24
Mellinger Lesson5 Einstein coefficient & HI line Toshihiro Handa Dept. of Phys. & Astron., Kagoshima University Kagoshima Univ./ Ehime Univ. Galactic radio astronomy

Mellinger Lesson5 Einstein coefficient & HI line Toshihiro Handa Dept. of Phys. & Astron., Kagoshima University Kagoshima Univ./ Ehime Univ. Galactic radio

Embed Size (px)

Citation preview

Page 1: Mellinger Lesson5 Einstein coefficient & HI line Toshihiro Handa Dept. of Phys. & Astron., Kagoshima University Kagoshima Univ./ Ehime Univ. Galactic radio

Mellinger

Lesson5Einstein coefficient & HI

line

Toshihiro HandaDept. of Phys. & Astron., Kagoshima University

Kagoshima Univ./ Ehime Univ.Galactic radio astronomy

Page 2: Mellinger Lesson5 Einstein coefficient & HI line Toshihiro Handa Dept. of Phys. & Astron., Kagoshima University Kagoshima Univ./ Ehime Univ. Galactic radio

Mellinger

Energy level

▶ Schrödinger equation of an electron

▶ Steady state = energy eigen value■ Parameter separation

▶ Schrödinger equation for steady state

Page 3: Mellinger Lesson5 Einstein coefficient & HI line Toshihiro Handa Dept. of Phys. & Astron., Kagoshima University Kagoshima Univ./ Ehime Univ. Galactic radio

Mellinger

Energy eigenvalue & bound states

▶ Solution depends on the boundary condition■ Continuous E is possible if E>0.■ Discreet values if E<0 (bound state)

▶ Continuous solution in quantum mechanics!

▶ In many cases, we consider bound states.■ Discreet eigenvalues and eigenfunctions

Page 4: Mellinger Lesson5 Einstein coefficient & HI line Toshihiro Handa Dept. of Phys. & Astron., Kagoshima University Kagoshima Univ./ Ehime Univ. Galactic radio

Mellinger

Electron in an atom/molecule

▶ Electron in an atom/molecule■ Bound state → discreet energy levels

▶ Energy state

Page 5: Mellinger Lesson5 Einstein coefficient & HI line Toshihiro Handa Dept. of Phys. & Astron., Kagoshima University Kagoshima Univ./ Ehime Univ. Galactic radio

Mellinger

Energy transition and matter

▶ Electron transition between energy levels■ Emission & absorp of EM wave■ DE=hn

▶ Structure of energy levels=matter identify■ Wavelength of emission & absorption lines■ Matter identification with spectrum

Page 6: Mellinger Lesson5 Einstein coefficient & HI line Toshihiro Handa Dept. of Phys. & Astron., Kagoshima University Kagoshima Univ./ Ehime Univ. Galactic radio

Mellinger

Einstein coefficient(1)

▶ Emission & absorption: 2 level model■ Transition probability of emission A

Independent of input intensity■ Transition probability of absorption B

Proportional to input intensity

dI = n2 A-n1 B I

Page 7: Mellinger Lesson5 Einstein coefficient & HI line Toshihiro Handa Dept. of Phys. & Astron., Kagoshima University Kagoshima Univ./ Ehime Univ. Galactic radio

Mellinger

Einstein coefficiant(2)

▶ Steady state dI=0dI = n2 A-n1 B I n2 A = n1 B I I =

▶ Thermal equilibrium b/w matter & radiation■ Therm. eq.→energy is in Boltzmann distribution

= =■ Therm. eq.→I must be blackbody radiation

I = Bn (T) = ■ Impossible to become a blackbody!?

Page 8: Mellinger Lesson5 Einstein coefficient & HI line Toshihiro Handa Dept. of Phys. & Astron., Kagoshima University Kagoshima Univ./ Ehime Univ. Galactic radio

Mellinger

Stimulated emission(1)

▶ Add another process■ Difficult to see the existence

▶ Introduction of “stimulated” emission■ spontaneous emission A21, absorption prob. B12

■ stimulated emission B21

Emission proportional to input intensity!

dI = n2 A21-n1 B12 I+n2 B21 I

= n2 A21-(n1B12-n2B21) ISeems to reduce the effective absorption coeff.

Page 9: Mellinger Lesson5 Einstein coefficient & HI line Toshihiro Handa Dept. of Phys. & Astron., Kagoshima University Kagoshima Univ./ Ehime Univ. Galactic radio

Mellinger

Stimulated emission(2)

▶ Steady state dI=0n2 A21=(n1B12-n2B21) I I =

■ Therm. eq.→energy is in Boltzmann distribution

= =, (RH)= ■ Therm. eq.→I must be I = Bn (T) = ■ We got that =1, =

Page 10: Mellinger Lesson5 Einstein coefficient & HI line Toshihiro Handa Dept. of Phys. & Astron., Kagoshima University Kagoshima Univ./ Ehime Univ. Galactic radio

Mellinger

Relation between Einstein coff.

=1, =

▶ In the case with statistical weight g1, g2

■ Boltzmann dist.   =

g1B12=g2B21, A21= B21

▶ A21, B12, B21 are fixed for matter.■ Relation is valid if thermal non-equilibrium■ A21, B12, B21 : Einstein coefficients

Page 11: Mellinger Lesson5 Einstein coefficient & HI line Toshihiro Handa Dept. of Phys. & Astron., Kagoshima University Kagoshima Univ./ Ehime Univ. Galactic radio

Mellinger

Maser(1)

▶ If stimulated emission truly exist, thendI = n2 A21-(n1B12-n2B21) I

Effective absorption increases. We cannot know it?

▶ What happens, if n2> (B12/B21) n1?■ = . Therefore, it means T<0.■ Negative temperature i.e. inverse population

▶ Stimulated emission can arise!

Page 12: Mellinger Lesson5 Einstein coefficient & HI line Toshihiro Handa Dept. of Phys. & Astron., Kagoshima University Kagoshima Univ./ Ehime Univ. Galactic radio

Mellinger

Maser(2)

▶ We can make T<0 for 3 level system

pomping

inverse population

maserseed photon

Page 13: Mellinger Lesson5 Einstein coefficient & HI line Toshihiro Handa Dept. of Phys. & Astron., Kagoshima University Kagoshima Univ./ Ehime Univ. Galactic radio

Mellinger

Maser(3)

▶ MASERMicrowave Amplification by Stimulated Emission of Radiation

■ Developed by Towns in 1954He found ammonia in space, too.

▶ LASER■ Microwave →Light

▶ Characteristics of stimulated photon■ Same freq., phase, polarization as the seed photon

First detected molecule with 3 atoms in space

Page 14: Mellinger Lesson5 Einstein coefficient & HI line Toshihiro Handa Dept. of Phys. & Astron., Kagoshima University Kagoshima Univ./ Ehime Univ. Galactic radio

Mellinger

Excitation temperature

▶ In general, emission is■ I=(2h n 3/c2) [(n1/n2) -1]

▶ Thermal non-equilib.: n1/n2 is not Boltzmann■ But convenient expressed by “temperature”

▶ Excitation temperature Tex

■ Define as = ■ Tex= -

Page 15: Mellinger Lesson5 Einstein coefficient & HI line Toshihiro Handa Dept. of Phys. & Astron., Kagoshima University Kagoshima Univ./ Ehime Univ. Galactic radio

Mellinger

Emissivity

▶ Describe emissivity e by Einstein coeff.■ For isotropic radiation…■ Radiation energy dEn for dV dt dW

dE n =h n j(n) n2 A21 dV dt

= j(n) n2 A21 dS dx dt dW■ In the case of radiation only

dIn   = = en dx

■ It gives en = j(n) n2 A21

Page 16: Mellinger Lesson5 Einstein coefficient & HI line Toshihiro Handa Dept. of Phys. & Astron., Kagoshima University Kagoshima Univ./ Ehime Univ. Galactic radio

Mellinger

Absorption coefficient(1)

▶ abs. coeff. k described with Einstein coeff.■ For isotropic absorption…■ Radiation energy dEn into dV dt dW

dE n = -h n j(n) (n1 B12 -n2 B21) In dV dt

= - j(n) (n1 B12 -n2 B21) In dS dx dt dW■ In the case that absorption only

dIn   =- =-kn In dx

■ It gives kn = j(n) (n1 B12-n2 B21)

Page 17: Mellinger Lesson5 Einstein coefficient & HI line Toshihiro Handa Dept. of Phys. & Astron., Kagoshima University Kagoshima Univ./ Ehime Univ. Galactic radio

Mellinger

Absorption coefficient(2)

■ (continued)

kn = j(n) (n1 B12-n2 B21)

= j(n) n1 B12

= j(n) n1 B21

= j(n) n1A21

= j(n) n1A21 [1-]

Page 18: Mellinger Lesson5 Einstein coefficient & HI line Toshihiro Handa Dept. of Phys. & Astron., Kagoshima University Kagoshima Univ./ Ehime Univ. Galactic radio

Mellinger

Source function▶ Source function Sn=

S n = = =

▶ In therm. eq. Tex=T   (temperature in eq.)

▶ LTE: Local Thermal Equilibrium■ Tex’s are the same between all levels.

Page 19: Mellinger Lesson5 Einstein coefficient & HI line Toshihiro Handa Dept. of Phys. & Astron., Kagoshima University Kagoshima Univ./ Ehime Univ. Galactic radio

Mellinger

Neutral atomic hydrogen

▶ proton + electron■ Proton is a particle with spin 1/2 2 values■ electron is a particle with spin 1/2 2 values

spin of a particle=should be related with mangetizmInteraction between two spins

A10=2.86888×10-15 [s-1], n =1.420405751786[GHz]

Page 20: Mellinger Lesson5 Einstein coefficient & HI line Toshihiro Handa Dept. of Phys. & Astron., Kagoshima University Kagoshima Univ./ Ehime Univ. Galactic radio

Mellinger

HI emission(1)

▶ A10=2.86888×10-15 [s-1]Enough slow transition to excite under ISM densityShow maser if poping hydrogen maser clock

▶ Absorption coefficientk n = j(n) n0A10

■ g0=1←no degenerate,   g1=3←F=+1,0,-1 degen.

■ nH=n0+n1= n0

■ For HI, Tex=Ts (spin temperature)

Page 21: Mellinger Lesson5 Einstein coefficient & HI line Toshihiro Handa Dept. of Phys. & Astron., Kagoshima University Kagoshima Univ./ Ehime Univ. Galactic radio

Mellinger

HI emission(2)

▶ Approximation as 1≪ =0.07 [K]≪Ts~100 [K]

■ First order approximation1- ≅ nH= n0 =4n0

■ k n = nH A10 j(n)

=2.6×10-15 j(n) [cgs]

Page 22: Mellinger Lesson5 Einstein coefficient & HI line Toshihiro Handa Dept. of Phys. & Astron., Kagoshima University Kagoshima Univ./ Ehime Univ. Galactic radio

Mellinger

HI emission(3)

▶ The column density can get through■ NH=∫nH dx = ∫ Tstn dn [cgs]

▶ In optically thin case, TB= Ts(1-e-t)= Tstn

■ NH= ∫ TB d n [cgs]

▶ Use Doppler velocity d n = dv,

NH[cm-2]=1.8224×1018 ∫ TB dv [K km s-1]

▶ Caution: this equation is valid only for■ Optically thin

Page 23: Mellinger Lesson5 Einstein coefficient & HI line Toshihiro Handa Dept. of Phys. & Astron., Kagoshima University Kagoshima Univ./ Ehime Univ. Galactic radio

Mellinger

What is the natural width j(n)?

▶ Duration in quantum transition Dt■ Not 0  ∵ emitted EM wave is not d(t) time

profile■ Not ∞  ∵ finish the transition in finite time span

▶ Gradually increase and gradually decrease▶ Give a width after Fourier transformation

wave packet

wave particle

Page 24: Mellinger Lesson5 Einstein coefficient & HI line Toshihiro Handa Dept. of Phys. & Astron., Kagoshima University Kagoshima Univ./ Ehime Univ. Galactic radio

Mellinger

report

▶ Attach to your e-mail. Deadline : 13 Nov.■ Submit to [email protected]

▶ Questions

1. Show relations between Einstein coeff.

2. How long the mean time to transit a neutral hydrogen atom?