20
Membrane polimeriche Membrane polimeriche perfluorurate perfluorurate

Membrane polimeriche perfluorurate. Obbiettivi Perchè studiare le fuel cells? Alternativa ai motori a scoppio per autotrazione (DMFC, PEFC). Produzione

Embed Size (px)

Citation preview

Page 1: Membrane polimeriche perfluorurate. Obbiettivi Perchè studiare le fuel cells? Alternativa ai motori a scoppio per autotrazione (DMFC, PEFC). Produzione

Membrane polimeriche Membrane polimeriche perfluorurateperfluorurate

Page 2: Membrane polimeriche perfluorurate. Obbiettivi Perchè studiare le fuel cells? Alternativa ai motori a scoppio per autotrazione (DMFC, PEFC). Produzione

ObbiettiviObbiettivi

Perchè studiare le fuel cells?• Alternativa ai motori a scoppio per autotrazione (DMFC,

PEFC).• Produzione energia su larga scala (MCFC, SOFC, AFC).

Alcune sfide da affrontare per PEFC, DMFC:• Methanol crossover • Aumento prestazioni• Riduzione costi• Aspetto ambientale

Page 3: Membrane polimeriche perfluorurate. Obbiettivi Perchè studiare le fuel cells? Alternativa ai motori a scoppio per autotrazione (DMFC, PEFC). Produzione

Caratteristiche generaliCaratteristiche generali

•non producono emissioni inquinanti SOx ed NOx•alti rendimenti dovuti al basso numero di steps di conversione•efficienza più alta di quella del ciclo di Carnot per tutte le temperature di impiego.•non perdono efficienza al passare del tempo •transitori di accensione molto veloci•facilmente utilizzabili in impianti cogenerativi•non richiedono particolari cure riguardanti la loro gestione.

Page 4: Membrane polimeriche perfluorurate. Obbiettivi Perchè studiare le fuel cells? Alternativa ai motori a scoppio per autotrazione (DMFC, PEFC). Produzione

Vari tipi di fuel cellsVari tipi di fuel cells

Tipo Elettrolita Ione trasferito T di impiego

Molten carbonated fuel

cells

mix di carbonati di litio e potassio

CO32- 650ºC

Fuel cells a ossido solido

zirconia stabilizzata con

ittirio

O2- 1000 °C

Fuel cells alcaline KOH OH- 65-220 °C

Fuel cells ad acido fosforico

H3PO4, matrice di SiC

H+ 150-205 °C

Page 5: Membrane polimeriche perfluorurate. Obbiettivi Perchè studiare le fuel cells? Alternativa ai motori a scoppio per autotrazione (DMFC, PEFC). Produzione

Fuel cells a membranaFuel cells a membranaPEFC DMFC

Combustibile H2 CH3OH

Trattamenti a monte

SR,CO oxidation, umidificazione

umidificazione

Reazioni

A H2→2H++2e- ACH3OH+H2O→CO2+

H++6e-

C ½ O2+H2O+2e-→2OH- C 3/2O2 + 6H+ + 6e- →

3H2O

Tot H2+½ O2→H2O TotCH3OH + H2O + 3/2 O2

→ 3H2O + CO2

Elettrolita MEMBRANA POLIMERICA

Catalizzatore Pt Pt-Ru•una densità di potenza molto alta •una grande varietà di materiali possono essere utilizzati

• inquinamento da CO operando a bassa temperatura •difficile gestione dell’acqua •temperatura allo scarico è minore rispetto alle altre fuel cell

Page 6: Membrane polimeriche perfluorurate. Obbiettivi Perchè studiare le fuel cells? Alternativa ai motori a scoppio per autotrazione (DMFC, PEFC). Produzione

MEAMEALa cella è composta:•membrane-electrode assembley (MEA)•due piatti bipolari•due guarnizioni

MEA: •Membrana•due fasi disperse di catalizzatore•superfici di diffusione dei gas (gas diffusion layers GDL)

GDL: •distribuire il combustibile e l’ossidante nella cella•controllare facilmente la distribuzione dell’acqua nella cella•separare ogni singola cella della pila•trasportare la corrente all’esterno

Page 7: Membrane polimeriche perfluorurate. Obbiettivi Perchè studiare le fuel cells? Alternativa ai motori a scoppio per autotrazione (DMFC, PEFC). Produzione

Membrane fluorurate LSC-1Membrane fluorurate LSC-1

NafionPFSA sono costituiti da 3 regioni:• una struttura in

politetrafluoroetilene• una catena laterale -O-

CF2-CF-O-CF2-CF2- che connette la struttura molecolare con la terza regione

• una regione ionica costituito da un gruppo solfonico.

• -transition 110°C

Page 8: Membrane polimeriche perfluorurate. Obbiettivi Perchè studiare le fuel cells? Alternativa ai motori a scoppio per autotrazione (DMFC, PEFC). Produzione

Membrane fluorurate LSC-2Membrane fluorurate LSC-2

VantaggiVantaggi• struttura in PTFE, quindi le membrane PFSA sono stabili sia in

ambiente ossidante che riducente. • la conducibilità protonica è ottenuta da una buona umidificazione

della membrana può essere superiore a 0.2 S/cm

SvantaggiSvantaggi • elevati costi delle membrane PFSA• sicurezza relativa alle emissione di gas tossici e corrosivi prodotti

per temperature superiori a 150 °C. • è necessario l’utilizzo di un sistema di idratazione aggiuntivo • ad elevate temperature le membrane PFSA perdono le loro

proprietà. Per esempio a 80°C la conducibilità si riduce di 10 volte rispetto a quella a 60 °C.

Page 9: Membrane polimeriche perfluorurate. Obbiettivi Perchè studiare le fuel cells? Alternativa ai motori a scoppio per autotrazione (DMFC, PEFC). Produzione

Vantaggi:Vantaggi:1. sono meno costosi,2. sono disponibili sul mercato vari tipi di

membrana3. si possono creare gruppi polari che

adsorbono acqua in un ampio range di temperatura

4. decomposizione dei polimeri è limitata con una opportuna struttura del polimero

5. riciclare i polimeri

Metodi per la produzione di membrane Metodi per la produzione di membrane solfoniche:solfoniche:

• post-solfonazione di polimeri 1. polimeri solforati creati da monomeri

funzionalizzati

Membrane polimeriche non Membrane polimeriche non fluoruratefluorurate

Page 10: Membrane polimeriche perfluorurate. Obbiettivi Perchè studiare le fuel cells? Alternativa ai motori a scoppio per autotrazione (DMFC, PEFC). Produzione

Conduzione ionica-1Conduzione ionica-1

Il Nafion:• PTFE: stabilità termica e chimica,

idrofobicità• Segmenti laterali: formano delle

propaggini flessibili • Gruppi solfonati: garantiscono

l’idratazione della membrana e il trasporto ionico.

• Trasporto di ioni idronio (H2O)nH+

• La struttura portante idrofobica e gruppi funzionali idrofilici formano dei nanodomini

• La conduzione ionica avviene tramite processi di formazione e rottura di legami

Problemi:• methanol crossover (DMFC)• La conduzione è influenzata dalla percentuale

di umidificazione della membrana

Page 11: Membrane polimeriche perfluorurate. Obbiettivi Perchè studiare le fuel cells? Alternativa ai motori a scoppio per autotrazione (DMFC, PEFC). Produzione

Conduzione ionica-2Conduzione ionica-2

Membrane non fluorurate• conduzione ionica è paragonabile a quella del Nafion

solo ad alto livello di umidificazione• I polimeri solfonati aromatici presentano una

separazione fra i domini idrofilici e idrofobici molto meno accentuata rispetto al Nafion. Questo produce canali più stretti ed angusti che inficiano il trasporto ionico

• la conduttività di queste membrane dipende fortemente dal grado di solfonazione

Membrane composite- compositi igroscopici:le prestazioni a basso livello di umidità la resistenza al methanol

crossover sono incrementate.- compositi conduttivi: si introduce un secondo protone conduttivo per ridurre la

permeabilità al metanolo e all’acqua.- compositi sostituiti con acqua: alla matrice polimerica è aggiunto un protone

trasportatore. Si immobilizza un acido fortemente conduttivo nella matrice in modo da rendere il trasporto indipendente dal grado di umidificazione.

Page 12: Membrane polimeriche perfluorurate. Obbiettivi Perchè studiare le fuel cells? Alternativa ai motori a scoppio per autotrazione (DMFC, PEFC). Produzione

La struttura del gruppo acido perfluorofosforico è bivalente e può fornire due volte la capienza di scambio ionico rispetto ad un gruppo acido perfluorosulfonico monovalente.

•Aumento del rendimento energetico di conduzione del protone (nella fig. meq/g)•eccellente resistenza termica, possibilità di raggiungere temperature superiori

Polimero ottenuto dalla polimerizzazione del TFE e dell’olefina perfluorofosfoeterea

(A)/(B) da 3 a 8

Conduzione ionica-3Conduzione ionica-3

Page 13: Membrane polimeriche perfluorurate. Obbiettivi Perchè studiare le fuel cells? Alternativa ai motori a scoppio per autotrazione (DMFC, PEFC). Produzione

Methanol crossover-1Methanol crossover-1

ParametriParametri• concentrazione del metanolo• pressione del sistema• temperatura del sistema• spessore della membrana• morfologia del catalizzatore.

Page 14: Membrane polimeriche perfluorurate. Obbiettivi Perchè studiare le fuel cells? Alternativa ai motori a scoppio per autotrazione (DMFC, PEFC). Produzione

Methanol crossover-2Methanol crossover-2

•multiblock copolymers (MBC), PA-MBC x/y, x e y indicano l lunghezza dei gruppi non-sulfonati e gruppi sulfonati •random copolymers sono descritti come PA-RC x/y, dove x/y indica il rapporto tra monomeri non-sulfonati e sulfonati.

PoliarimidiPoliarimidi PAPA Poliarileneteri (PAE)Poliarileneteri (PAE)

Page 15: Membrane polimeriche perfluorurate. Obbiettivi Perchè studiare le fuel cells? Alternativa ai motori a scoppio per autotrazione (DMFC, PEFC). Produzione

Methanol crossover-3Methanol crossover-3

•Polimero con il più basso EW possibile (<900)•Polimero ammonio-modificato ridurre il methanol crossover•Gruppi alogeno solfonilici SO2F presenti sotto la superficie devono essere trattati con ammoniaca.

Page 16: Membrane polimeriche perfluorurate. Obbiettivi Perchè studiare le fuel cells? Alternativa ai motori a scoppio per autotrazione (DMFC, PEFC). Produzione

Membrane fluorurate SSCMembrane fluorurate SSCCaratteristicheCaratteristiche

• -transition 160°C• minor complessità del sistema sia

in termini di raffreddamento sia di trattamento della corrente di combustibile

• alte temperature di transizione è meno probabile che avvenga un cambiamento strutturale della membrana

• basso peso molecolare dei gruppi laterali, mostrano un contenuto cristallino maggiore rispetto alle membrane LSC corrispondenti con stesso EW

Page 17: Membrane polimeriche perfluorurate. Obbiettivi Perchè studiare le fuel cells? Alternativa ai motori a scoppio per autotrazione (DMFC, PEFC). Produzione

Applicazioni industrialiApplicazioni industriali

•Elettrolisi del cloruro di sodio•Generazione elettrochimica di energia (celle galvaniche)•Generazione fotoelettrochimica di energia elettrica da energia solare.•Idrogenazione delle olefine (catalizzatori al Pt)•Elettroriduzione dei composti aromatici nitrosostituiti (catalizzatori Cu-Pt)•Elettroossidazione del metanolo (catalizzatori Pt-Ru, Pt-Ir)•Membrane per pervevaporazione •Catalizzatore solido acido nelle sintesi organiche (reazioni Friedle and Crafts di benzilazione di idrocarburi aromatici)•Sensori per determinazione ossigeno•Sensori di vibrazione•Applicazioni mediche come membrana nei biosensori per la determinazione del tasso di glucosio nel sangue in vitro.

Page 18: Membrane polimeriche perfluorurate. Obbiettivi Perchè studiare le fuel cells? Alternativa ai motori a scoppio per autotrazione (DMFC, PEFC). Produzione

Costo membrane fluorurateCosto membrane fluorurate

•Il prezzo si avvicinia ai 25 $/m2 per applicazioni su larga scala. •Dalla commercializzazione e la competitività delle PEFC dipenderà lo sviluppo dalle membrane perfluorurate

Page 19: Membrane polimeriche perfluorurate. Obbiettivi Perchè studiare le fuel cells? Alternativa ai motori a scoppio per autotrazione (DMFC, PEFC). Produzione

Sicurezza e impatto ambientaleSicurezza e impatto ambientale•Il Nafion brucia solo in miscele con alto contenuto di ossigeno.•Nell’eventualità di incendio possono liberarsi HF e fluoropolimeri volatili•Possono essere usati tutti i tipi di estintori chimici e anche abbondanti quantità di acqua.

COMPOSTO TEMPERATURA [°C] EMISSIONE [Mg/g]

SO2 280 15

CO2 300 30

HF 400 -

CO 400 3

RfCOF 400 10

COF2 400 3

COS 400 Tracce

RfOH 400 Tracce

Fondamentale tener conto delle varie alternative che esistono per selezionare la soluzione che riduce l’impatto ambientale sia durante la produzione sia nell’utilizzo e nello smaltimento.

Page 20: Membrane polimeriche perfluorurate. Obbiettivi Perchè studiare le fuel cells? Alternativa ai motori a scoppio per autotrazione (DMFC, PEFC). Produzione

Ricerca e sviluppoRicerca e sviluppo

Lo sviluppo di nuove membrane sono orientate verso:• riduzione dei costi delle membrane polimeriche,• riduzione della quantità di umidità richiesta • aumentare la stabilità termica e la possibilità di raggiungere

temperature più elevate,• ridurre il methanol crossover