75
Mechanisms of S- Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

Embed Size (px)

Citation preview

Page 1: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

Mechanisms of S-Adenosylmethionine

Radical Enzymes

Kristin Plessel

Reich Group

September 7, 2006

Page 2: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

2

General Enzyme Catalysis

Transition state stabilization Lowers activation energy

Pauling L. Chem. Eng. News 1946, 24, 1375.

http://www.mie.utoronto.ca/labs/lcdlab/biopic/biofigures.htm

Page 3: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

3

Enzyme Control of Reactive Radicals

Radicals are highly reactive intermediates Prone to undesirable side reactions

“Negative catalysis” Selectivity by preventing undesired reactions Lengthens lifetime of radical Reaction with relatively high barrier more likely

Enzymatic control Isolation of reactive intermediates from small molecule

quenchers Conformational control

Retey, J. Angew. Chem. Int. Ed. Engl. 1990, 29, 355-361.

Page 4: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

4

SAM in Methylating Enzymes

Nu= proteins, DNA, RNA, phospholipids, carbohydrates,

polysaccharides and other small molecules

Chiang, P.K.; Gordon, P.K.; Tal, J.; Zeng, G.C.; Doctor, B.P.; Pardhasaradhi, K.; McCann P.P. FASEB J. 1996, 10, 471-480.

Cantoni, G.L. Annu. Rev. Biochem. 1975, 44, 435-451.

O

OH OH

N

N

NH2

N

N

S

OOC

+

NH3+

H3C

O

OH OH

N

N

NH2

N

N

S

OOC

NH3

+

Nu

S-5'-deoxyladenosyl-L-methionine(SAM)

S-5'-deoxyladenosyl-L-homocysteine(SAH)

NuCH3

Methylase

Kristin Plessel
MethylationWell knownHeterolytic cleavage of methyl cation when brought near a nucleophile by enzymeSN2 reactions mediated by enzymesRadical first propsed in 1984Single-electron reduction produces Adenosyl radical
Page 5: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

5

SAM in Radical Enzymes

O

OH OH

N

N

NH2

N

N

S

OOC

NH3+

H3C

CH2

+

Methionine(Met)

5'-deoxyladenosyl radical(Ado )

O

OH OH

N

N

NH2

N

N

S

OOC

+

NH3+

H3C

S-5'-deoxyladenosyl-L-methionine(SAM)

e

O

OH OH

N

N

NH2

N

N

CH2R-H

O

OH OH

N

N

NH2

N

N

H3C + R

Ado 5'-deoxyadenosine(AdoH)

Page 6: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

6

The Radical SAM Enzyme Superfamily

Family identified in 2001 through iterative sequence profiling Includes over 600 postulated members Found in 126 species

Biochemical pathways DNA precursor, vitamin, cofactor, antibiotic, and herbicide

biosynthesis Various biodegradation pathways

Half have unknown reactivity

Sofia, H.J.; Chen, G.; Hetzler, B.G.; Reyes-Spindola, J.F.; Miller, N.E. Nucleic Acids Res. 2001, 29, 1097-1106.

Kristin Plessel
Other than these things, very little in common-- less than 26% of sequence conservedEncompasses all three kingdoms in numerous biosynthetic pathwaysFungi, Plantae, and Animalia
Page 7: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

7

The Radical SAM Enzyme Common Characteristics

Requires SAM and reductant for activity FeS cluster at the active site Generally active in anaerobic conditions Strictly conserved Cys-X-X-X-Cys-X-X-Cys motif

Sofia, H.J.; Chen, G.; Hetzler, B.G.; Reyes-Spindola, J.F.; Miller, N.E. Nucleic Acids Res. 2001, 29, 1097-1106.

Page 8: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

8

Classes of Radical SAM Enzymes

Catalytic SAM Enzymes Adenosyl radical generates a substrate radical

Stoichiometric SAM Enzymes Non-Activase Radical SAM Enzymes

Adenosyl radical generates a substrate radical

Activase Radical SAM Enzymes Adenosyl radical generates a protein radical

Page 9: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

9

Catalytic Radical SAM Enzymes

Lysine 2,3-Aminomutase(LAM)

Spore Photoproduct-lyase(SPP lyase)

N

HN

O

O

R

N

HN

O

O

R

N

NH

O

O

R

SPP lyase

N

NH

O

O

R

+

COO

NH3

H3N+

+LAM

COOH3N+

NH3+

Page 10: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

10

Classes of Radical SAM Enzymes

Catalytic SAM Enzymes Adenosyl radical generates a substrate radical

Stoichiometric SAM Enzymes Non-Activase Radical SAM Enzymes

Adenosyl radical generates a substrate radical

Activase Radical SAM Enzymes Adenosyl radical generates a protein radical

Page 11: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

11

Non-activase Stoichiometric Radical SAM Enzymes

O

S-ACP

LipAO

S-ACP

S S

Biotin synthase(BioB)

Coproporphyrinogen III oxidase(HemN)

Lipoyl Synthase(LipA)

Formylglycine synthase(AtsB)

HNNH

NH HN

COO

COOCOO

COO

HNNH

NH HN

COOCOO

HemN

O

NHHN

CH3 COO

BioB

O

NHHN

COOS

O

OH

NH

AtsB

O

NH

H O

Page 12: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

12

Classes of Radical SAM Enzymes

Catalytic SAM Enzymes Adenosyl radical generates a substrate radical

Stoichiometric SAM Enzymes Non-Activase Radical SAM Enzymes

Adenosyl radical generates a substrate radical

Activase Radical SAM Enzymes Adenosyl radical generates a protein radical

Page 13: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

13

Activase Radical SAM Enzymes

Pyruvate Formate Lyase(PFL)

Anaerobic Ribonucleotide Reductase Class III (NrdD)

Cobalamin Independent Glycerol Dehydrase (Gdh)

Benzylsuccinate Synthase(BSS)

HO

OH

OHGdh

OHO

NrdDOO

OHOH

BaseP

O

O

OP

O

O

OP

O

O

OO

O

OH

BaseP

O

O

OP

O

O

OP

O

O

O

CO2

O

+ CoA-SHPFL

S-CoA

O

HCO2+

CH3

+

COOH

HOOC COOH

COOH

BSS(R)

Kristin Plessel
Activating Enzymes (AE) are specific to their enzyme partnerBSS unique b/c have group add to C=C rather than C=O, ARR has mech similar to other RR'sGdh much less studied
Page 14: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

14

Techniques

UV-Vis spectroscopy Isotopic labeling studies NMR spectroscopy Mass spectrometry Crystallography DFT calculations EPR spectroscopy ENDOR spectroscopy

Page 15: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

15

EPR Spectroscopy

Magnetic Field

Ab

so

rpti

on

De

riv

ati

ve

Electron Paramagnetic Resonance Detects spin of unpaired electron

Fixed microwave frequency Variable magnetic field

Hyperfine splitting Electron spin and nuclear spin interaction

Drago, R.S. Physical Methods for Chemists; Sauders College:Orlando, FL, 1992, 2nd Ed, pp 559-594.

Que, L.., Jr. Ed.; Physical Methods in Bioinorganic Chemistry; University Science: Sausalito, CA, 2000; pp. 121-171.

H D

Page 16: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

16

ENDOR Spectroscopy

Electron Nuclear DOuble Resonance EPR detected NMR Coupling between electronic and nuclear spins

Strong radio frequencies Fixed microwave frequency Monitor EPR intensity

Observe hyperfine couplings Experimental vs. Theoretical Data

Estimate of distance between

nucleus and unpaired electron

Hoffman, B.M. Acc. Chem. Res. 2003, 36, 522-529

Drago, R.S. Physical Methods for Chemists; Sauders College:Orlando, FL, 1992, 2nd Ed, pp 594.

v-v(13C) (MHz)

Kristin Plessel
matching spectra to modeling gives estimations on distance of atomstell distances between radical and atom of interest uses labelingEPR detected NMRSweep NMR frequency through range of a particular nuclei and monitor the EPR intensity samples are often rapid freeze quenchedlike indirect NMR
Page 17: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

17

Outline

Introduction Shared Mechanism

Formation of adenosyl radical Individual Mechanisms Conclusions

Page 18: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

18

First Radical SAM Enzyme:Lysine-2,3-Aminomutase

C C

X H

C C

H XCOO

NH3

H3N+

+LAM

COOH3N+

NH3+

Lysine 2,3-aminomutase (LAM)

Chirpich, T.P.; Zappia, V.; Costilow, R.N.; Barker, H.A. J. Biol. Chem. 1970, 245, 1778-1789.

Frey, P.A. FASEB J. 1993, 7, 662-670.; Marsh, E.N.G.; Patwardhan, A.; Huhta, M.S. Bioorg. Chem. 2004, 32, 326-340.

~30 kcal/mol

X= N, O, C

SAM Vitamin B12

+ reductant≥60 kcal/mol

Kristin Plessel
the first identified as needing SAM as cofactor is LAMLike AdoCbl reaction-- examplebut not dependant on AdoCblx= heteroatoms or carbon skeleton fragmentsWhen AdoCbl and other corrinoids did not make active, SAMBut, LAM needed FE and PLP, Maybe organometalic reagent? PLP used as carbanion stabilizer, never seen before in radical mechjust allosteric effector?AdoCbl reaction could be overcame by binding energySAM would need reductive cleavage or alkylation of FeS clusterSAM is a simpler molecule, but maybe not as elegant
Page 19: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

19

Second Radical SAM Enzyme:Pyruvate Formate Lyase

Activated with: PFL- Activating Enzyme (PFL-AE) SAM Reductant

Fe-S cluster present in PFL-AE

Knappe, J.; Neugebauer, F.A.; Blaschkowski, H.P.; Ganzler, M. Proc. Natl. Acad. Sci., U.S.A. 1984, 81, 1332-1335.

Broderick, J.B.; Duderstadt, R.E.; Fernandez, D.C.; Wojtuszewski, K.; Henshaw, T.F.; Johnson, M.K. J. Am. Chem. Soc. 1997, 119, 7396-7397.

Pyruvate Formate Lyase

CO2

O

+ CoA-SHPFL

S-CoA

O

HCO2+

Kristin Plessel
Reductant is flavodoxinoxygenolyticHow C-C bond broken by radicalwhere stability of Gly radicalhow is it formed
Page 20: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

20

Evidence of a Radical in a Radical SAM Enzyme: PFL

with SAM

without SAM

Knappe, J.; Neugebauer, F.A.; Blaschkowski, H.P.; Ganzler, M. Proc. Natl. Acad. Sci., U.S.A. 1984, 81, 1332-1335.

H H

PFL-Gly

SAMMetAdoH

PFL-Gly

H

PFL-AE

EPR spectra of PFL with PFL-AE

Kristin Plessel
Reductant is flavodoxinoxygenolyticHow C-C bond broken by radicalwhere stability of Gly radicalhow is it formed
Page 21: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

21

Proposed Shared Mechanism

SAM

Methionine

5’-Deoxyadenosine

Page 22: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

22

Fe-S Cluster and SAM

EPR of [4Fe-4S]+ in PFL-AE changes in presence of SAM

Walsby, C.J.; Hong, W.; Broderick, W.E.; Cheek, J.; Ortillo, D.; Broderick, J.B.; Hoffman, B.M.

J. Am. Chem. Soc. 2002, 124, 3143-3150.

without SAM

withSAM

FeS

SFe

SS

FeFe

O

OH OH

N

N

NH2

N

N

S

OOC

+

NH3+

CH3

FeS

SFe

SS

FeFe

O

OHOH

N

N

NH2

N

N

S+

NH3

+

H3C

O

O++

Page 23: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

23

SAM Coordination to Fe-S cluster

ENDOR Active state: [4Fe-4S]+

17O and 15N direct coordination to Fe

13C-Fe distance 3.3 ± 0.1 Å

17O

13C

14N 15N

Walsby, C.J.; Hong, W.; Broderick, W.E.; Cheek, J.; Ortillo, D.; Broderick, J.B.; Hoffman, B.M.

J. Am. Chem. Soc. 2002, 124, 3143-3150

SAM

O

O

S

Ado

N

C

+

+

H3

Kristin Plessel
O Davies ENDOR broad asymmetric not seen in nat. abundv+ branch of 17O signal broadness from unresolved quadrupole splittingC Mims ENDOR doublet at larmor freq absent in nat. abundtogether shows O coord to FeN coupling similar to other direct coord to Fe
Page 24: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

24

SAM Coordination to Fe-S cluster

Layer, G.; Moser, J.; Heinz, J.W.; Jahn, D.; Schubert, W.D. EMBO J. 2003, 22, 6214-6224.

HemN

Kristin Plessel
Thought that coord, even though on non-reactive end of molecule aids in inner sphere ETCrystal Structures support ENDOR dataCoproporphyrinogen III oxidase (HemN)Biotin Synthase (BioB)Lysine 2,3-aminomutase (LAM)MoaA in molybdenum cofactor biosynthesis
Page 25: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

25

SAM Coordination to Fe-S cluster

Layer, G.; Moser, J.; Heinz, J.W.; Jahn, D.; Schubert, W.D. EMBO J. 2003, 22, 6214-6224. Hänzelmann, P.; Schindelin, H.

Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 12870-12875. Berkovitch, F.; Nicolet, Y.; Wan, J.T.; Jarrett, J.T.; Drennan, C.L. Science 2004,

303, 76-79. Lepore, B.W.; Ruzicka, F.J.; Frey, P.A.; Ringe, D. Proc. Natl. Acad. Sci., U.S.A. 2005, 102, 13819-13824.

BioB

MoaA LAM

HemN

Kristin Plessel
Thought that coord, even though on non-reactive end of molecule aids in inner sphere ETCrystal Structures support ENDOR dataCoproporphyrinogen III oxidase (HemN)Biotin Synthase (BioB)Lysine 2,3-aminomutase (LAM)MoaA in molybdenum cofactor biosynthesis
Page 26: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

26

Catalytically Active Fe-S Cluster

PFL-AE, SAM

[4Fe-4S]+ 12 K

PFL-AE, SAM, PFL

Gly• 60 K

[4Fe-4S]2+

[4Fe-4S]+ 30

10

5

2

1

0

Time (min)

No Gly•

Gly•

Photoreduction of Fe-S in PFL-AE with 5-deaza-riboflavin

1:1 [4Fe-4S]+:Gly• [4Fe-4S]+ is

catalytically active state

Henshaw, T.F.; Cheek, J.; Broderick, J.B. J. Am. Chem. Soc. 2000, 122, 8331-8332.

EPR Spectra

Kristin Plessel
time of photoreduction-- keeps chances of interconversions between clusters by reductants downphotoreduced in presence of 5-deazariboflavin[4Fe-4S]+ oxidized to [4Fe-4S]2+
Page 27: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

27

PFL-AE:Trapping Adenosyl Radical

Short peptides can be substrates for PFL-AE Trapping with dehydroalanine rather than glycine

Wagner, A.F.V.; Demand, J.; Schilling, G.; Pils, T.; Knappe, J. Biochem. Biophys. Res. Commun. 1999, 254, 306–310.

O

OH OH

N

N

NH2

N

N

O

HN

O

OH OH

N

N

NH2

N

N

O

HN

O

OH OH

N

N

NH2

N

N

O

HNH

Kristin Plessel
Mass spectrometry2D NMR
Page 28: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

28

LAM:Adenosyl Radical Analogue

Magnusson, O.T.; Reed, G.H.; Frey, P.A. Biochemistry 2001, 40, 7773-7782.

Magnusson, O.T.; Reed, G.H.; Frey, P.A. J. Am. Chem. Soc. 1999, 121, 9764-9765.

EPR

O

OH

Base

D

H

H

O

OH

Base

H

H

H DO

OH

Base

H

D

D

B C D

O

OH

Base

D

D

D

E

O

OH

Base

H

D

D D

F

O

OH

BaseS

OOC

NH3+ e

MetCH3

HH

+

O

OH

Base

H

H

H

A

Page 29: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

29

Proposed Mechanism

Walsby, C.J.; Ortillo, D.; Yang, J.; Nnyepi, M.R.; Broderick, W.E.; Hoffman, B.M.; Broderick, J.B. Inorg. Chem. 2005, 44, 727-741

SAM

Page 30: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

30

Outline

Introduction Shared Mechanism of Radical SAM Enzymes Individual Mechanisms of Radical SAM Enzymes

Pyruvate Formate Lyase Lysine 2,3-Aminomutase Spore Photoproduct Lyase

Conclusions

Page 31: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

31

Pyruvate Formate Lyase (PFL)

Anaerobic counterpart to pyruvate dehydrogenase in metabolism of glucose to acetyl CoA in Escherichia coli

Gly734, Cys419, Cys418 necessary for catalysis

Knappe, J.; Blaschkowski, H.P. Methods Enzymol. 1975, 41B, 508-517. Wagner, A.F.V.; Frey, M.; Neugebauer, F.A.; Schafer, W.; Knappe, J. Proc. Natl. Acad. Sci., U.S.A. 1992, 89, 996-1000

CO2

O

+ CoA-SHPFL

S-CoA

O

HCO2+

CO2

O+ SH

Cys418

S

Cys418

HCO2+

O

S

Cys418

O

+ CoA-SH

SH

Cys418S-CoA

O

+

Kristin Plessel
Freely reversible reactiononly gly needed for radical formation, Cys needed for catalysis
Page 32: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

32

Stability of Glycyl Radical

Radical on Gly734 Half life

~10 sec at rt in air ≥ 24 hr at rt in glovebox

Captodative effect X-ray structure of PFL

Gly734 buried in protein structure, less accessible to small molecule quenchers

PFL-“Deactivase” enzyme, Alcohol Dehydrogenase AdhE, safely quenches radical

Walsby, C.J.; Ortillo, D.; Yang, J.; Nnyepi, M.R.; Broderick, W.E.; Hoffman, B.M.; Broderick, J.B. Inorg. Chem. 2005, 44, 727-741Becker, A.; Kabsch, W. J. Biol. Chem. 2002, 277, 40036-40042.

Kessler, D.; Herth, W.; Knappe, J. J. Biol. Chem. 1992, 267, 18073-18079.

O

OHN

H

NH

Kristin Plessel
EPR - Storage site of radicalStabilized by adjacent amide N and carbonyl groupscaptodative effect??
Page 33: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

33

PFL: D2O exchange of Gly734•

EPR: α-H of Gly734 radical shows exchange with D2O Site-directed mutagenesis shows reaction is facilitated by

Cys419, not Cys 418

Wagner, A.F.V.; Frey, M.; Neugebauer, F.A.; Schafer, W.; Knappe, J. Proc. Natl. Acad. Sci., U.S.A. 1992, 89, 996-1000.Parast, C.V.; Wong, K.K.; Lewisch, S.A.; Kozarich J.W. Biochemistry, 1995, 34, 2393-2399.

NH

R

O

R

Gly734

SR

D

Cys419

H

NH

R

O

R

Gly734

SR

Cys419

NH

R

O

R

Gly734

SR

Cys419

NH

R

O

R

Gly734

SR

H

Cys419

DDH

Kristin Plessel
Disappearance of splitting is b/c D has about 1/6 the _____D2O exchange not a property of the radicalformation of Gly radical stereospecific, (proS taken) but with S radical, non stereospecificS radical EPR by trappin with mercaptopyruvateCys419 and Gly734 must be close
Page 34: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

34

pyruvate734Gly

419Cys SH

418Cys SH

734GlyH

419Cys S

418Cys SH

O

O

O734GlyH

419Cys

418Cys

SO

O

O

734GlyH

419Cys

SH418Cys

S O

O

O

formate

734Gly

419Cys SH

418Cys S O

CoA

Acetyl CoA

SH

734Gly

419Cys

SH418Cys

S O

PFL: 1st Half of ReactionKozarich Proposed Mechanism

Brush, E.J.; Lipsett, K.A. Kozarich, J.W. Biochemistry 1988, 27, 2217-2222.Parast, C.V.; Wong, K.K.; Lewisch, S.A.; Kozarich J.W. Biochemistry, 1995, 34, 2393-2399.

Bernardi, R.; Caronna, T.; Galli, R.; Minisci F.;.Perchinunno M. Tetrahedron Lett. 1973, 14, 645-64.

Kristin Plessel
Cys418 shown essential for CoA CoA thioester exchangeRadical adding is a little skeptical, but may be viable since beta scission follows Minisci (Fenton's reagent precident)Also, regen of gyl radical without Cys radical regenerated
Page 35: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

35

pyruvate734Gly

419Cys SH

418Cys SH

formate

CoA

Acetyl CoA

734GlyH

419Cys

418Cys

SOH

O

O

S

734GlyH

419Cys

418Cys

S OH

O

OS

734GlyH

419Cys

418Cys

S O

O

OHS

734GlyH

419Cys

S418Cys

S O

O

OH

734GlyH

419Cys

S418Cys

S O

O

OH

734GlyH

419Cys

418Cys

S O

S

734Gly

419Cys

418Cys

S O

SH

PFL: 1st Half of Reaction Knappe Proposed Mechanism

Knappe, J.; Elbert, S.; Frey, M.; Wagner, A.F.V. Biochem. Soc. Trans. 1993, 21, 731-734.

Kristin Plessel
REDO PICthiyl radical addition to carboxylate no chemical precident-- not H atom take?Exchange of precedented by studies with glutathione and penicillamine radicals with amonium fomrate One S acts as anion, other as radicalDFT calculations say non radical thiohemiacetal fomratio very high, approx 37.6 kcal barrier to formation
Page 36: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

36

PFL: 1st Half of Reaction Crystal Structure

Becker, A.; Fritz-Wolf, K.; Kabsch, W.; Knappe, W.; Schultz, S.; Wagner, A.F.V. Nat. Struct. Biol. 1999, 6, 969-975.

Kristin Plessel
Crystal StructureGly 734 near Cys419Cys418 near C-2 of pyruvateFormed in absence of CoAAcetylated protein still shows exchange , Acetyl must be on 418
Page 37: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

37

PFL: 1st Half of Reaction Methacrylate Inhibition

Irreversible inhibition 14C labeled methacrylate confirmed consistent alkylation

of Cys418 Gly734• remains intact

Plaga, W.; Vielhaber, G.; Wallach, J.; Knappe, J. FEBS Lett. 2000, 466, 45-48.Lucas, M.F.; Ramos, M.J. J. Am. Chem. Soc. 2005, 127, 6902-6909.

pyruvate methacrylate

O

O

O

O

O

CH2

Page 38: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

38

PFL: 1st Half of Reaction Methacrylate Inhibition

734GlyH

419Cys SH

418Cys SCH2

O

O

734GlyH

419Cys SH

418Cys S CH2

O

O

734GlyH

419Cys S

418Cys S CH2

O

O

H

Plaga, W.; Vielhaber, G.; Wallach, J.; Knappe, J. FEBS Lett. 2000, 466, 45-48.Lucas, M.F.; Ramos, M.J. J. Am. Chem. Soc. 2005, 127, 6902-6909.

734GlyH

419Cys SH

418Cys SO

O

O

734GlyH

419Cys SH

418Cys SO

O

O

734GlyH

419Cys SH

418Cys S O

O

O

734GlyH

419Cys S

418Cys S O

O

OH

Page 39: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

39

pyruvate734Gly

419Cys SH

418Cys SH

734GlyH

419Cys S

418Cys SH

734GlyH

419Cys SH

418Cys S O

O

O

734GlyH

419Cys SH

418Cys SO

O

O

734GlyH

419Cys SH

418Cys S O

O

O

734GlyH

419Cys S

418Cys S O

O

OH

formate

734GlyH

419Cys S

418Cys S O

734Gly

419Cys SH

418Cys S O

CoA

Acetyl CoA

PFL: 1st Half of Reaction Currently Accepted Mechanism

Frey, P.A.; Hegeman, A.D.; Reed, G.H. Chem. Rev. 2006, 106, 3302-3316.

Page 40: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

40

PFL: 2nd Half of Reaction Polar Mechanism

Conventional acyl transfer by nucleophilic attack with radical bystander

Himo, F.; Eriksson, L.E. J. Am. Chem. Soc. 1998, 120, 11449-11455.

734Gly

419Cys SH

418Cys S O

S-CoA

734Gly

419Cys SH

418Cys SO

S-CoA

O

S-CoA

734Gly

419Cys SH

418Cys S

734Gly

419Cys SH

418Cys SH

Kristin Plessel
Acetylated enzyme without activase enzyme can acetylate CoA
Page 41: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

41

PFL: 2nd Half of Reaction Radical Mechanism H atom transfer to form CoAS• by followed by homolytic acyl

transfer Radical acyl protein 105 fold more reactive than non-radical

Wong, K.K.; Kozarich, J.W. Metal Ions in Biol. Sys. 1994, 30, 279-313. Guo, J.D.; Himo, F. J. Phys. Chem. B 2004, 108, 15347-15354.

O

S-CoA

734Gly

419Cys SH

418Cys S O

HS-CoA

734GlyH

419Cys S

418Cys S O

HS-CoA

734GlyH

419Cys SH

418Cys S O

S-CoA

734GlyH

419Cys SH

418Cys SO

S-CoA734GlyH

419Cys SH

418Cys SAcS-CoA

734GlyH

419Cys S

418Cys SH

734Gly

419Cys SH

418Cys SH

Kristin Plessel
Reaction rate for thioester exchange of CoA with radical acetylated enzyme 105-fold more active than nonradical form
Page 42: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

42

Outline

Introduction Shared Mechanism of Radical SAM Enzymes Individual Mechanisms of Radical SAM Enzymes

Pyruvate Formate Lyase Lysine 2,3-Aminomutase Spore Photoproduct Lyase

Conclusions

Page 43: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

43

Lysine 2,3-Aminomutase (LAM)

O

OH

N

O3PO

H

2

First step in metabolism of lysine in Clostridia Stereospecific reaction Catalytic SAM and pyridoxal phosphate (PLP)

Chirpich, T.P.; Zappia, V.; Costilow, R.N.; Barker, H.A. J. Biol. Chem. 1970, 245, 1778-1789.

COO

NH3

H3N+

+

LAMH

HHCOO

H

H3N+

+

H

HH3N

Kristin Plessel
metabolized to Acetyl CoASAM does not exchange with unbound cofactor-- catalyticinversion of stereochemPLP known as stabilizing AA carbanions through aldimine formation
Page 44: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

44

LAM:Tritium Transfer Experiments

Baraniak, J.; Moss, M.L.; Frey, P.A. J. Biol. Chem. 1989, 264 1357-1360

COO

NH3

H3N+

LAM

COO

NH3

H3N+

COOH3N+

NH3+

3H 3H

O

OH OH

N

N

NH2

N

N

S

OOC

+

NH3+

CH3 3H

O

OH OH

N

N

NH2

N

N

S

OOC

+

NH3+

CH33H

+ +

Kristin Plessel
Showed 3H transfer from Ado to Lysine And 3H transfer form lysine to AdoAll trit transfered to lysines must mean that H's become sterically equivalentalso when pro R H removed, returned to product 32% of time, v. close to statistic 33%
Page 45: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

45

LAM:Proposed Mechanism

Baraniak, J.; Moss, M.L.; Frey, P.A. J. Biol. Chem. 1989, 264 1357-1360Danen, W.C.; West, C.T. J. Am. Chem. Soc. 1974, 96, 2447-2453.

N

OH

N

O3PO

Lys337

HN

OH

N

O3PO

H CH COOCH

H

+H3NCH2CH2CH2

Ado

lysine

HN

OH

N

O3PO

CH COOCH+H3NCH2CH2CH2

AdoH

HN

OH

N

O3PO

CH COOCH+H3NCH2CH2CH2

AdoH

HN

OH

N

O3PO

CH COOCH+H3NCH2CH2CH2

AdoH

HN

OH

N

O3PO

CH2 COOCH+H3NCH2CH2CH2

Ado

-lysine

2

22

2

2

2

Kristin Plessel
aldimine to stabilize radical instead of carbanion similarity to AdoCbland known about H transfer propertiesexplains role for PLP and role of SAM H transfer
Page 46: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

46

H N

C

CH3

COOEtH2C

Br

Bu3SnH, AIBN H N

C

CH3

COOEtH2C

H N

C

CH3

COOEtH2C

H N

C

CH3

COOEtH3C

H N

C

CH3

COOEtH2C

H

LAM: Role of PLP Chemical Model System

B:C1:13

65% yield

Han, O.; Frey, P.A. J. Am. Chem. Soc. 1990, 112, 8982-8983.

A B

C

Kristin Plessel
Bu3Sn rad generated by AIBN and Bu3SnH
Page 47: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

47

LAM: Steady State Radical

COO

NH3

H3N+

+

COO

NH3

H3N+

+D

D

D D

DDD

D

Ballinger, M.D.; Reed, G.H.; Frey, P.A. Biochemistry 1992, 31, 949-953. Ballinger, M.D.; Frey, P.A.; Reed, G.H. Biochemistry 1992, 31, 10782-10789.

COO

NH3

H3N+

+D

COO

NH3

H3N+

+

13C

EPR

HN

OH

N

O3PO

CH COOCH+H3NCH2CH2CH2

2

Kristin Plessel
Steady StateLAM, lysine, SAM gave signal, but need all threeCould be protein radical SAM radical or lysine, but isotopic labelingShown to be kinetically competent to be an intermediate by narrow at rates similar to turnover rates when added Deuterated lysine one of first substrate based radical to be seen-- more known about radical than others OR any other polar intermediate
Page 48: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

48

LAM: Analogue Radicals4-Thia-L-lysine

Wu, W.; Lieder, K.W.; Reed, G.H.; Frey, P.A. Biochemistry 1995, 34, 10532-10537.

Miller, M.; Bandarian, V.; Reed, G.H.; Frey, P.A. Arch. Biochem. Biophys. 2001, 387, 281-288

COO

NH3

H3N+

+H

COOH3N+

+HH3N

S

NH4+ +

S

H3N+ SH +

O

COOH

Page 49: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

49

LAM: Analogue Radicals4-Thia-L-lysine

SCOO

NH3

H3N

+

DD

COO

NH3

H3N+

+

13C

S

SCOO

NH3

H3N+

+

Wu, W.; Lieder, K.W.; Reed, G.H.; Frey, P.A. Biochemistry 1995, 34, 10532-10537.

EPR

HN

OH

N

O3PO

CH COOCH+H3NCH2CH2S

2

Page 50: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

50

LAM: Analogue Radicalstrans-4-Dehydrolysine

Wu, W.; Booker, S.; Lieder, K.W.; Bandarian, V.; Reed, G.H.; Frey, P.A. Biochemistry 2000, 39, 9561-9570.

COO

N

H3N+

HH

CH-PLP

H

COO

N

H3N+

CH-PLP

H

H

Ado AdoH

Kristin Plessel
suicide inhibitor
Page 51: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

51

LAM: Analogue Radicalstrans-4,5-Dehydrolysine

COO

NH3

H3N+

+

COO

NH3

H3N+

+D

COO

NH3

H3N+

+D

D

COO

NH3

H3N+

+D

D

D D

DD

COO

NH3

H3N+

+D

D

D

D D

D D

A

B

C

D

E

Wu, W.; Booker, S.; Lieder, K.W.; Bandarian, V.; Reed, G.H.; Frey, P.A. Biochemistry 2000, 39, 9561-9570.

EPR

Kristin Plessel
Shown FeS go away at same rate as this appears, shows it is an intermediate
Page 52: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

52

LAM: Currently Accepted Mechanism

Frey, P.A.; Hegeman, A.D.; Reed, G.H. Chem. Rev. 2006, 106, 3302-3316.

N

OH

N

O3PO

Lys337

HN

OH

N

O3PO

H CH COOCH

H

+H3NCH2CH2CH2

Ado

lysine

HN

OH

N

O3PO

CH COOCH+H3NCH2CH2CH2

AdoH

HN

OH

N

O3PO

CH COOCH+H3NCH2CH2CH2

AdoH

HN

OH

N

O3PO

CH COOCH+H3NCH2CH2CH2

AdoH

HN

OH

N

O3PO

CH2 COOCH+H3NCH2CH2CH2

Ado

-lysine

2

22

2

2

2

Kristin Plessel
aldimine to stabilize radical instead of carbanion similarity to AdoCbland known about H transfer propertiesexplains role for PLP and role of SAM H transfer
Page 53: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

53

LAM: Enzyme ControlENDOR Spectroscopy

Lees, N.S.; Chen, D.; Walsby, C.J.; Behshad, E.; Frey, P.A.; Hoffman, B.M. J. Am. Chem. Soc. 2006, 128, 10145-10154.

Kristin Plessel
H atom transfer facilitated by vdW contact-- enzyme keeping reactive intermediate in control-- constrained to adopt geometry optimized for reactionCrys structure shows Ado and substrate .5-1 A further away
Page 54: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

54

Outline

Introduction Shared Mechanism of Radical SAM Enzymes Individual Mechanisms of Radical SAM Enzymes

Pyruvate Formate Lyase Lysine 2,3-Aminomutase Spore Photoproduct Lyase

Conclusions

Page 55: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

55

Spore Photoproduct-lyase (SPP lyase)

Endospores formed by bacteria under nutrient deficient conditions

Resistant to heat, toxic chemicals, UV irradiation SPP-lyase catalyzes the repair of methylene-bridged

thymine dimers formed in spore DNA by UV irradiation

Setlow, P. J. App. Microbiol. 2006, 101,514-525. Friedel, M.G.; Berteau, O.; Pieck, J.C.; Atta, M.; Ollagnier-de-Choudens, S.; Fontecave, M.; Carell, T. Chem. Commun., 2006, 445-447.

N

HN

O

O

R

N

HN

O

O

R

N

NH

O

O

R

Spore Photoproduct

SPP lyase

N

NH

O

O

R

UV irradiation

+

Kristin Plessel
shown to make Met and Ado w/o dimer presentneeds SAMhas CxxxCxxCHas FeS cluster
Page 56: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

56

SPP lyase: Chemical Model System

C6 radical of spore photoproduct can undergo β-scission

Mehl, R.A.; Begley, T.P. Org. Lett. 1999, 1, 1065-1066.

85%

N

N

O

O

N

N

O

O

SPh

Bu3SnH, (Bu3Sn)2AIBN, PhH

N

N

O

O

N

N

O

O

N

N

O

O

(6) (6)

Kristin Plessel
add synthesis of model?
Page 57: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

57

SAM

SPP lyase:Tritium Labeling Experiments

3H Transfer from C6 to SAM No 3H transfer from methyl Adenosyl radical abstract an H atom from C6 SAM formed reversibly

Cheek, J.; Broderick, J.B. J. Am. Chem. Soc. 2002, 124, 2860-2861

N

HN

O

O

R

N

NH

O

O

R3H

3H

(6)

N

HN

O

O

R

N

NH

O

O

R

3H3C

C3H2

Page 58: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

58

SPP lyase:Proposed Mechanism

Guo, J.D.; Luo, Y.; Himo, F. J. Phys. Chem. B 2003, 107, 11188-11192.

Kristin Plessel
DFT calc B3LYP shows back transfer so closer to Ado for regeneration Recently been shown that the 5S is the only one repaired-- as writtenall evidence leads to this pic
Page 59: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

59

Radical SAM Enzymes:Conclusions

Large family of over 600 postulated enzymes < 5% characterized

Shared mechanism for formation of adenosyl radical Independent and unique uses of adenosyl radical

Generate protein or substrate radical Diverse reactions

Many unique and powerful mechanisms yet to discover Novel radical chemistry

Page 60: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

60

Acknowledgments Hans Reich

Ieva Reich

Practice Talk Attendees Melissa Boersma Seth Horne Luke Lavis Amanda King

Reich Group Kris Kolonko Amanda Jones

Perry Frey

Erin McElroy Katie Partridge Kim Peterson Kathy Van Heuvelen

Michael Mason

Page 61: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

61

EXTRA SLIDES

Page 62: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

62

PFL:Chemical Model Support

Minisci et al. reported cleavage of α-keto esters with Fenton’s reagent

O

COOEt COOEt

HO-O OHH2O2

COOEt

O OH O

OH+ COOEt

FeSO4

Kristin Plessel
Minisci et al. reported cleavage of α-keto esters with Fenton’s reagent
Page 63: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

63

PFL:Mercaptopyruvate Inhibitor

Kristin Plessel
shows disulfide radical (seen by EPR)
Page 64: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

64

PFLHypophosphite inhibitor

Page 65: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

65

LAM: Analogue Radicalstrans-4,5-Dehydrolysine

Wu, W.; Booker, S.; Lieder, K.W.; Bandarian, V.; Reed, G.H.; Frey, P.A. Biochemistry 2000, 39, 9561-9570.

kform = 2.9 ± 0.6 min-1

[4Fe-4S]+1

kloss = 2.6 ± 0.4 min-1

Time (min)

Equ

iv of Organic R

adical

Equ

iv o

f [4

Fe-

4S

]+

COO

N

H3N+

CH-PLP

H

H

Kristin Plessel
Shown FeS go away at same rate as this appears, shows it is an intermediate
Page 66: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

66

Reduction Potentials

-1.8-1.6-1.4-1.2-1.0-0.8-0.6-0.4-0.2V

PFL-AE [4Fe-4S]+

Nonenzymatictrialkyl

sulfonium

Colichman, E.L.; Love, D.L. J. Org. Chem. 1953, 18, 40-46.; Hinckley, G.T.; Frey, P.A. Biochemistry 2006, 45, 3219-3225.;

Frey, P.A. Personal Communication. Frey, P.A.; Hegeman, A.D.; Reed, G.H. Chem. Rev. 2006, 106, 3302-3316.

LAM [4Fe-4S]+ with SAM LAM [4Fe-4S]+

with SAM and lysine

0.27 V

Estimated SAM

Keq≈ 10-5

ln K = nE°/ 0.0257 at 25° C

E° = 0.27 V

Kristin Plessel
must be near to give reasonable Keq amounts
Page 67: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

67

Acetyl Coenzyme A

Page 68: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

68

Mössbauer Spectroscopy

Monitors nuclear transitions from absorption of γ-rays Energy of γ-ray absorption changed by:

Quadrupole interactions Magnetic interactions Changes in electronic environment

γ-ray emitter

sample

detector

Drago, R.S. Physical Methods for Chemists; Sauders College:Orlando, FL, 1977; 2nd Ed, pp 626-645.

Solomon, E.I.; Lever, A.B.P., Eds.; Inorganic Electronic Structure and Spectrocopy; Wiley-Interscience: New York, NY, 1999; Vol. 1, pp 161-211.

Page 69: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

69

Identification of Fe-S cluster in PFL-AE

[4Fe-4S] usually stabilized by 4 Cys Site-directed mutagenesis of CxxxCxxC Labile Fe-S cluster with site-differentiated cluster

Precedent in aconitase

Mössbauer Spectroscopy

FeS

SFe

SS

FeFe

Fe FeS

FeSS

S1+

2+

FeS

FeS

1+

FeS

SFe

SS

FeFe

1+/2+

Na2S2O4

Krebs, C.; Henshaw, T.F.; Cheek, J.; Huynh, B.H.; Broderick, J.B. J. Am. Chem. Soc. 2000, 122, 12497-12506.

Kennedy, M.C.; Kent, T.A.; Emptage, M.; Merkle, H.; Beinert, H.; Munck, E. J. Biol. Chem. 1984, 259(23), 14463-14471.

Kristin Plessel
Anaerobic purification under ArNo longer needs FeMössbauer: [2Fe-2S]2+, [4Fe-4S]2+, linear [3Fe-4S]+Reduced conditions gave mixture of [4Fe-4S]+/2+EPR: 67% linear [3Fe-4S]+ diff clusters going to one suggest labile FeS clusterprecident is aconitase SAM directly interacts with FeS cluster
Page 70: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

70

A Unique Iron Site

Krebs, C.; Broderick, W.E.; Henshaw, T.F.; Broderick, J.B.; Huynh, B.H. J. Am. Chem. Soc. 2002, 124, 912-913.

without SAM

with SAM

difference spectrum

Kristin Plessel
56Fe clusters reconstituted with 57Fesuggests increase in coord number-- that SAM binds to unique iron stieDemonstrates unique Fe and evidence of SAM with the unique ironopposite experiment with Fe57 in non unique sites showed no perturbation when SAM added
Page 71: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

71

EXAFS

Extended X-ray Absorption Fine Structure Structure information on amorphous samples Emitted core electron interacts with surroundings and

influences absorption of x-rays Matching experimental spectra with theoretical

Distance to and identity of neighboring atoms within 4-5 Å Coordination number of atom

Scott, R.A. Physical Methods in Bioinorganic Chemistry; University Science: Sausalito, CA, 2000; pp 465-504.

Page 72: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

72

Methionine Coordination:Se EXAFS

LAM

PFL-AE

BioB

Se-C

Se-Fe

Nathaniel J. Cosper, N.J.; Booker, S.J.; Ruzicka, F.; Frey, P.A.; Scott, R.A. Biochemistry 2000, 39, 15668-15673.Cosper, M.M.; Cosper, N.J.; Hong, W.; Shokes, J.E.; Broderick, W.E.; Broderick, J.B.; Johnson, J.B.; Scott, R.A. Protein Sci. 2003, 12, 1573-1577.

O

OH OH

N

N

NH2

N

N

Se

OOC

+

NH3+

CH3

OOC

NH3+

Se

Se-Methionine

Kristin Plessel
LAM has Fe-Se bond, others don't, but only with Met, not SAMMet can be added or formed by cleavage BioB and PFL-AE not having means Se is far away or in many diff positions
Page 73: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

73

SAM Coordination:ENDOR Spectroscopy

PFL-AE Isotropic coupling indicated local orbital overlap Assigned to a dative interaction between sulfonium and

sulfide

Walsby, C.J.; Hong, W.; Broderick, W.E.; Cheek, J.; Ortillo, D.; Broderick, J.B.; Hoffman, B.M. J. Am. Chem. Soc. 2002, 124, 3143-3150.

+

Kristin Plessel
isotropic coupling found in 2D field dependant spectra
Page 74: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

74

Mechanistic Differences

Catalytic Enzyme: LAM

Stoichiometric Enzyme: PFL and BioB

Cosper, M.M.; Cosper, N.J.; Hong, W.; Shokes, J.E.; Broderick, W.E.; Broderick, J.B.; Johnson, J.B.; Scott, R.A. Protein Sci. 2003, 12, 1573-1577

Page 75: Mechanisms of S-Adenosylmethionine Radical Enzymes Kristin Plessel Reich Group September 7, 2006

75

EPR Spectroscopy

Hyperfine Splitting By neighboring nucleus

with nuclear spin Magnitude of splitting

depends on nucleus

Drago, R.S. Physical Methods for Chemists; Sauders College:Orlando, FL, 1992, 2nd Ed, pp 559-594.

Que, L.., Jr. Ed.; Physical Methods in Bioinorganic Chemistry; University Science: Sausalito, CA, 2000; pp. 121-171.

En

erg

y

Magnetic Field

MS MI

1/21/2

-1/2

-1/2 1/2

-1/2

H D