41
1 Outline Use of mercury porosimetry and nitrogen adsorption for characterization of the porosity Estimation of particle size from the porosity measurements Application of porous materials

MEL471 Porosity

Embed Size (px)

Citation preview

Page 1: MEL471 Porosity

1

Outline

• Use of mercury porosimetry and nitrogen adsorption for characterization of the porosity

• Estimation of particle size from the porosity measurements

• Application of porous materials

Page 2: MEL471 Porosity

2

Page 3: MEL471 Porosity

3

Porous materials

Ravindra
Sticky Note
Ravindra
Sticky Note
Ravindra
Sticky Note
Page 4: MEL471 Porosity

4

Types of pore

Page 5: MEL471 Porosity

5

Measurement techniques

Page 6: MEL471 Porosity

6http://www.micromeritics.com/

Page 7: MEL471 Porosity

7

http://www.micromeritics.com/

Page 8: MEL471 Porosity

8http://www.micromeritics.com/

Page 9: MEL471 Porosity

9

http://www.micromeritics.com/

Ravindra
Sticky Note
Page 10: MEL471 Porosity

10

Mercury porosimetry

Ravindra
Sticky Note
ADVANTAGES
Ravindra
Sticky Note
steps involved
Ravindra
Sticky Note
Page 11: MEL471 Porosity

11

Mercury porosimetry

Pore diameter (nm)

Vo

lum

e (m

l/g)

Ravindra
Sticky Note
Page 12: MEL471 Porosity

12

Mercury porosimetry• Total volume (Vtot): total intruded volume of mercury at Pmax

• Total pore surface area (S):

• Mean pore diameter:

∫=totV

pdVS0|cos|

1

θγ

S

Vd

totmean ×= 4

Ravindra
Sticky Note
Ravindra
Sticky Note
Ravindra
Sticky Note
Page 13: MEL471 Porosity

13

Limitations of mercury porosimetry

Ravindra
Sticky Note
Page 14: MEL471 Porosity

14

Adsorption vs Absorption

H H H H H H H H H

H H H H H H H H H

H2 adsorption onpalladium

H

H

HH

H

HH H

H

H

HH

HH

H

H

H H

H2 absorption →palladium hydride

adsorbent

adsorbate

Page 15: MEL471 Porosity

15

Quantachrome Instruments

Page 16: MEL471 Porosity

16

Adsorption and Desorption Isotherms

Page 17: MEL471 Porosity

17

www.quantachrome.com

Page 18: MEL471 Porosity

18

Adsorption and Desorption Isotherms�As P/Po changes to 1� coverage of surface passes from monolayer to multilayer

� pressure ratio at which condensation takes place on a concave surface of radius “r” is smaller than that for a flat surface (P/Po=1)

� as condensation progresses in a pore → added layer of condensate reduce the pore radius → pressure ratio for this pore is further reduced

� any multilayer which has developed on the walls of a wider capillary tube will evaporate and condense in the narrower tubes

RTr

V

P

P

K

0 2ln

γ=

Ravindra
Highlight
Ravindra
Highlight
Page 19: MEL471 Porosity

19

Ravindra
Sticky Note
see all the steps
Page 20: MEL471 Porosity

20

Video on Gas adsorption processhttp://www.youtube.com/watch?v=ZF-sk5hYSwA

Page 21: MEL471 Porosity

21

Information from Adsorption and Desorption Isotherms

• Surface area (BET)

• Pore size distribution– Mesopore: Kelvin equation, BJH method– Micropore: Surface area of microporous by Langmuir,

t-plot, HK, SF

Ravindra
Highlight
Ravindra
Highlight
Ravindra
Highlight
Ravindra
Highlight
Page 22: MEL471 Porosity

22

Brunauer-Emmett-Teller (BET)� surface of a monolayer adsorbate of N2-molecules at boiling

temperature of N2 at Po=1 atm, 77 K

� determination of surface area of solid materials

−+=

− ommo P

P

CW

C

CWPPW

11

)1)/((

1W: weight of gas adsorbed at P/Po

Wm: weight of monolayer adsorbate

C: related to energy of adsorption in the first layer

0.05 < P/Po < 0.3MNAW

Sis

WCW

iCW

Cs

sXiY

csmtm

mm=

+=−=

+=

= ,1

,1

,1

Page 23: MEL471 Porosity

23

Pore size distribution (Mesopore)

� desorption isotherm is closer to true thermodynamic stability

� using Barrett, Joyner and Haldena (BJH) method

2/1

034.0)/log(

99.13

)/ln(

2

+=

−=

+=

PPt

trr

PPRT

Vr

o

Kp

o

mK

γ

Page 24: MEL471 Porosity

24

Pore size distribution (Micropore)

� Langmuir equation – adsorption of single molecular layer of adsorbate, Surface area calculation

� t-method: determination of micropore volume in presence of mesopore

�HK method, SF method: pore size calculation independetly from Kelvin equation

)/(1)/(

o

o

m PPCPPC

WW

+=

Page 25: MEL471 Porosity

25

IUPAC Isotherm classification

III

n ad

p/p0

VI

n ad

p/p0

V

n ad

p/p0

In a

d

p/p0 p/p

II

n ad

0

B

IV

n ad

p/p0

B

III

n ad

p/p0

VI

n ad

p/p0

V

n ad

p/p0

In a

d

p/p0

In a

d

p/p0 p/p

II

n ad

0

Bp/p

II

n ad

0

B

IV

n ad

p/p0

B

IV

n ad

p/p0

B

Page 26: MEL471 Porosity

26

Page 27: MEL471 Porosity

27

Ravindra
Sticky Note
Page 28: MEL471 Porosity

28

Page 29: MEL471 Porosity

29

Isotherms

Assumptions:

• homogeneous surface

(all adsorption sites energetically identical)

• monolayer adsorption (so no multilayer adsorption)

pKpK

nnn mmad +⋅=θ⋅=1

n ad

p/p0

Type I Langmuir Adsorption Isotherm

Page 30: MEL471 Porosity

30

Isotherms

Multilayer adsorption (starting at B)

Common for pore-free materials

p/p

n ad

0

B

Type II

Type IV

Similar to II at low p

Pore condensation at high p

n ad

p/p0

B

Page 31: MEL471 Porosity

31

Type III

Type V

n ad

p/p0

Weak adsorbate-adsorbent interactions, Strong cohesion force between adsorbed molecules,

n ad

p/p0

Similar to III at low p

Pore condensation at high p

Page 32: MEL471 Porosity

32

Type VI

n ad

p/p0

� Highly uniform surface� Layer by layer adsorption� Stepped isotherm

Example:� Adsorption of simple non-porous

molecules on uniform surfaces

Page 33: MEL471 Porosity

33

Isotherm: γ-Al2O3 (Mesoporous)

Page 34: MEL471 Porosity

34

BET specific surface area: γ-Al2O3

Page 35: MEL471 Porosity

35

Pore size distribution: γ-Al2O3

Page 36: MEL471 Porosity

36

Isotherm: Activated carbon (Microporous)

Page 37: MEL471 Porosity

37

Pore size distribution: Activated carbon

Page 38: MEL471 Porosity

38

Limitations of N2 adsorption method�Micropores are not accessible to N2 at 77 K

�Micropores can not accommodate 2 layers of adsorptive molecules

underestimates surface area

�Ar, Kr based measurements

� samples with low surface area can be characterized by Kr gas adsorption

Ravindra
Highlight
Ravindra
Highlight
Ravindra
Highlight
Ravindra
Highlight
Ravindra
Highlight
Page 39: MEL471 Porosity

39

Properties of adsorbates

Page 40: MEL471 Porosity

40

Hysteresis?

Page 41: MEL471 Porosity

41

Application of porous materials

• Gas separation membranes• Sensors• Hydrogen storage • Catalysis

Ravindra
Highlight
Ravindra
Highlight
Ravindra
Highlight
Ravindra
Highlight