34
MEKANIKA TEKNIK TI OLEH: IR. ARIEF SUWANDI, MT Jakarta, 2009

Mekanika Teknik Tugas

  • Upload
    sucyfeb

  • View
    180

  • Download
    34

Embed Size (px)

DESCRIPTION

tugas mekanika teknik semester 2

Citation preview

Page 1: Mekanika Teknik Tugas

MEKANIKA TEKNIK TI

OLEH:

IR. ARIEF SUWANDI, MT

Jakarta, 2009

Page 2: Mekanika Teknik Tugas

Mechanics

Rigid Bodies(Things that do not change shape)

Deformable Bodies(Things that do change shape)

Fluids

Statics Dynamics Incompressible Compressible

Apa itu Mekanika?

Cabang ilmu fisika yang berbicara tentang keadaan diam atau geraknya benda-benda yang mengalami kerja atau aksi gaya

Page 3: Mekanika Teknik Tugas

Buku ajar / Referensi

• R. C. Hibbeler, Engineering Mechanics, 7th - 10th

Edition, Person Prentice-Hall

• F. P. Beer and E. R. Johnston Jr., Vector Mechanics for Engineers: Statics, SI Metric Edition, Mcgraw-hill, 3rd Edition

• R. C. Hibbeler, Mechanics of Material, 3th Edition, Person Prentice-Hall

• dll

Page 4: Mekanika Teknik Tugas

Bagaimana evaluasinya ?

• Tugas-Kuis : 25 %

• UTS : 30 %

• UAS : 45 %

Tidak mentolerir segala bentuk kecurangan

Tapi tetap boleh cross check

Page 5: Mekanika Teknik Tugas

Penjelasan TUGAS

• Dikerjakan pada kertas A4• Tulis nama dan NRP di sebelah kanan atas,

serta tanggal dan tugas ke berapa• Silahkan mengerjakan soal apa saja yang

berkaitan dengan materi yang disampaikan• Silahkan mengerjakan berapa pun soal yang

sanggup anda selesaikan• Soal-soal harus dari buku yang disepakati• Mencantumkan judul buku, pengarang, dan

nomer soal yang dikerjakan, plus halaman buku

Page 6: Mekanika Teknik Tugas

Apa saja yang dipelajari?

• Keseimbangan partikel

• Keseimbangan benda tegar

• Diagram gaya normal, diagram gaya geser, dan diagram momen

• Konsep tegangan

• Momen inersia dan momen polar

• Teori kegagalan statis

Page 7: Mekanika Teknik Tugas

Apa pentingnya mekanika (statik) / keseimbangan ?

Page 8: Mekanika Teknik Tugas

Apa perbedaan partikel dan benda tegar?

• Particle: A very small amount of matter which may be assumed to occupy a single point in space.

• Rigid body: A combination of a large number of particles occupying fixed position with respect to each other.

Page 9: Mekanika Teknik Tugas

Apa perbedaan Partikel dan Benda Tegar ?

Partikel:

Mempunyai suatu massa namun ukurannya dapat diabaikan, sehingga geometri benda tidak akan terlibat dalam analisis masalah

Benda Tegar:

Kombinasi sejumlah partikel yang mana semua partikel berada pada suatu jarak tetap terhadap satu dengan yang lain

Page 10: Mekanika Teknik Tugas

Contoh Partikel

Page 11: Mekanika Teknik Tugas

Contoh Benda Tegar

Page 12: Mekanika Teknik Tugas

Review Sistem Satuan• Four fundamental physical quantities. Length, Time, Mass, Force.

• We will work with two unit systems in static’s: SI & US Customary.

Bagaimana konversi dari SI ke US atau sebaliknya ?

Page 13: Mekanika Teknik Tugas

Apa yang harus dilakukan supaya Mekanika Teknik menjadi mudah ?

Banyak dan sering menyelesaikan soal-soal

Prosedur mengerjakan soal:1. Baca soal dengan cermat

2. Buat free body diagram dan tabulasikan data soal

3. Tuliskan prinsip dasar / persamaan yang relevan dengan soal

4. Selesaikan persamaan sepraktis mungkin sehingga didapat hasil yang signifikan dan jangan lupa disertai sistem satuan

5. Pelajari jawaban dengan akal sehat, masuk akal atau tidak

6. Jika ada waktu, coba pikirkan cara lain untuk menyelesaikan soal tersebut.

Page 14: Mekanika Teknik Tugas

THE WHAT, WHY AND HOW OF A

FREE BODY DIAGRAM (FBD)

Free Body Diagrams are one of the most important things for you to know how to draw and use.

What ? - It is a drawing that shows all external forces acting on the particle.

Why ? - It helps you write the equations of equilibrium used to solve for the unknowns (usually forces or angles).

Page 15: Mekanika Teknik Tugas

How ?

1. Imagine the particle to be isolated or cut free from its surroundings.

2. Show all the forces that act on the particle.Active forces: They want to move the particle. Reactive forces: They tend to resist the motion.

3. Identify each force and show all known magnitudes and directions. Show all unknown magnitudes and / or directions as variables .

FBD at A Note : Engine mass = 250 Kg

A

Page 16: Mekanika Teknik Tugas

Fundamental Principles• The parallelogram law for the addition of forces: Two

forces acting on a particle can be replaced by a single force, called resultant, obtained by drawing the diagonal of the parallelogram which has sides equal to the given forces

f1

f2

f1+f2

• Parallelogram Law

Page 17: Mekanika Teknik Tugas

Fundamental Principles (cont’)

• The principle of transmissibility: A force acting at a point of a rigid body can be replaced by a force of the the same magnitude and same direction, but acting on at a different point on the line of action

f1

f2

f1 and f2 are equivalent if their magnitudes are the same and the object is rigid.

• Principle of Transmissibility

Page 18: Mekanika Teknik Tugas

APPLICATION OF VECTOR ADDITION

There are four concurrent cable forces acting on the bracket.

How do you determine the resultant force acting on the bracket ?

Page 19: Mekanika Teknik Tugas

Addition of Vectors

• Trapezoid rule for vector addition

• Triangle rule for vector addition

B

B

C

C

QPR

BPQQPR

cos2222

• Law of cosines,

• Law of sines,

A

C

R

B

Q

A sinsinsin

• Vector addition is commutative,

PQQP

• Vector subtraction

Page 20: Mekanika Teknik Tugas

Sample Problem

The two forces act on a bolt at A. Determine their resultant.

SOLUTION:

• Trigonometric solution - use the triangle rule for vector addition in conjunction with the law of cosines and law of sines to find the resultant.

Page 21: Mekanika Teknik Tugas

Sample Problem (cont’)• Trigonometric solution - Apply the triangle rule.

From the Law of Cosines,

155cosN60N402N60N40

cos222

222 BPQQPR

AA

R

QBA

R

B

Q

A

2004.15

N73.97

N60155sin

sinsin

sinsin

N73.97R

From the Law of Sines,

04.35

Page 22: Mekanika Teknik Tugas

ADDITION OF SEVERAL VECTORS

• Step 3 is to find the magnitude and angle of the resultant vector.

• Step 1 is to resolve each force into its components

• Step 2 is to add all the x components together and add all the y components together. These two totals become the resultant vector.

Page 23: Mekanika Teknik Tugas

Example of this process,

Page 24: Mekanika Teknik Tugas

You can also represent a 2-D vector with a magnitude and angle.

Page 25: Mekanika Teknik Tugas

EXAMPLE

Given: Three concurrent forces acting on a bracket.

Find: The magnitude and angle of the resultant force.

Plan:

a) Resolve the forces in their x-y components.

b) Add the respective components to get the resultant vector.

c) Find magnitude and angle from the resultant components.

Page 26: Mekanika Teknik Tugas

EXAMPLE (continued)

F1 = { 15 sin 40° i + 15 cos 40° j } kN

= { 9.642 i + 11.49 j } kN

F2 = { -(12/13)26 i + (5/13)26 j } kN

= { -24 i + 10 j } kNF3 = { 36 cos 30° i – 36 sin 30° j } kN

= { 31.18 i – 18 j } kN

Page 27: Mekanika Teknik Tugas

EXAMPLE (continued)

Summing up all the i and j components respectively, we get,

FR = { (9.642 – 24 + 31.18) i + (11.49 + 10 – 18) j } kN

= { 16.82 i + 3.49 j } kN

x

y

FRFR = ((16.82)2 + (3.49)2)1/2 = 17.2 kN

= tan-1(3.49/16.82) = 11.7°

Page 28: Mekanika Teknik Tugas

Sample Problem

Four forces act on bolt A as shown. Determine the resultant of the force on the bolt.

SOLUTION:

• Resolve each force into rectangular components.

• Calculate the magnitude and direction of the resultant.

• Determine the components of the resultant by adding the corresponding force components.

Page 29: Mekanika Teknik Tugas

Sample Problem (cont’)SOLUTION:

• Resolve each force into rectangular components.

1.4N1199

N314tan

.

.

R

R

x

y

• Calculate the magnitude and direction.

N6.199sin

N3.14

R

1.4

• Determine the components of the resultant by adding the corresponding force components.

1.199xR 3.14yR9.256.96100

0.1100110

2.754.2780

0.759.129150

4

3

2

1

F

F

F

F

compycompxmagforce

Page 30: Mekanika Teknik Tugas

READING QUIZ

1. The subject of mechanics deals with what happens to a body when ______ is / are applied to it.

A) magnetic field B) heat C) forces

D) neutrons E) lasers

2. ________________ still remains the basis of most of today’s engineering sciences.

A) Newtonian Mechanics B) Relativistic Mechanics

C) Euclidean Mechanics C) Greek Mechanics

Page 31: Mekanika Teknik Tugas

READING QUIZ

3. Which one of the following is a scalar quantity?

A) Force B) Position C) Mass D) Velocity

4. For vector addition you have to use ______ law.

A) Newton’s Second

B) the arithmetic

C) Pascal’s

D) the parallelogram

Page 32: Mekanika Teknik Tugas

CONCEPT QUIZ

5. Can you resolve a 2-D vector along two directions, which are not at 90° to each other?

A) Yes, but not uniquely. B) No. C) Yes, uniquely.

6. Can you resolve a 2-D vector along three directions (say at 0, 60, and 120°)?

A) Yes, but not uniquely. B) No. C) Yes, uniquely.

Page 33: Mekanika Teknik Tugas

ATTENTION QUIZ

7. Resolve F along x and y axes and write it in vector form. F = { ___________ } N

A) 80 cos (30°) i - 80 sin (30°) j

B) 80 sin (30°) i + 80 cos (30°) j

C) 80 sin (30°) i - 80 cos (30°) j

D) 80 cos (30°) i + 80 sin (30°) j

8. Determine the magnitude of the resultant (F1 + F2) force in N when F1 = { 10 i + 20 j } N and F2 = { 20 i + 20 j } N .

A) 30 N B) 40 N C) 50 N

D) 60 N E) 70 N

30°

xy

F = 80 N

Page 34: Mekanika Teknik Tugas