11
Page 1 of 11 Melting Efficiency for Various Polylactide Resins in a Co- rotating Intermeshing Twin Screw Extruder Nick Knowlton 1 , Augie Machado 2 , Brian Haight 2 1 NatureWorks LLC, Minnetonka, MN, USA 2 Leistritz Extrusion, Somerville, NJ, USA Abstract: There are many grades of polylactide resins marketed by NatureWorks LLC under the Ingeo™ trade name. For commercial and technical reasons, Ingeo may be supplied as a neat resin or with the addition of external lubricant. The applied lubricant improves pellet flow through conveying systems, silos, and dryers with minimal influence on physical properties. Several studies have been performed comparing the differences in melting behavior, power load, and melt temperature in single screw extrusion, but to date no study has characterized the same parameters in twin screw extrusion. Leistritz Extrusion and NatureWorks LLC have conducted experiments that examine the effect of externally applied lubricants on the melting performance in a twin screw extruder with multiple screw configurations and differing operating conditions (i.e. rotational screw speed), denoting the location of the onset of melting, power consumption, and melt temperature for lubricated and unlubricated high molecular weight, low melt flow rate (MFR), formulations. Introduction: NatureWorks LLC and Leistritz Extrusion have collaborated to conduct experiments examining the effects of externally applied ethylene-bis-stearamide (EBS) at levels less than two percent by weight on the melting performance of Ingeo polylactide (PLA) resins in a Leistritz 27-mm ZSE MAXX twin screw extruder. A naturally advanced materials company, NatureWorks offers a family of commercially available performance materials derived from locally abundant and sustainable natural resources. 1 Some of NatureWorks Ingeo resins are provided with a surface lubricant to reduce the friction and prevent sticking in conveying systems, silos, and dryers. Twin screw extruders (TSEs) such as the Leistritz 27-mm ZSE MAXX, shown in figure 1, are a preferred manufacturing method for compounding bioplastics, including PLA. TSEs utilize modular barrels and segmented screws assembled on splined shafts. TSE motors transmit power into the gearbox/shafts and rotating screws which impart shear energy into the materials being processed. The modularity of TSEs allows for a wide range and refinement of many processing applications.

Melting Efficiency for Various Polylactide Resins in …...6.) Screw element and pellet geometry The factors that can be controlled through the design of a twin screw extruder are

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Melting Efficiency for Various Polylactide Resins in …...6.) Screw element and pellet geometry The factors that can be controlled through the design of a twin screw extruder are

Page1of11

Melting Efficiency for Various Polylactide Resins in a Co-rotating Intermeshing Twin Screw Extruder NickKnowlton1,AugieMachado2,BrianHaight2

1NatureWorksLLC,Minnetonka,MN,USA2LeistritzExtrusion,Somerville,NJ,USA

Abstract: TherearemanygradesofpolylactideresinsmarketedbyNatureWorksLLCundertheIngeo™tradename.Forcommercialandtechnicalreasons,Ingeomaybesuppliedasaneatresinorwiththeadditionofexternallubricant.Theappliedlubricantimprovespelletflowthroughconveyingsystems,silos,anddryerswithminimalinfluenceonphysicalproperties.Severalstudieshavebeenperformedcomparingthedifferencesinmeltingbehavior,powerload,andmelttemperatureinsinglescrewextrusion,buttodatenostudyhascharacterizedthesameparametersintwinscrewextrusion.

LeistritzExtrusionandNatureWorksLLChaveconductedexperimentsthatexaminetheeffectofexternallyappliedlubricantsonthemeltingperformanceinatwinscrewextruderwithmultiplescrewconfigurationsanddifferingoperatingconditions(i.e.rotationalscrewspeed),denotingthelocationoftheonsetofmelting,powerconsumption,andmelttemperatureforlubricatedandunlubricatedhighmolecularweight,lowmeltflowrate(MFR),formulations.

Introduction: NatureWorksLLCandLeistritzExtrusionhavecollaboratedtoconductexperimentsexaminingtheeffectsofexternallyappliedethylene-bis-stearamide(EBS)atlevelslessthantwopercentbyweightonthemeltingperformanceofIngeopolylactide(PLA)resinsinaLeistritz27-mmZSEMAXXtwinscrewextruder.Anaturallyadvancedmaterialscompany,NatureWorksoffersafamilyofcommerciallyavailableperformancematerialsderivedfromlocallyabundantandsustainablenaturalresources.1SomeofNatureWorksIngeoresinsareprovidedwithasurfacelubricanttoreducethefrictionandpreventstickinginconveyingsystems,silos,anddryers.

Twinscrewextruders(TSEs)suchastheLeistritz27-mmZSEMAXX,showninfigure1,areapreferredmanufacturingmethodforcompoundingbioplastics,includingPLA.TSEsutilizemodularbarrelsandsegmentedscrewsassembledonsplinedshafts.TSEmotorstransmitpowerintothegearbox/shaftsandrotatingscrewswhichimpartshearenergyintothematerialsbeingprocessed.ThemodularityofTSEsallowsforawiderangeandrefinementofmanyprocessingapplications.

Page 2: Melting Efficiency for Various Polylactide Resins in …...6.) Screw element and pellet geometry The factors that can be controlled through the design of a twin screw extruder are

Page2of11

Figure1-LeistritzZSE27MAXXtwinscrewextruderusedforprocessing.

OptimalprocessingofPLAinatwinscrewextruderrequiresproperlyaddressingtheheatandshearsensitivityoftheneatPLA,aswellasitstorquerequirements.Poorprocessingpracticessuchashighpressure,highmelttemperature,excessivemoisturecontent,andincreasedresidencetimecanresultinhydrolyticdegradationandreducedmechanicalproperties.3Useofasurfacelubricantprovidesmanybenefitsinconveyingandtransportation,butalsohasimplicationsonthemeltingperformanceofPLAinatwinscrewextruder.ExplicitlyengineeringaTSEtoaccountforthedifferencesinprocessingcanincreasetheefficiencyofmelting,improvematerialproperties,improvethroughput,andreducetoolwear.AfewkeyfactorsthatinfluencethemeltingperformanceofPLAinatwinscrewextruderinclude:

1.) Levelofsurfacelubricantused2.) Barreltemperaturesetpoints3.) Lengthofthemeltingregion4.) Pellettopelletandpellettometalfriction5.) Screwrotationspeed6.) Screwelementandpelletgeometry

Thefactorsthatcanbecontrolledthroughthedesignofatwinscrewextruderarethetemperaturesetpoints,length,anddesignofthemeltingregion,screwspeed,andscrewelementgeometry.TheinfluenceofthesevariousparametersinaTSEprocesscanbeobservedinpolylactideintheformofmelttemperature,overalltorque,energyinput,onsetofmelting,andmolecularweightdegradation.Thesevaluescanbemeasuredinlineorthroughanalyticalstudiesonthefinalproduct.AnalysisofthespecificenergyisparticularlyusefulwhenevaluatingthemixingperformanceofaTSEandlookingfordrasticdifferencesinprocessing.Thespecificenergycanbecalculatedthroughcombinationofequations1and2below.

𝑘𝑊 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 =0.97 𝑔𝑒𝑎𝑟𝑏𝑜𝑥 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 ∗ 𝑘𝑊 𝑚𝑜𝑡𝑜𝑟 𝑟𝑎𝑡𝑖𝑛𝑔 ∗% 𝑡𝑜𝑟𝑞𝑢𝑒 ∗ 𝑠𝑐𝑟𝑒𝑤 𝑅𝑃𝑀 𝑟𝑢𝑛𝑛𝑖𝑛𝑔

𝑆𝑐𝑟𝑒𝑤𝑠 𝑀𝑎𝑥 𝑅𝑃𝑀

Eq.1

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝐸𝑛𝑒𝑟𝑔𝑦 =𝑘𝑊 (𝑎𝑝𝑝𝑙𝑖𝑒𝑑)

𝑘𝑔/ℎ𝑟

Eq.2

Page 3: Melting Efficiency for Various Polylactide Resins in …...6.) Screw element and pellet geometry The factors that can be controlled through the design of a twin screw extruder are

Page3of11

Forthepurposeofthisstudy,atwinscrewextrudercanbeviewedasvariousregionswithuniquetasks.Asshownintheimagebelow,theseprocesssectionsincludethemeltingregion,themixingandconveyingregion,andfinallyaventanddischargeregion.Inthemeltingregion,thepelletsmustabsorbheatfromthebarrelsandenergyofthescrew.Thiswillallowthepelletstosoftenandbegintoformaviscousmelt.Asthepolymerreachesthefirstsetofmixingblocks,theyshouldbesoftenoughtomechanicallydeformwithoutcrackingorcrunching.Audiblecrunchingpresentintheprocessisindicativeofhigherlevelsofmechanicalenergy,whichleadtohighermotorloadsandinessence,wastedenergy.Theformationofaviscousmeltinthemeltingregionwillalsohelpmixing,whichisessentialforahomogenouspolymermelt.Aftermelting,additionalconveyingandmixingwilloccurandmaterialswithviscositymismatchsuchasfillersandliquidsmaybeaddedthroughtheuseofasidestufferorliquidpump.Thelatterregionincludesameltseal,conveyingandventing,andpump/discharge.Afterthepolymerleavesthedischargeregionofthescrews,downstreamprocessessuchaspelletization,sheetextrusion,meltpumps,etc.areperformed.

Figure2-Co-rotatingscrewsinatwinscrewextrudersplitintovariousseparateregions.Thesewillbereferredtoasthemelting,mixing/conveying,andpumping/dischargeregions.2

Methods and Equipment: Twinscrewextrusion(TSE)experimentsprocessingNatureWorksLLCIngeo™Biopolymer4032Dwereperformedusingthethreescrewdesignsinfigure3below.NeatIngeo4032DpelletsaswellaspelletswithmediumandhighlevelsofexternallyappliedsurfacelubricantwereprocessedonaLeistritzZSE27MAXXextruderwith28.3mmdiameterscrews,5.7mmflightdepth,1.66OD/ID,torqueratingof304NMforbothscrews,and1200maxrpm.

Page 4: Melting Efficiency for Various Polylactide Resins in …...6.) Screw element and pellet geometry The factors that can be controlled through the design of a twin screw extruder are

Page4of11

Figure3-Threescrewdesignsusedoverthecourseofthisstudy.

Page 5: Melting Efficiency for Various Polylactide Resins in …...6.) Screw element and pellet geometry The factors that can be controlled through the design of a twin screw extruder are

Page5of11

Closeattentionwasgiventothemelttemperature,meltpressure,specificenergy,overalltorque,residencetime,andonsetofmelting.Theparametersweremeasuredandloggedandthespecificenergycalculatedusingastateofthearttwinscrewextrusioncontrolsystem.Animageofthetwomelttemperatureprobesandtwopressuretransducersusedinthisstudyareshowninfigure4belowwheretheinternal(deep)meltprobewasfixedat0.25”meltpenetration.

Figure4-Locationsofthetwomeltpressuretransducers,thesurface(shallow)meltprobe,andinternal(deep)meltprobeattheendofthe27-mmTSEused.

TheonsetofmeltingofPLAwasdeterminedbyremovingtheventatzone3,whichimmediatelyfollowsthekneadingblockspresentinzone2.Animageofthemeltextrudatefreelyflowingoutoftheextrudercanbeobservedbelow.Afterremovalfromtheextruder,thecollectedpolymerwasimmediatelyquenchedinroomtemperaturewatertopreservethemeltimage.

Figure5-MeltextrudatecollectedfromhighlylubricatedPLAatzone3ventforscrewdesign1.

Figure1-Imageofmeltextrudateremovedfromzone3onscrewdesign#1.ThepolymerextrudateisthatofhighEBScontent.

Page 6: Melting Efficiency for Various Polylactide Resins in …...6.) Screw element and pellet geometry The factors that can be controlled through the design of a twin screw extruder are

Page6of11

Results and Discussion:

Figure6-Meltingregionofscrewdesign1usingGFFscrewelementsandkneadingblocksinzone2.

ExaminingtheLubricant-ScrewDesigns1&2:

Screwdesign1istypicalofascrewoptimizedformeltingandmixingofunlubricatedpolylactide.Themeltingregion,asshownintheimageabove,consistsofthreeGFF2-40-30elements,threeGFA2-40-30elements,andfourkneadingblocksvaryingfrom30°to90°forwardtwistbetweeneachdivision.ThisisarelativelyshortmeltingzoneforPLAthatisadvantageouswhenprocessingunlubricatedpolymerduetothehighfrictionandshearenergyabsorbedbythepolymer.TheadditionofthesurfacelubricantEBSalteredthepellet-to-pelletandpellet-to-metalfrictionexperiencedintheextruder.Thereductionoffrictionfromsurfacelubricantinthisdesignreducedtheshearenergyandfrictionalheatappliedtopellets.Asaresult,themeltingefficiencyofthePLApelletswasreducedandthepolymerwastoosolidasitapproachedthefirstsetofkneadingblocks.Thiswasobservedintheformoftorquespikesandaudiblepelletcrunching.Photosofthemeltextrudateforvariouslevelsofsurfacelubricantcanbefoundinfigure7.Onthefarleft,neatIngeo™4032Dshowsalmostcomplete,uniformmeltingwhilethehighlylubricatedPLAontherightshowsahighportionofunmeltedpellets.Thephysicalcrackingofthepelletsisnotdesiredinatwinscrewextrusionprocessasitisanindicationofinefficientmelting,excessivetoolwear,lowerthroughput,torqueoverload,andincreasedprobabilityofcatastrophiceventssuchasbrokenelementsandshafts.

Figure7-Imagesofmeltextrudateremovedfromzone3.Fromlefttoright:unlubricatedIngeo™4032D,mediumlevelofsurfacelubricant,andhighlevelofsurfacelubricant.

Thelearningsfromscrewdesign1wereusedtoengineerarevisedtemperatureprofileandscrewconfiguration,referredtohereasscrewdesign2.Inscrewdesign2,themeltingregionwas

Page 7: Melting Efficiency for Various Polylactide Resins in …...6.) Screw element and pellet geometry The factors that can be controlled through the design of a twin screw extruder are

Page7of11

extendedby30-mmtoallowforincreasedheatingandsofteningpriortothefirstsetofkneadingblocks.Also,theGFFscrewelementsusedinthefeedthroatofdesign1werereplacedwithGFAelementsofequivalentpitchandlength.Asshowninfigure8,GFF’sarefreelycut,non-self-wipingelementswhileGFAsareclosely-meshing,self-wipingelements.TheuseofGFAelementsreducedthefreevolumeandincreasedtheenergyinputintothepolymerthroughadditionalpellettoscrewsurfacecontact,increasedpellettopelletfriction,andadditionalcontactwiththeheatedbarrelwall.4Thetemperatureprofileearlyinthescrewwasalsoincreasedfrom210°Ctotemperaturesashighas222°Cinthemeltingregion.Theincreasedtemperatureinthemeltingregioncausedthepolymertomeltfasterandreducedtheoverallloadonthescrews.

Figure8-SchematicofGFFandGFAelementsusedinscrewdesigns1and2,respectively.Alsoincludedarethetemperatureprofilesusedforprocessingat35kg/hrand350RPM.

Acomparisonofthespecificenergyinputwhileoperatingat350RPMand35kg/hrwithamediumlevelofsurfacelubricantinscrewdesigns1and2isincludedinfigure9below.Itcanbeseenthatanincreaseintemperaturesetpointsinthemeltingzoneandextensionofthemeltingzonereducedtheloadontheextruder.TheaudiblecrunchingsoundsthatwereexperiencedwhenprocessinglubricatedPLAwereeliminatedusingscrewdesign2.Thetemperatureprofileforscrewdesign2alsoefficientlymanagedthefinalmelttemperature.Thisprovidesadditionalbenefitssuchasimprovedmeltstrengthfordownstreamprocessessuchassheetextrusion,reduceddegradation,andefficientmixingthroughoutthescrew.Onethingtonoteistheextensionofthemeltingzonerequiredtheatmosphericventtobemovedonebarreldownstreamformzone3tozone4.However,relocationofthemixingblocksandincreasedviscosityalongtheprocesslengthisstillexpectedtoprovidequalitydispersionofadditives.

Figure9-Specificenergyandmelttemperaturewhileprocessingmediumleveloflubricantat350RPMand35kg/hronaLeistritz27-mmZSEMAXX.Melttemperaturemeasuredwithshallow,surfacethermocouple.

Figure 4: GFA element Figure 5: GFF element

Zone1 Zone2 Zone3 Zone4 Zone5 Zone6 Zone7 Zone8 Zone9 Zone10ScrewDesign1 210°C 210°C 210°C 210°C 210°C 210°C 210°C 210°C 210°C 210°CScrewDesign2 220°C 222°C 222°C 212°C 212°C 212°C 202°C 202°C 202°C 210°C

Page 8: Melting Efficiency for Various Polylactide Resins in …...6.) Screw element and pellet geometry The factors that can be controlled through the design of a twin screw extruder are

Page8of11

OptimizingtheProcess-ScrewDesigns2&3

Furtheroptimizationofscrewdesign2wastargetedwithvariedscrewspeeds,temperaturesetpoints,lubricantlevels,andamodificationthatresultedinscrewdesign3.Inscrewdesign3,themeltingregionwasextendedbyanadditional60mmbeyondthatofscrewdesign2.Theconveyingelementsinthemeltingregionofdesign3werealteredtoincludetwofewer30mm,40°pitchedelementsandinsteadusedfouradditional30-mm,20°pitchedelements.Theabilitytoextendthescrewanadditional60mmwilldependontheprocessbeingused.Insomecases,thismaynotbeanoptionduetoadditionalfeedersand/ormixingnecessaryinthemixingandconveyingportionofthescrew.However,thisdesignfurtherimprovedthemeltingpriortomixingbyincreasedpellettometalsurfaceareaandincreasedresidencetimeintheheatedbarrelpriortothefirstsetofkneadingblocks.

Thetemperatureprofilesandfeedratesforscrews2and3werealteredbeyondtheworkperformedinscrews1and2.Theincreasedtemperatureisdesignedtoincreasemeltingearlyinthescrew,managemelttemperaturethroughouttheprocess,decreasethetorqueonthescrewshafts,andincreasetheoverallthroughput.Thefeedratesforallmaterialswasincreasedto45kg/hrduetoimprovedmeltingperformanceofthescrews.

Figure10-Temperatureprofilesusedforacomparisonandoptimizationofscrewdesigns2and3.

ThefinalmelttemperatureofIngeo4032Dwasmeasuredatthebarrelsurfaceaswellas0.25”(6.4mm)intothemeltwiththeuseofavariablemeltprobe.Therecordedtemperaturesfromthisprocessatscrewspeedsvaryingfrom325to600RPMcanbeobservedinfigures11and12.Asexpected,theinternalmelttemperatureissignificantlyhigherthanthesurfacetemperatureinbothscrewdesignsduetoreducedinfluenceofheattransferfromthebarrel.Thedifferencesinmelttemperatureoflubricatedandunlubricatedfeedscanbeexplainedbydecreasedmeltingperformance.Thereductionoffrictionalheatearlyinthescrewresultsinacoolermeltthroughouttheextruder.Onethingtonoteisthemaximummelttemperatureobservedinscrewdesign2was243°Cwhilethemaximumtemperatureindesign3was240°C.Thedifferenceof3°Cmayseemmarginal,however,itmayhaveasignificantinfluenceondegradationinprocesseswhereregrindisincorporatedandthepolymermaybeexposedtothesetemperatures5-10times.Itisrecommendedthateachprocessbeoptimizedwithcloseattentionpaidtothemolecularweight,melttemperature,torqueload,andmechanicalpropertiesforanyprocess.

Zone1 Zone2 Zone3 Zone4 Zone5 Zone6 Zone7 Zone8 Zone9 Zone10ScrewDesign2 220°C 240°C 230°C 230°C 220°C 210°C 210°C 210°C 210°C 210°CScrewDesign3 220°C 240°C 230°C 230°C 220°C 210°C 210°C 210°C 210°C 210°C

Page 9: Melting Efficiency for Various Polylactide Resins in …...6.) Screw element and pellet geometry The factors that can be controlled through the design of a twin screw extruder are

Page9of11

Figure11-MelttemperatureforshallowanddeepthermocouplemeasuredonlubricatedandunlubricatedPLAatthediepriortodischargeinscrewdesign2.

Figure12-MelttemperatureforshallowanddeepthermocouplemeasuredonlubricatedandunlubricatedPLAatthediepriortodischargeinscrewdesign3.

Inadditiontomonitoringthemelttemperature,closeattentionwaspaidtothespecificenergyinputinscrewdesigns2and3.Infigure13itisclearthatscrewdesign2isaddingmoreenergytothepolymermelt.Onewouldexpectthatdesign2isprovidingmoreefficientmixingwhiledesign3isalowerworkscrew.Eachofthesedesignsprovidesbenefitsfordifferentapplications.Whencompoundingaperformanceenhancingmaterialsuchasanimpactmodifier,screwdesign2maybepreferredduetoenhanceddispersivemixing.However,screwdesign3maybebeneficialforcompoundinginacolorantpowderorotherhighlyhygroscopicmaterialwherelowresidencetime,increasedthroughput,andlowmelttemperaturesaredesired.

Page 10: Melting Efficiency for Various Polylactide Resins in …...6.) Screw element and pellet geometry The factors that can be controlled through the design of a twin screw extruder are

Page10of11

Figure13-Specificenergyvsextruderspeedfordesigns2and3withlubricatedandunlubricatedPLA.

Foreachoftheconditionsappliedtoscrewdesigns2and3,thepolymerextrudatewasstrandcutandanalyticaltestingperformed.Itwasconcludedthateachofthescrewdesignsandprocessconditionsresultedingreaterthan92%molecularweightretentionafterasinglepass,thesurfacelubricantlevelwasmaintainedconstant,themelttemperaturedidnotexceed245°C,pressuredidnotexceed300psig,andresidencetimewasheldmaintainedbetween15and20seconds.Thesurfacelubricantusedinthestudieshasbeentestedextensivelyanddoesnotsignificantlyinfluencethemechanicalproperties,rheology,ordegradationofpolylactideattheconcentrationsused.Screwdesigns2and3offerviableoptionsformeltingandprocessinglubricatedPLAbutshouldbefurtheroptimizedbasedondesiredthroughput,mixingefficiency,andpolymermechanicalproperties.

Page 11: Melting Efficiency for Various Polylactide Resins in …...6.) Screw element and pellet geometry The factors that can be controlled through the design of a twin screw extruder are

Page11of11

Conclusions: TheprocessingofNatureWorks’Ingeo™4032DwasobservedwithandwithouttheapplicationofEBSsurfacelubricantwhileprocessingwiththreedifferentscrewconfigurationsinaLeistritz27-mmZSEMAXX.KeydifferenceswerenotedinthemeltingbehavioroflubricatedPLAincludingdelayedmelting,reducedloadontheextruder,andareductionofmelttemperature.Inscrewdesign1,unlubricatedPLAexhibitedqualitymeltingbehaviorwhilelubricatedPLAcausedtorquespikesandunmeltedpelletsimmediatelyfollowingthefirstsetofkneadingblocks.Indesigns2and3,optimizedforprocessinglubricatedPLA,qualityproductwasobservedunderallprocessingconditionstested.Thiswasdeterminedasgreaterthan92%molecularweightretention,melttemperaturesoflessthan245°C,specificenergyinputof0.15to0.21kW-hr/kg,andsufficientmelting/softeningpriortofurtherprocessing.Forthegeneralpractitioner,thisworksuggestssomepracticalguidelinesforoptimizingatwinscrewcompoundingprocesswhenPLAmakesupamajorportionoftheblend.Ifmotorloadsseemexcessivelyhighorthereisaudiblecrackingandgrindingofpelletscomingfromtheextruder,theprocess,andthereforeproduct,wouldbenefitfromachangeinthescrewdesign.Increasingtheheattransferintothepelletbedpriortothefirstkneadingsectiongenerallywillleadtolowerenergyconsumption,improvedprocessstabilityandreducedmelttemperature.ThisworkperformedbyNatureWorksLLCandLeistritzExtrusionhasidentifiedmultiplesolutionstoimproveoptimizetheprocessingoflubricatedIngeo™resingrades,suchasextendingthemeltingregionofthescrew,alteringtemperatureprofiles,improvingthemodesofheattransferthroughincreasedsurfaceareaandfrictional/shearheat.

References and Notes:

1.) "About NatureWorks." About NatureWorks. N.p., n.d. Web. 10 May 2016. 2.) Martin, Charlie. "Twin Screw Extrusion for Pharmaceutical Processes." - Springer. American

Association of Pharmaceutical Scientists 2013, n.d. Web. 09 May 2016. 3.) Garlotta, Donald. "A Literature Review of Poly(Lactic Acid)." ResearchGate. Journal of

Polymers and the Environment, Vol. 9, No. 2, April 2001 (q 2002), n.d. Web. 09 May 2016. 4.) "ZSE MAXX SERIES Co-rotating Twin Screw Extruders." Leistritz Extrusion. Web. 13 May

2016