Mektek vs Kbh

Embed Size (px)

Citation preview

  • 7/28/2019 Mektek vs Kbh

    1/28

  • 7/28/2019 Mektek vs Kbh

    2/28

  • 7/28/2019 Mektek vs Kbh

    3/28

    CHINE DESIGN - An Integrated Approach, 2ed by Robert L. Norton, Prentice-Hall 2000

    ading Loading

    ear Shear

    oment Moment

    ope Slope

    eflection Deflection

    yFa

    EI

    a lmax = ( )2

    6

    3 yw

    EI

    l a l amax = + ( )24

    3 44 3 4

    when :a ywl

    EImax= = 0

    8

    4

    M Mw

    l amax = = ( )1 2 22

    when :a Mwl

    max= =02

    2

    when :a l M Flmax= =

    R F1 = R w l a1 = ( )

    M Famax =

    = + ( )FEI

    ax x x a2

    22 2

    M M R x F x a

    F a x x a

    = +

    = + ( )1 1

    1

    1

    = +

    1 2

    2

    11 2

    2EI

    M xR

    x

    Fx a

    yEI

    Mx

    Rx

    Fx a

    F

    EIx ax x a

    = +

    = ( )

    1

    2 6 6

    63

    1 2 1 3 3

    3 2 3

    when :a l yFl

    EImax= =

    3

    3

    M M R x w x a

    wl a x l a x a

    = +

    = ( ) ( ) [ ]1 1

    2

    2 2 2

    22 2

    = ( ) ( ) ( )wEI

    l a x l a x x a6

    3 32 2 2 3

    = +

    1 2

    6

    11 2

    3EI

    M xR

    x

    wx a

    yEI

    Mx

    Rx

    wx a

    w

    EIl a x l a x x a

    = +

    = ( ) ( ) ( )

    1

    2 6 24

    244 6

    1 2 1 3 4

    3 2 2 2 4

    M

    w

    l a1

    2 2

    2= ( )M Fa

    1 =

    q M x R x F x a= + 12

    1

    1 1q M x R x w x a= + 1

    2

    1

    1 0

    V M x R F x a

    F x a

    = +

    = ( )

    1

    1

    1

    0

    0

    1

    V M x R w x a

    w l a x a

    = +

    = ( ) [ ]

    1

    1

    1

    1

    1

    V R Fmax = =1 V R w l amax = = ( )1

    G U R E D - 1

    tilever Beams with Concentrated or Distributed Loading. Note: < > Denotes a Singularity Function

    ) Cantilever beam with concentrated loading (b) Cantilever beam with uniformly distributed loading

    Fx a 1

    x

    R1

    l

    a wxa 0

    x

    M1

    R1

    l

    a

    x

    Vmax

    x

    Mmax

    x

    max

    x

    ymax

    x0

    Vmax

    V

    x0

    MMmax

    x0

    max

    x0

    yymax

  • 7/28/2019 Mektek vs Kbh

    4/28

    CHINE DESIGN - An Integrated Approach, 2ed by Robert L. Norton, Prentice-Hall 2000

    (b) Simply supported beam with uniformly distributed loadingSimply supported beam with concentrated loading

    pe Slope

    Momentoment

    ear Shear

    ading Loading

    flection Deflection

    q R x w x a R x l= + 11 0

    21

    Rw

    ll a1

    2

    2= ( )

    Rw

    ll a22 2

    2= ( )

    V R Rmax = MAX( , )1 2

    when = :a Mwx

    l x02

    = ( )

    when = :

    a

    ywx

    EIlx x l

    0

    242

    2 3 3= ( )

    R Fa

    l1 1=

    R Fa

    l2 =

    V R Rmax = MAX( , )1 2

    q R x F x a R x l= + 11 1

    21

    V R F x a R x l

    Fa

    lx a

    = +

    =

    10

    20

    01

    M R x F x a R x l

    Fa

    lx x a

    = +

    =

    11

    21

    11

    yF

    EIa

    a

    llamax =

    32

    34

    2

    M Faa

    lmax =

    1

    when = :al

    MFl

    max2 4

    =

    =

    + + ( )

    F

    EI

    a

    lx x a

    a

    la al l

    2

    1

    33 2

    2 2

    2 2

    yF

    EI

    a

    lx x a

    a

    la al l x

    =

    + + ( )

    6

    1

    3 2

    3 3

    2 2

    =( )

    + ( ) ( )[ ]

    w

    EI

    x

    ll a x a

    ll a l l a

    24

    64

    12

    22 3

    4 2 2

    M R xw

    x a R x l

    w x

    ll a x a

    = +

    = ( )

    12

    21

    2 2

    2

    2

    V R w x a R x l

    wl

    l a x a

    = +

    = ( )

    11

    20

    2 11

    2

    yw

    EI

    xl

    l a x a

    x

    ll a l l a

    =( )

    + ( ) ( )[ ]

    24

    2

    2

    3

    2 4

    4 2 2

    U R E D - 2

    ly Supported Beams with Concentrated or Distributed Loading. Note: < > Denotes a Singularity Function

    x

    x

    ymax

    x0

    V

    x0

    y

    ymax

    l

    a

    x

    R1 R2

    wxa0Fxa 1l

    a

    x

    R1 R2

    x

    Mmax

    x

    max

    x0

    max

    x0

    M Mmax

  • 7/28/2019 Mektek vs Kbh

    5/28

    CHINE DESIGN - An Integrated Approach, 2ed by Robert L. Norton, Prentice-Hall 2000

    ope Slope

    Momentoment

    ear Shear

    ading Loading

    eflection Deflection

    q R x w x w x a R x b= + + 11 0 0

    2

    R Fa

    b2 =

    q R x F x a R x b= + 11 1

    2

    1

    V Fb a

    b xa

    b x b x a=

    + 0 0 0

    Rwa

    b2

    2

    2=

    Mw

    aa

    bx x

    x aa

    bx b

    =

    + +

    2

    2

    22

    22

    1

    =

    +

    +

    + +

    w

    EI

    a b ab bb

    b a

    a a

    bx x

    a

    bx b x a

    1

    242 4

    1

    2 4

    1

    6

    4

    1

    6

    2 2 3 4

    22 3

    22 3

    yw

    EI

    a b ab bb

    b a x

    aa

    bx x

    x aa

    bx b

    =

    +

    +

    + +

    24

    2 41

    42

    2

    2 2 3 4

    23 4

    42

    3

    =

    +

    + ( )

    F

    EI

    b a

    bx

    a

    bx b x a

    ba b

    2

    3

    2 2 2

    V w a x x a

    a

    b x b= + + ( )

    1

    20

    21

    R waa

    b1 1

    2=

    M Fb a

    bx

    a

    bx b x a=

    +

    1 1 1

    R Fb a

    b1 =

    yF

    EI

    b a

    bx

    a

    bx b x a

    b a b x

    =

    +

    + ( )

    6

    3 3 3

    G U R E D - 3

    rhung Beams with Concentrated or Distributed Loading. Note: < > Denotes a Singularity Function

    x

    x

    ymax

    wxa 0

    x

    Mmax

    R1

    l

    x

    R2

    b

    a

    Fxa1

    R1

    l

    x

    R2

    b

    a

    Overhung beam with concentrated loading (b) Overhung beam with uniformly distributed loading

    x0

    V

    x0

    yymax

    x

    0

    max

    min

    0

    M

    Mmax

    x

    max

  • 7/28/2019 Mektek vs Kbh

    6/28

    Biaxial stresses

    Locate critical point (max stresses)

    P

    a

    b

    M=Pb

    T=Pa

    =Mc/I

    =

    Td/J

    x

    xz

    x

    xz

    Mohrs circle

    Determine maximum shear stress

    (x,

    xz)

    12

    max)

    max)

    2

    How to Predict Failure

  • 7/28/2019 Mektek vs Kbh

    7/28

    Maximum Shear Stress Theory (MSST) (A.k.a Tresca)

    Tension test specimenyields whensy

    (0,0)

    max= -sy/2

    (sy,0) 2

    max

    ys=

    In real applications,2

    21max

    = 2 1

    max

    So yielding occurs when ys= 21

    Safety factor is21

    =y

    s

    sn

    3-D Mohr Max. Shear Stress Theory (MSST)

    Be careful when z

    = 0 is outside 2-D Mohrs circle.

    2 1

    max

    3

    Always order principalnormal stresses according to

    321 >>

    22

    31max

    ==

    ys Now yielding occurs when

    max

    Safety factor is

    31 =

    y

    s

    sn

    ys= 31

    Graphical representation

    ys= 21

    2

    1

    sy

    sy-sy

    -sy

    yieldor 21 >> yy ss

    yieldor 21

  • 7/28/2019 Mektek vs Kbh

    8/28

    DET vs. MSST

    2

    1

    sy

    sy-sy

    -syShear diagonal

    2 1

    Different especially when 1 = -2(e.g. pure torsional loading)

    3-D Distortion Energy Theory (DET)

    Be careful when z

    = 0 is outside 2-D Mohrs circle.

    2 13

    Now von Mises stress is

    ( ) ( ) ( )[ ]12232132122

    1 ++=e

    Brittle Materials

    Brittle materials dont yield, they fracture.

    Strength in compression >> Strength in tension Three theories presented

    Material strength

    5 Sut= Ultimate (fracture) strength in tension.

    5 Suc = Ultimate (fracture) strength in compression.

    5 Strengths are always positive numbers

    5 Stresses 1, 2, and 3 can be negative or positive.

    Maximum Normal Stress Theory (MNST)

    whichever is smaller

    fractureor 21 >> yy ss

    fractureor 21

  • 7/28/2019 Mektek vs Kbh

    9/28

    Internal Friction Theory (IFT)

    fractureor 21 >> yy ss

    fractureor 21 > yy ss

    fractureor 21

  • 7/28/2019 Mektek vs Kbh

    10/28

  • 7/28/2019 Mektek vs Kbh

    11/28

  • 7/28/2019 Mektek vs Kbh

    12/28

    Iron is taken from the earth and copper is smelted from ore.Man puts an end to the darkness;

    he searches the farthest recesses for ore in the darkness.The Bible (Job 28:2-3)

    Image: Iron flows from a blast furnace. Source:American Iron and Steel Institute.

    Figure 3.5 Stress-strain diagram for a ductile material.text reference: Figure 3.5, , page 96

    A

    P

    P

    (

  • 7/28/2019 Mektek vs Kbh

    13/28

    text reference: Figure 3.6, page 97

    Figure 3.1 Ductile material from a standardtensile test apparatus. (a) Necking; (b) failure.

    text reference: Figure 3.1, page 90

    0

    0

    =

    l

    llEL

    fr

    %EL

    Manifest

    danger

    stress concentrations

  • 7/28/2019 Mektek vs Kbh

    14/28

    Figure 3.2 Failure of a brittlematerial from a standard

    tesiletest apparatus.

    text reference: Figure 3.2, page 91

    %EL%EL

    text reference: Figure 3.7, page 98

  • 7/28/2019 Mektek vs Kbh

    15/28

    text reference: Figure 3.8, page 99

    Figure 3.10 Stress-strain diagram for polymer below, at, and above its glass transitiontemperature Tg.

    text reference: Figure 3.10, page 101

  • 7/28/2019 Mektek vs Kbh

    16/28

    =E

    uniaxial

    linear

    Esteel

    Ealum

  • 7/28/2019 Mektek vs Kbh

    17/28

    yx yx

    torsion

    =G

    yx

    x

    y

    steel

    alum v

    rubber vG E

    transverse

    axial

    =

    ( )+=

    EG

  • 7/28/2019 Mektek vs Kbh

    18/28

    yield

    Allowable building

    yallowy SS

    yallow S=

    yallowy SS

    yallow S=

    =

    y

    dUr

    0rupture

  • 7/28/2019 Mektek vs Kbh

    19/28

    Class Members Short nameEnginering alloys(themetals and alloys ofengineering)

    AluminumalloysCopper alloysLead alloysMagnesiumalloysMolybdenumalloysNickel alloysSteels

    Tin alloysTitaniumalloys

    Tungsten alloysZinc alloys

    Al alloysCu alloysLead alloysMg alloysMo alloysNi alloysSteels

    Tin alloysTi alloys

    W alloysZn alloysEngineering polymers(thethermoplastics andthermosets of engineering)

    EpoxiesMelaminesPolycarbonatePolyesterPolyethylene, high densityPolyethylene, low densityPolyformaldehydePolymethylmethacrylatePolypropylenePolytetrafluoroethylenePolyvinyl chloride

    EPMELPCPESTHDPELDPEPFPMMAPPPTFEPVC

    Engineering ceramics(fineceramics capableofload-bearing application)

    AluminaDiamondSialonsSilicon carbideSilicon nitrideZirconia

    Al2O3CSialonsSiCSi3N4ZrO2

    Table 3.7 Material classesand members and shortnames of each member.[From Ashby (1992)].

    text reference: Table 3.7, page 123

    RA RB RC

    SU HB HBSU HB

    HB

  • 7/28/2019 Mektek vs Kbh

    20/28

    Charpy Izod

  • 7/28/2019 Mektek vs Kbh

    21/28

  • 7/28/2019 Mektek vs Kbh

    22/28

  • 7/28/2019 Mektek vs Kbh

    23/28

    quenching

    critical temperature

    below critical temperatureand

  • 7/28/2019 Mektek vs Kbh

    24/28

    carburizing

    hardness

    strength

    hardness toughness

  • 7/28/2019 Mektek vs Kbh

    25/28

    Expensive!

    y

    y

  • 7/28/2019 Mektek vs Kbh

    26/28

    Brass zinc

  • 7/28/2019 Mektek vs Kbh

    27/28

  • 7/28/2019 Mektek vs Kbh

    28/28

    Figure 3.4 Cross section of fiber reinforcedcomposite material.

    text reference: Figure 3.4, page 95

    Figure33 Strength/density for variousmaterials