : mAl : mFe =?

Najpierw obliczamy rezystancję przewodu miedzianego, następnie przekroje

przewodów aluminiowego i żelaznego. Mając długość i przekroje obliczamy objętości

następnie masy wszystkich przewodów.

·

10056 · 1,5

1,1905 Ω

·

#

1,55634

·

· #

1,55610

$ 1,5 $ 2,47 $ 8,4 1 $ 1,65 $ 5,6

· · 8950 · 1,5 · 10 · 100 1,3425

· · 2700 · 2,47 · 10 · 100 0,6669

· · 7870 · 8,4 · 10 · 100 6,6108

$ 1,34 $ 0,67 $ 6,1 1 $ 0,5 $ 4,9

Stosunek przekrojów wynosi SCu : SAl : SFe = 1: 1,65 : 5,6 natomiast stosunek mas jest

: mFe = 1 : 0,5 : 4,9.

Fe

Porównanie przekrojów SCu

: SAl

: SFe

0

2

4

6

Cu Al

Porównanie mas mCu

15

2011

=0,00235 m/s co

rezystancji, wykonanych z miedzi,

przekrój przewodu miedzianego

, σCu=8950 kg/m3,

zewodu miedzianego, następnie przekroje

przekroje obliczamy objętości

2,47

5610

8,4

3425 &'

6669 &'

6108 &'

= 1: 1,65 : 5,6 natomiast stosunek mas jest

Fe

Cu: m

Al: m

Fe

16

Metale 2011

Zadanie 6

Przewód miedziany o długości l1=100 m i przekroju S=2,5 mm2 umieszczono w temperaturze

υ1=90 °C. Jaką długość mógłby mieć przewód umieszczony w temperaturze υ0=20 °C, aby jego

rezystancja pozostała bez zmian?

Dane: l1=100 m, S=2,5 mm2, γCu=56 MS/m, αCu=39⋅10

-4 1/K, υ0=20 °C, υ1=90 °C.

Szukane: l0 =?

Rozwiązanie: Najpierw obliczamy rezystancję 100-metrowego przewodu w temperaturze υ0=20 °C,

następnie jego rezystancję po ogrzaniu do υ1=90 °C. Dalsze obliczenia mają na celu

obliczenie nowej długości przewodu, aby jego rezystancja była taka jak po ogrzaniu.

, =

∙ =

100

56 ∙ 2,5= 0,7143 Ω

, = ,(1 + ) *+ − +,- = 0,7143(1 + 39 ∙ 10*90 − 20,- = 0,9093 Ω

,= , =

→ = , ∙ ∙ = 0,9093 ∙ 56 ∙ 2,5 = 127,3

Odpowiedź: Przewód w temperaturze υ0=20 °C można wydłużyć do l0=127,3 m, aby jego

rezystancja pozostała taka sama jak przewodu 100-metrowego w temperaturze

υ1=90 °C.