Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

Embed Size (px)

Citation preview

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    1/195

    436- 353 MECHANICS 2UNIT 2

    MECHANICSOF

    A RIGID BODY

    J.M. KRODKIEWSKI

    2008

    THE UNIVERSITY OF MELBOURNEDepartment of Mechanical and Manufacturing Engineering

    .

    1

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    2/195

    2

    MECHANICS OF A RIGID BODY

    Copyright   C 2008 by J.M. Krodkiewski

    ISBN 0-7325-1535-1

    The University of Melbourne

    Department of Mechanical and Manufacturing Engineering

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    3/195

    CONTENTS

    1 THREE-DIMENSIONAL KINEMATICS OF A PARTICLE. 61.1 MOTION OF A PARTICLE IN TERMS OF THE INERTIAL FRAME. 6

    1.1.1   Absolute linear velocity and absolute linear acceleration   61.2 MOTION IN TERMS OF THE NON-INERTIAL FRAMES (RELA-

    TIVE MOTION). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81.2.1   Motion in terms of translating system of coordinates. . 81.2.2   Motion in terms of rotating system of coordinates.   . . 101.2.3   Motion in terms of translating and rotating system of 

    coordinates.   . . . . . . . . . . . . . . . . . . . . . . . . . . . 221.3 PROBLEMS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

    2 THREE-DIMENSIONAL KINEMATICS OF A RIGID BODY 412.1 GENERAL MOTION . . . . . . . . . . . . . . . . . . . . . . . . . . 412.2 ROTATION ABOUT A POINT THAT IS FIXED IN THE INERTIAL

    SPACE (ROTATIONAL MOTION) . . . . . . . . . . . . . . . . . . . 432.3 PROBLEMS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

    3 KINETICS OF SYSTEM OF PARTICLES. 803.1 MOTION OF CENTRE OF MASS - LINEAR MOMENTUM. . . . . 823.2 MOMENT OF MOMENTUM. . . . . . . . . . . . . . . . . . . . . . 83

    3.2.1   Moment of momentum about a  fixed point in the iner-tial space.   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

    3.2.2   Moment of momentum about a moving point in an in-ertial space.   . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

    3.2.3   Moment of relative momentum.   . . . . . . . . . . . . . . 87

    3.3 EQUATIONS OF MOTION AND THEIR FIRST INTEGRALS. . . 883.3.1   Conservation of momentum principle. . . . . . . . . . . . 883.3.2   Conservation of angular momentum principle.   . . . . . 893.3.3   Impulse – momentum principle. . . . . . . . . . . . . . . 90

    3.4 PROBLEMS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

    4 KINETICS OF RIGID BODY. 964.1 LINEAR AND ANGULAR MOMENTUM. . . . . . . . . . . . . . . . 964.2 PROPERTIES OF MATRIX OF INERTIA. . . . . . . . . . . . . . . 99

    4.2.1   Parallel axis theorem.   . . . . . . . . . . . . . . . . . . . . . 100

    4.2.2   Principal axes.   . . . . . . . . . . . . . . . . . . . . . . . . . 102

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    4/195

    CONTENTS    4

    4.2.3   Problems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1064.3 KINETIC ENERGY. . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

    4.3.1   Rotational motion. . . . . . . . . . . . . . . . . . . . . . . . 127

    4.3.2   General motion.   . . . . . . . . . . . . . . . . . . . . . . . . 1284.3.3   Problems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

    4.4 EQUATIONS OF MOTION . . . . . . . . . . . . . . . . . . . . . . . 1464.4.1   Euler’s equations of motion   . . . . . . . . . . . . . . . . . 1464.4.2   Modified Euler’s equations of motion   . . . . . . . . . . . 1494.4.3   Problems.   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

    4.5 MOTION OF THE GYROSCOPE WITH THREE DEGREE OF FREE-DOM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1824.5.1   Modelling.   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1824.5.2   Analysis.   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

    5 APPENDIXES 1915.1   APPENDIX 1. REVISION OF THE VECTOR CALCULUS   191

    5.2   APPENDIX 2. CENTRE OF GRAVITY, VOLUME ANDMOMENTS OF INERTIA OF RIGID BODIES. . . . . . . . . 194

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    5/195

    CONTENTS    5

    INTRODUCTION.The purpose of this text is to provide the students with the theoretical back-

    ground and engineering applications of the three dimensional mechanics of a rigidbody. It is divided into four chapters.

    The  first one,  Three-Dimensional Kinematics of A Particle, deals withthe geometry of motion of an individual particle in terms of the inertial as well asin terms of the non-inertial system of coordinates. The introduced in this chaptertranslating, rotating as well as the translating and rotating system of coordinatesallows motion of the rigid body with respect to the inertial frame to be determinedand classified.

    The second chapter, entitled  Three-Dimensional Kinematics of A RigidBody, provides procedures for determination of the absolute velocity and the absolute

    acceleration of any point that belong to the rigid body. Both, the general motion andthe motion about a  fixed point is considered.

    The last two chapters are related with the relationships between motion andforces that act on bodies. The chapter Kinetics of A System of Particles  off ersgeneral principles that can be apply to any system of particles regardless of theirnumber and internal forces acting between the individual particles. Because eachcontinuum (fluid, gas, rigid or elastic body) can be considered as a system of particles,the derived equations form a base for development of many branches of mechanics(fluid mechanics, solid mechanics, rigid body mechanics etc.).

    The developed principles are widely utilized in the chapter entitled  Kinetics

    of A Rigid Body. This chapter gives procedures for determination of matrix of inertia of a rigid body and its principal axes. This makes possible to produce expres-sion for the kinetic energy of the moving rigid body as well as to derive its equationsof motion. Both, the general motion as well as rotation of a rigid body is considered.

    Each chapter is ended with several engineering problems. Solution to someof them is provided. Students should produce solution to the other problems duringtutorials and in their own time.

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    6/195

    Chapter 1

    THREE-DIMENSIONAL KINEMATICS OF A PARTICLE.

    1.1 MOTION OF A PARTICLE IN TERMS OF THE INERTIAL FRAME.

     X 

     Z 

    O

    Oa Y a

     Z a

     X a

    Figure 1

    To consider motion of a particle we assume the existence of so-called  absolute   (mo-tionless) system of coordinates  X aY aZ a(see Fig. 1).

    DEFINITION:  Inertial system of coordinated  is one that does not rotate andwhich origin is  fixed in the absolute space or moves along straight line ata constant velocity.

    Inertial systems of coordinates are usually denoted by upper characters,  e.g.  XY Z , todistinguish them from non -inertial  systems of coordinates which are usually denotedby lower characters, e.g.   xyz.

    1.1.1   Absolute linear velocity and absolute linear acceleration 

    Let us assume that a motion of a particle is given by a set of parametric equations1.1 which determine the particle coordinates for any instant of time.

    rX    =   rX (t)

    rY    =   rY  (t)

    rZ    =   rZ (t)   (1.1)

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    7/195

    MOTION OF A PARTICLE IN TERMS OF THE INERTIAL FRAME.   7

     X 

     Z 

    O

    I

    Jr(t)

    ∆ r

    (t+ t)∆rr  Z 

    (t)

    r Y (t) r  X (t)

    Figure 2

    These coordinates represent scalar magnitude of components of so called  ab-solute position vector   r along the inertial system of coordinates  XY Z .

    r = IrX (t) + JrY  (t) + KrZ (t)   (1.2)

    were  I, J, K are unit vectors  of the inertial system of coordinates XY Z . Vector of theabsolute velocity, as the  first derivative of the absolute position vector  r  with respectto time, is given by the following formula.

    v =   ṙ = lim∆t→O

    ∆r

    ∆t  = I   lim

    ∆t→O

    ∆rX ∆t

      + J   lim∆t→O

    ∆rY ∆t

      + K   lim∆t→O

    ∆rZ ∆t

      = IṙX  + JṙY   + KṙZ 

    (1.3)

    Similarly, vector of the absolute acceleration is defined as the second derivative of theposition vector with respect to time.

    a = r̈ = lim∆t→O

    ∆v

    ∆t  = Ir̈X  + Jr̈Y   + Kr̈Z    (1.4)

    Scalar magnitude of velocity  v  (speed) can be expressed by formula

    v  =  |v| =√ 

    v · v =q ̇

    r2X  +  ṙ2Y   +  ṙ

    2Z    (1.5)

    Scalar magnitude of acceleration is

    a =  |a| =√ 

    a · a =q ̈

    r2X  + r̈2Y   + r̈

    2Z    (1.6)

    The distance done by the particle in a certain interval of time  0 < τ < t  is given bythe formula 1.7 .

    s =

    Z   t0

    v dτ  =

    Z   t0

    p ̇rX (τ )2 +  ṙY (τ )2 +  ṙZ (τ )2dτ  = s(t)   (1.7)

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    8/195

    MOTION IN TERMS OF THE NON-INERTIAL FRAMES (RELATIVE MOTION).   8

    1.2 MOTION IN TERMS OF THE NON-INERTIAL FRAMES (REL-ATIVE MOTION).

     Z 

     X 

    Oo

     x

     y

     z 

     X 

     Z 

    O

    o

     z 

     x

     y

     Z 

     X 

    O

    o

     x

     y

     z 

    a  b    c 

    Figure 3

    DEFINITION:System of coordinates which can not be classified as inertialis called non -inertial system of coordinates.

    The non-inertial systems of coordinates are denoted by lower characters (e.g.xyz)  to distinguish it from inertial one.

    DEFINITION: If a non-inertial system of coordinates does not rotate  (itsaxes xyz  are always parallel to an inertial system)  the system is called translating system of coordinates  (Fig. 3 a).

    DEFINITION: If a non-inertial system of coordinates rotates about originof an inertial system of coordinates, the system is called   rotating system of coordinates   (Fig. 3b)

    In a general case a non-inertial system of coordinates may translate and rotate.

    DEFINITION: System of coordinates which can translate and rotate iscalled translating and rotating system of coordinates   (Fig.3c)

    1.2.1   Motion in terms of translating system of coordinates.

     X 

     Z 

    Oo

     z 

     x

     y

     P 

    ro

    r P,or P 

    Figure 4

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    9/195

    MOTION IN TERMS OF THE NON-INERTIAL FRAMES (RELATIVE MOTION).   9

    Let XY Z   be the inertial system of coordinates and  xyz  be the translating systemof coordinates. The relative motion of  xyz  system with respect to  XY Z   is usuallydefined by a position vector   ro  (Fig.4).   Let us consider a particle  P   which moves

    with respect to the translating system of coordinates and its relative motion is givenby the position vector  rP,o. The position vector of the particle  P   in the  X Y Z   framecan be composed from vectors  ro  and rP,o.

    rP   = ro + rP,o  = IroX  + JroY   + KroZ  + irP,ox +  jrP,oy + krP,oz   (1.8)

    Hence, the absolute velocity  of the particle P , as the  first derivative of vector rP   withrespect to time is

    ṙP    =   IṙoX  + JṙoY   + KṙoZ  +   İroX  +  J̇roY   +  K̇roZ+iṙP,ox +  jṙP,oy  + kṙP,oz +   i̇rP,ox +   ˙ jrP,oy +  k̇rP,oz   (1.9)

    Since,   İ =  J̇ =  K̇ =   i̇ =   ˙ j =  k̇ = 0

    ṙP   = IṙoX  + JṙoY   + KṙoZ  + iṙP,ox +  jṙP,oy + kṙP,oz   (1.10)

    In the expression for the absolute velocity one may distinguish two parts called velocity of transportation  and relative velocity .

    DEFINITION: Velocity of transportation is the velocity of the particle itwould have if it would be motionless with respect to the non-inertial frame(rP,o  =  const)

    DEFINITION: Relative velocity is the velocity of the particle it would haveif the non-inertial system of coordinates would be motionless  (ro = const).

    According to the above definitions the velocity of transportation in the case consideredis

    vT   =   ṙo =  IṙoX  + JṙoY   + KṙoZ   (1.11)

    and the relative velocity is

    vR = iṙP,ox +  jṙP,oy + kṙP,oz   (1.12)

    Hence, the absolute velocity

    vP   =   ṙP   = vT  + vR   (1.13)

    Similarly, one can prove that the  absolute acceleration  of the particle  P   is

    aP   = r̈P   = aT  + aR   (1.14)

    where  aT   and aR  stand for the   acceleration of transportation  and the   relative accel-eration  respectively.

    DEFINITION: Acceleration of transportation is the acceleration of theparticle it would have if it would be motionless with respect to the non-inertial frame (rP,o  = const)

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    10/195

    MOTION IN TERMS OF THE NON-INERTIAL FRAMES (RELATIVE MOTION).   10

    DEFINITION: Relative acceleration is the acceleration of the particle itwould have if the non-inertial system of coordinates would be motionless(ro = const).

    In the case consideredaT  = r̈o  = Ir̈oX + Jr̈oY   + Kr̈oZ   (1.15)

    aR =  ir̈P,ox +  jr̈P,oy  + kr̈P,oz   (1.16)

    1.2.2    Motion in terms of rotating system of coordinates.

     Z 

     X 

    Oo

     x

     y

     z 

     j

    i

    I J

    k K 

    Figure 5

    As it was mention before, the rotating system of coordinates has its origin coincidingthe origin of an inertial system of coordinates (Fig.5). First of all, we have to establishmatrix which transfers components of a vector from rotating system of coordinatesxyz  to the inertial XY Z .

    Matrix of direction cosines.

    Let the relative motion of a particle  P  be determined by a position vector  r, whichcomponents in the rotating system of coordinates  xyz  (Fig.6) are

    r = irx +  jry + krz   (1.17)

    Components of the vector   r  along the inertial system of coordinates  XY Z   may beobtained as scalar products of the vector  r  and unit vectors  IJK.

    rX    =   r · I =  rxi · I + ry j · I + rzk · I

    =   rx cos∠iI + ry cos∠ jI + rz cos∠kI

    rY    =   r · J =  rxi · J + ry j · J + rzk · J

    =   rx cos∠iJ + ry cos∠ jJ + rz cos∠kJ

    rZ    =   r · K = rxi · K + ry j · K + rzk · K

    =   rx cos∠iK + ry cos∠ jK + rz cos∠kK   (1.18)

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    11/195

    MOTION IN TERMS OF THE NON-INERTIAL FRAMES (RELATIVE MOTION).   11

     Z 

     X 

    Oo

     x

     y

     z 

     j

    iI

    J

     P 

    r

    r  x

    r  y

    r  z 

    r  X 

    r Y 

    r  Z 

    kI

    iI

     jI

    Figure 6

    The last relationship can be written in the a matrix form

    ⎡⎣

    rX 

    rY rZ 

    ⎤⎦

    =

    ⎡⎣

    cos∠iI   cos∠ jI   cos∠kI

    cos∠iJ   cos∠ jJ   cos∠kJcos∠iK   cos∠ jK   cos∠kK

    ⎤⎦⎡⎣

    rx

    ryrz

    ⎤⎦

    = [C r→i]

    ⎡⎣

    rx

    ryrz

    ⎤⎦

      (1.19)

    The transfer matrix [C r→i]   is called matrix of direction cosines.From the manner we have developed the matrix of direction cosines it is easy

    to notice that the inverse matrix equal the transpose one.

    [C r→i]−1 = [C r→i]T  = [C i→r]   (1.20)

    Another useful relationship should be noticed from Fig. 7.   Cosine of angle betweentwo unit vectors e.g.   i and  J  is equal to the component of one on the other.

    iJ

    J

    i J 

    iY 

     x

    Figure 7

    cos∠iJ =

      iY i   = iY   =

     J xJ   = J x   (1.21)

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    12/195

    MOTION IN TERMS OF THE NON-INERTIAL FRAMES (RELATIVE MOTION).   12

     X 

     Z 

    O

    i

    i X iY 

    i Z 

    Figure 8

    From Fig. 8 one can see that components iX,iY,iZ   ,which are equal to corre-

    sponding direction cosines, fulfil the following relationship.

    i2X  + i2Y   + i

    2Z  = cos

    2∠iI + cos2∠iJ + cos2∠iK = 1   (1.22)

    There exists six such relationships. Hence, only three  direction angles  can be chosenindependently. The three independent angles, which uniquely determined the positionof the rotating system of coordinates with respect to the inertial one, are called Euler’s angles.

    Euler angles.

     X 

     Z 

    O ,o

     x

     y

     z  ,

     ,

     ,

    Figure 9

    Let us assume that the rotating system of coordinates  xyz  coincide the inertial oneXY Z .  as shown in Fig.9. Now, let us turn the system of coordinates xyz  with respectto the inertial one XY Z  about axis Z  by an angle φ, so the system xyz  takes positionx1y1z1   (Fig. 10).   The matrix of direction cosines between system  x1y1z1  and XY Z is

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    13/195

    MOTION IN TERMS OF THE NON-INERTIAL FRAMES (RELATIVE MOTION).   13

     X 

     Z 

    O ,o

     z  ,

     x1

     y1

    1

    φ 

    φ 

    Figure 10

    [C r1→i] =

    ⎡⎣

    cos φ   − sin φ   0sin φ   cos φ   0

    0 0 1

    ⎤⎦   (1.23)

    In the next step, let us turn the system  xyz  about axis  x1  by an angle  θ. The newposition of the system  xyz   is shown in Fig. 11 as x2y2z2. The matrix of directioncosines between system x2y2z2  and x1y1z1  has the following form.

     X 

     Z 

    O ,o

     z  ,

     x1

     y1

    1

    φ 

    φ θ 

    θ 

     y

    2

    2

     ,x2

    Figure 11

    [C r2→r1] =

    ⎡⎣

    1 0 00 cos θ   − sin θ0 sin θ   cos θ

    ⎤⎦   (1.24)

    In the last step, the system  xyz   is turned by an angle  ψ  about axis  z2   to its   finalposition xyz  (Fig. 12). The matrix of direction cosines between xyz  and x2y2z2   is

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    14/195

    MOTION IN TERMS OF THE NON-INERTIAL FRAMES (RELATIVE MOTION).   14

     X 

     Z 

    O ,o

     z  ,

     x

     y1

    1

    φ 

    φ θ 

    θ 

     y2

    2

     y2 ,z 

     x

    Ψ 

    Ψ 

    Figure 12

    [C r→r2 ] =

    ⎡⎣

    cos ψ   − sin ψ   0sin ψ   cos ψ   0

    0 0 1

    ⎤⎦   (1.25)

    According to Eq. 1.19, one can write the following relationships

    ⎡⎣

    rX rY rZ 

    ⎤⎦ = [C r1→i]

    ⎡⎣

    rx1ry1rz1

    ⎤⎦   (1.26)

    ⎡⎣

    rx1ry1rz1

    ⎤⎦ = [C r2→r1]

    ⎡⎣

    rx2ry2rz2

    ⎤⎦   (1.27)

    ⎡⎣

    rx2ry2rz2

    ⎤⎦ = [C r→r2]

    ⎡⎣

    rxryrz

    ⎤⎦   (1.28)

    Introducing Eq. 1.28 into Eq. 1.27) and than Eq. 1.27) into Eq. 1.26) one mayobtained

      ⎡⎣rX 

    rY rZ 

    ⎤⎦= [C r1→i][C r2→r1][C r→r2]

    ⎡⎣rx

    ryrz

    ⎤⎦= [C r→i]

    ⎡⎣rx

    ryrz

    ⎤⎦  (1.29)

    Hence the matrix of direction cosines between rotating system  xyz  and the inertialXY Z   is

    [C r→i] = [C r1→i][C r2→r1][C r→r2 ]   (1.30)

    The last formula allows to express the direction cosines as function of three indepen-dent angles known as  Euler’s angles.  The angle φ  is called angle of precession,  angleθ  is called  angle of mutation  and the angle ψ  is called  angle of spin.

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    15/195

    MOTION IN TERMS OF THE NON-INERTIAL FRAMES (RELATIVE MOTION).   15

    Angular velocity and angular acceleration.

     X 

     Z 

    O

     A1

     A2

     A00r1r

    2r

     X 

     Z 

    O  A1

     A2

     A00r

    1r

    2r

    a    b 

    Figure 13

    The introduced Euler angles can not be considered as vectorial values. To show it letus consider transformation of point  Ao  due to rotation about axes  x  and y   by 90o.If we turn the vector   ro   by 90

    ofirst about axis  x   and then about axis  y, the   final

    position of the point  Ao   is represented by vector   r2  (Fig.13a). Let us do the same,but now the vector  ro  is turned about axis y  first and then about axis x  (Fig. 13 b).We can see that the  final position depend on the order of rotation. Hence, angulardisplacement can not be considered as a vector because at least the commutative lawwould be violated.

    φ  d φ 

     d 

    Figure 14

    It is easy to show, but the proof is here omitted, that the infi

    nitesimal angulardisplacement can be considered as vectorial magnitude. Vector of the infinitesimalangular displacement is perpendicular to the plane of rotation and its sense is de-termined by the law of right-handed screw (Fig. 14). Such vectors which havedetermined only direction and sense are called  free vectors  to distinguish them fromlinear vectors  (sense and line of action is determined) and  position vectors  ( positionof its tail, direction and sense is determined). According to the above rules the infin-itesimal angular increments of Euler’s angles  dφ, dψ and dθ may be drawn as shownin Fig. 15.

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    16/195

    MOTION IN TERMS OF THE NON-INERTIAL FRAMES (RELATIVE MOTION).   16

     X 

     Z 

    O

     x

     x

     y

    1

    d  

    d  

    d  

    d ψ

    d ψ

    The instantaneous axis of rotation

    d α

    Figure 15

    The vectorial sumdα =  dφ + dψ + dθ   (1.31)

    of the three infinitesimal angular increments of Euler’s angles determines direction of so called instantaneous axis of rotation,  having such a property that the rotation bythe angle dα about this axis is equivalent to rotation by angles  dφ, dθ, dψ about axes

    Z x1z   respectively. The instantaneous axis go through origin of the rotating systemof coordinates.

     X 

     Z 

    O

     β 

    d α 

    d α

    rd r

     A

    h

    l  z 

     y

     x

    Figure 16

    Now, let us consider point A  fixed in the xyz  system of coordinates determinedby a position vector   r   (Fig. 16). And let the axis   l   be the instantaneous axis of rotation of the system xyz  with respect to the inertial one. Let  dα be an infinitesimal

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    17/195

    MOTION IN TERMS OF THE NON-INERTIAL FRAMES (RELATIVE MOTION).   17

    angular displacement of the system of coordinates  xyz. Hence, the point A  at theinstance considered moves along circle of radius

    h =  r sinβ    (1.32)

    The infinitesimal increment of vector   r   is tangential to the circle and is placed inplane perpendicular to the axis  l. Its scalar magnitude is

    dr =  h dα =  r dα sinβ    (1.33)

    Hence, the infinitesimal increment dr can be considered as a vector product of vectordα and r.

    dr =  dα× r   (1.34)

    The velocity of the point  A  is

    v = dr

    dt  =

     dα

    dt  × r   (1.35)

    The vector   dαdt

      is called  vector of angular velocity  ω.

    ω =   dαdt

      (1.36)

    and the velocity of  A can be expressed as follow.

    v =  ω × r   (1.37)

    If motion of the rotating system of coordinates is determined by Euler’s angles, itsangular velocity, according to the above definition and Eq.   ??, is

    ω =dα

    dt  =

      Kdφ + i1dθ + kdψ

    dt  =K

    dt  + i1

    dt + k

    dt  (1.38)

    The angular speed as well as its individual components are shown in Fig. 17.

     X 

     Z 

    O

     z 

     x

     x

     y

    1

    The instantaneous axis of rotation

    d  

    dt 

    d  

    dt 

    d ψ

    dt 

    ω

    Figure 17

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    18/195

    MOTION IN TERMS OF THE NON-INERTIAL FRAMES (RELATIVE MOTION).   18

    The vector  ω  can be resolved along any system of coordinates. In particularit can be resolved along axes of the inertial system of coordinates X Y Z 

    ω = IωX  + JωY   + KωZ    (1.39)

    The scalar magnitude of the components  ωX,ωY,ωZ  can be expressed as functions of Euler’s angles and their  first derivatives.

    ωX    =   I · Kdφ

    dt  + I · i1

    dt + I · k

    dt

    ωY    =   J · Kdφ

    dt  + J · i1

    dt + J · k

    dt  (1.40)

    ωZ    =   K · Kdφ

    dt  + K · i1

    dt + K · k

    dt

    Having the components of angular speed as explicit function of time it is possible tofind the vector of angular velocity for any instant of time. The locus of the lines of action of the vector of angular speed in the inertial system of coordinates is calledspace cone  (Fig. 18 a)

     z 

     y

     x

    o

    t 0t i

    ωi

    body cone

     X 

     Z 

    O

     z 

     y

     x

    o

    t 0t i

    ωi

    instantaneous axis of rotation

     Z 

    O

    t 0t i

    ωi

     space cone

    a    b    c 

    Figure 18

    The vector of angular speed ω can be as well resolved along axes of the systemof coordinates  xyz

    ω = iωx +  jωy + kωz   (1.41)

    and the components can be expressed as a function of time.

    ωx   =   i · Kdφ

    dt  + i · i1

    dt + i · k

    dt

    ωy   =   j · Kdφ

    dt  + j · i1

    dt + j · k

    dt  (1.42)

    ωz   =   k · K

    dt   + k · i1dθ

    dt  + k · k

    dt

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    19/195

    MOTION IN TERMS OF THE NON-INERTIAL FRAMES (RELATIVE MOTION).   19

    The components  ωx,ωy,ωz  determine for any instant of time direction of the angularvelocity in the rotating system of coordinates. The locus of these lines make up socalled  body cone   (Fig. 18 b). The rotational motion of the system xyz  with respect

    to the X Y Z , can be hence considered as rolling without slipping of the body cone onthe space cone (Fig. 18 c).

    The angular acceleration is defined as the   first derivative of the vector of angular velocity with respect to time.

    ε =   dωdt

      =  ω̇   (1.43)

    Derivative of a vector expressed in terms of a rotating system of coordi-nates

    According to the consideration carried out in the previous paragraphs the rotational

    motion of a system of coordinates xyz  with respect to the inertial one can be definedby three independent angles (e.g. Euler angles) or, alternatively the rotational motioncan be determined by its initial position and the vector of its angular velocity  ω.

    Let  ω  be the absolute angular velocity of the rotating system of coordinatesxyz  (Fig. 19).

     X 

     Z 

    O

     z 

     y

     x

    o

    ω

    A

     A x

     A y

     A z 

    Figure 19

    Consider a vector A which is given by its components along the rotating system

    of coordinates  xyz. A = iAx +  jAy + kAz   (1.44)

    Let us diff erentiate this vector with respect to time.

    Ȧ =  d

    dt(iAx +  jAy + kAz)   (1.45)

    HenceȦ = i  Ȧx +  j  Ȧy + k  Ȧz +   i̇Ax +   ˙ jAy +  k̇Az   (1.46)

    The first three terms represent vector which can be obtained by direct diff erentiatingof the components  Ax, Ay, Az   with respect to time. This vector will be denoted byA0.

    A0 = i  Ȧx +  j  Ȧy + k  Ȧz   (1.47)

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    20/195

    MOTION IN TERMS OF THE NON-INERTIAL FRAMES (RELATIVE MOTION).   20

    ThusȦ = A0 +   i̇Ax +   ˙ jAy +  k̇Az   (1.48)

    According to defi

    nition of vector derivative, the fi

    rst derivative of the unit vector i

     isthe ratio of the infinitesimal vector increment di and dt (Fig. 20).

     Z 

    O

    i vi

    ω

     x

     z 

     y

    Figure 20

    i̇ = di

    dt =

      vidt

    dt  = vi   (1.49)

    were  vi  is a velocity of head of the vector  i.  But, according to Eq. 1.37

    vi  =  ω × i   (1.50)

    Hencei̇ =  ω × i   (1.51)

    Similarly˙ j =  ω × j   and   k̇ = ω × k   (1.52)

    Introducing the above expressions into Eq. 1.48 we have

    Ȧ = A0 + ω × iAx + ω × jAy + ω × kAz  = A0 + ω × (iAx +  jAy + kAz)   (1.53)

    and eventually one may gain

    Ȧ = A0 + ω × A   (1.54)

    where:A0 = i  Ȧx +  j  Ȧy + k  Ȧzω  - is the absolute angular velocity of the rotating system of coordinates  xyz

    along which the vector  A  was resolved to produce vector  A0

    A - is the diff erentiated vector.The last formula provides the rule for diff erentiation of a vector that it is resolvedalong a non-inertial system of coordinates. It can be applied to any vector (eg position

    vector, velocity, angular velocity etc.)

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    21/195

    MOTION IN TERMS OF THE NON-INERTIAL FRAMES (RELATIVE MOTION).   21

    Motion in terms of rotating system of coordinates.

    Let relative motion of a particle P  (see Fig. 21) with respect to the rotating system

    of coordinates  xyz  be determined by position vector  rP .

    rP   = irPx +  jrPy + krPz   (1.55)

    whererPx, rPy, rPz  – components of the vector rP  along system of coordinates xyz.The system  xyz  itself has its own rotational motion determined by absolute

    angular velocity ω. We are interested in the absolute velocity and absolute accelera-tion of this particle.

     X 

     Z 

    O

     z 

     y

     x

    o

    ω

     P 

    r P 

    Figure 21

    The absolute velocity of the particle  P   is

    vP   =   ṙP   = r0

    P  + ω × rP    (1.56)

    In a similar manner, as it was done in case of translating system of coordinates, weintroduce notions of the  relative velocity  and the  velocity of transportation.   For thecase of a particle motionless in the rotating system of coordinates, according to Eq.1.56 the velocity of transportation is

    vT   = ω × rP    (1.57)

    For the case of motionless system of coordinates xyz  (  ω  =  0), according to Eq. 1.56the relative velocity is

    vR = r0

    P    (1.58)

    HencevP   = vR + vT    (1.59)

    The absolute acceleration one may obtain diff erentiating equation 1.56 with respectto time.

    r̈P   =   ddt

    r0P  +   ddt(ω × rP ) = r00P  + ω × r

    0

    P  +  ω̇ × rP  + ω × (r0

    P  + ω × rP )   (1.60)

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    22/195

    MOTION IN TERMS OF THE NON-INERTIAL FRAMES (RELATIVE MOTION).   22

    Introducing Eq. 1.43 and developing the last term we have

    aP   = r̈P  = r00

    P  + ε× rP  + ω × (ω × rP ) + 2  ω × r0

    P    (1.61)

    Assuming that the point P   is motionless (rP   = constant) one may obtain the followingexpression for acceleration of transportation

    aT  = ε × rP  + ω × (ω × rP )   (1.62)

    Here, the term ε× rP   is called  tangential acceleration of transportation  and the termω × (ω × rP )  is called normal acceleration of transportation .

    Assumption, that the system of coordinates is motionless yields expression forthe relative acceleration .

    aR  = r00 (1.63)

    The last term in equation 1.61 is called  Coriolis acceleration   aC .

    aC  = 2  ω × r0 (1.64)

    Now, we can state that the absolute acceleration is composed of acceleration of trans-portation, relative acceleration and Coriolis acceleration.

    aP   = aT  + aR + aC    (1.65)

    1.2.3    Motion in terms of translating and rotating system of coordinates.

    Let us defi

    ne motion of the translating and rotating system of coordinates  xyz   bythe position vector   ro  and the vector of the angular velocity  ω   (see Fig..22). Therelative motion of a point  P  with respect to the rotating and translating system of coordinates xyz  is determined by a position vector  rP,o. Hence, the absolute positionvector  rP   in this case is

    rP   = ro + rP,o   (1.66)

     X 

     Z 

    O

     z 

     y

     x

    o

     P 

    r P 

    ro

    r P,o

    ω

    Figure 22

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    23/195

    MOTION IN TERMS OF THE NON-INERTIAL FRAMES (RELATIVE MOTION).   23

    Let us assume that the relative position vector  rP,o   is determined by its com-ponents along the translating and rotating system of coordinates  xyz.

    rP,o  = irP,ox +  jrP,oy + krP,oz   (1.67)

    According to the previously developed rules, the absolute velocity of the point  P   is

    ṙP   =   ṙo + r0

    P,o + ω × rP,o

    whereṙo + ω × rP,o  – velocity of transportation r0P,o– relative velocity 

    The second derivative yields the absolute acceleration

    r̈P    =   r̈o + r00

    P,o + ω × r0

    P ,o + ε× rP,o + ω × (r0

    P ,o + ω × rP,o)=   r̈o + ε× rP,o + ω ×ω × rP,o + r

    00

    P,o + 2  ω × r0

    P ,o   (1.68)

    Here:r̈o + ε× rP,o + ω ×ω × rP,o  = aT   – acceleration of transportation r00P,o  = aR  – relative acceleration 2  ω × r0P ,o = aC   – Coriolis acceleration .

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    24/195

    PROBLEMS.   24

    1.3 PROBLEMS.

    Problem 1

     X  Y 

     y

     Z  z 1

     x1

    1  y

     x

     z 2

    2

    2

    ω

    ω

    1

    12

    ω 1 t 

    ω  1t 2

    1 2

    Figure 23

    The frame 1  of the system shown in Fig. 23 rotates about the vertical axis  Z with a constant angular velocity  ω1  whereas the disc  2  has its own constant relativeangular velocity  ω21. Calculate components of the absolute angular velocity  ω2   of 

    the disc 2  and its absolute acceleration  ε2.Solution.

    System of coordinates  x1y1z1   is rigidly attached to the frame  1   and systemx2y2z2  is body 2  system of coordinates. Absolute angular velocity of the body  2   is

    ω2 = k1ω1 +  j1ω21   (1.69)

    Its  first vector derivative with respect to time yields absolute angular acceleration.

    ε2 =  ω̇2 = ω0

    2 + ω1 × ω2  = k10 + j10 + ¯̄̄̄̄̄i1   j1   k10 0   ω1

    0   ω21   ω1¯̄̄̄̄̄ = −i1ω1ω21   (1.70)

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    25/195

    PROBLEMS.   25

    Problem 2

     X 

     y

     x1

    1O o1

    2 x

    ω o t   α

    .

     Z  z 1

    1

    2 y

    ωoα 

     y

    O12

     P 

    2 z 

    Figure 24

    A radar antenna rotates about the vertical axis   Z   at the constant angularspeed ωo. At the same time the angle  α  is being changed as follow

    α =  a sin At

    Producethe components of the angular velocity and the angular acceleration of the

    antenna1. along the inertial X Y Z  system of coordinates2. the body 2  system of coordinates  x2y2z2

    the magnitude of the angular velocity and acceleration of the antenna..the components of velocity and acceleration of the probe  P  along the body  2 

    system of coordinates.the magnitude of velocity and acceleration of the probe  P .

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    26/195

    PROBLEMS.   26

    Solution.A. Matrices of direction cosines.Fig. 24 permits to produce matrices of direction cosines between the iner-

    tial system of coordinates  XY Z , the rotating system of coordinates  x1y1z1  and therotating system of coordinates  x2y2z2.

    x1y1z1

    =

    ⎡⎣

    cos ωot   sin ωot   0− sin ωot   cos ωot   0

    0 0 1

    ⎤⎦⎡⎣

    X Y Z 

    ⎤⎦ = [C I →1]

    ⎡⎣

    X Y Z 

    ⎤⎦   (1.71)

    ⎡⎣

    x2y2z2

    ⎤⎦ =

    ⎡⎣

    1 0 00 cos α   sin α0   − sin α   cos α

    ⎤⎦⎡⎣

    x1y1z1

    ⎤⎦ = [C 1→2]

    ⎡⎣

    x1y1z1

    ⎤⎦   (1.72)

    ⎡⎣

    x2y2z2

    ⎤⎦   = [C 1→2][C I →1]

    ⎡⎣

    X Y Z 

    ⎤⎦

    =

    ⎡⎣

    1 0 00 cos α   sin α0   − sin α   cos α

    ⎤⎦⎡⎣

    cos ωot   sin ωot   0− sin ωot   cos ωot   0

    0 0 1

    ⎤⎦⎡⎣

    X Y Z 

    ⎤⎦

    =

    ⎡⎣

    cos ωot   sin ωot   0− sin ωot cos α   cos ωot cos α   sin α

    sin ωot sin α   − cos ωot sin α   cos α

    ⎤⎦⎡⎣

    X Y Z 

    ⎤⎦   (1.73)

    B. Angular velocities.The angular velocity of the body   2   is determined by the following vector

    equation.ω2 = ωok1 +  α̇i1   (1.74)

    Its components along the system of coordinates  x2y2z2  may be calculated with helpof Eq. 1.72.⎡⎣

    ω2x2ω2y2ω2z2

    ⎤⎦   =

    ⎡⎣

    1 0 00 cos α   sin α0  −

    sin α   cos α

    ⎤⎦⎡⎣

    ω2x1ω2y1ω2z1

    ⎤⎦ =

    ⎡⎣

    1 0 00 cos α   sin α0  −

    sin α   cos α

    ⎤⎦⎡⎣

    α̇0

    ωo

    ⎤⎦

    =

    ⎡⎣

    α̇ωo sin αωo cos α

    ⎤⎦   (1.75)

    Sinceα =  asinAt   (1.76)

    the above components are

    ω2x2   =   aA cos At

    ω2y2   =   ωo sin(a sin At)   (1.77)

    ω2z2   =   ωo cos(a sin At)

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    27/195

    PROBLEMS.   27

    The above equations may be considered as parametric equations of the body cone.Parametric equations of the space cone are determined by components of the angularvelocity ω2  along inertial system of coordinates. These components may be obtained

    with help of the equation 1.71.⎡⎣

    ω2X ω2Y ω2Z 

    ⎤⎦   = [C I →1]−1

    ⎡⎣

    ω2x1ω2y1ω2z1

    ⎤⎦ =

    ⎡⎣

    cos ωot   − sin ωot   0sin ωot   cos ωot   0

    0 0 1

    ⎤⎦⎡⎣

    α̇0

    ωo

    ⎤⎦

    =

    ⎡⎣

    α̇ cos ωotα̇ sin ωot

    ωo

    ⎤⎦   (1.78)

    Introduction of Eq. 1.76 into Eq. 1.78 yields the parametric equations of the spacecone.

    ω2X    =   aA cos At cos ωot

    ω2Y    =   aA cos At sin ωot   (1.79)

    ω2Z    =   ωo

    Both, the space cone and body cone, are presented in Fig. 25. They were computedfor the following data

    a = 1[m], ωo  = 1[1/s], A = 3[1/s]

    -2

    -1

    0

    1

    2

    -3 -2 -1 0 1 2 3

    -2

    -1

    0

    1

    2

    -3 -2 -1 0 1 2 3

     y2

     x2

     X 

     Z 

     X 

     z 2

     x2

    a)    b) 

    Figure 25

    Magnitude of the absolute angular velocity  ω2   is

    ω2  = q ω22x2 + ω

    22y2 + ω

    22z2 = q α̇

    2 + (ωo sin α)2 + (ωo cos α)2 = q α̇2 + ω2o   (1.80)

    C. Angular acceleration.

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    28/195

    PROBLEMS.   28

    The absolute angular acceleration of the antenna can be obtained by diff eren-tiation of the vector  ω2  Eq. 1.75.

    ε2 =  ω̇2  = ω0

    2 + ω2 × ω2 = i2α̈ + j2ωo α̇ cos α− k2ωo α̇ sin α   (1.81)

    Hence, its magnitude is

    ε2 =q ̈

    α2 + (ωo α̇ cos α)2 + (ωo α̇ sin α)2 =p ̈

    α2 + ωo α̇2 (1.82)

    where

    α̇   =   aA cos At

    α̈   =   −aA2 sin At   (1.83)

    D. Velocity of the point  P .Position of the point  P   is determined by the position vector  l.

    l = k2l   (1.84)

    Its  first derivative with respect to time yields the absolute velocity of the point  P .

    vP   =   l̇ = l0 + ω2 × l =

    ¯̄̄¯¯̄

    i2   j2   k2α̇ ωo sin α ωo cos α0 0 1

    ¯̄̄¯¯̄

    = i2ωol sin α− j2lα̇   (1.85)

    Hence, magnitude of velocity of the point  P   is

    vP   =p 

    (ωol sin α)2 + (lα̇)2 (1.86)

    where  α  and  α̇  are determined by formulae 1.76 and 1.83.E. Acceleration of the point P .The absolute acceleration of point P  may be obtained by diff erentiation of the

    vector of its absolute velocity.

    aP    =   v̇P  = v0

    P  + ω2 × vP 

    =   i2(ωolα̇ cos α)− j2(lα̈) +¯̄̄̄̄¯ i2   j2   k2α̇ ωo sin α ωo cos αωol sin α   −lα̇   0

    ¯̄̄̄̄¯

    =   i2(ωolα̇ cos α + ωolα̇ cos α)

    + j2(−lα̈ + ω2ol sin α cos α)+k2(−lα̇2 − ω2ol sin2 α)

    =   i2aP x2 +  j2aP y2 + k2aP z2   (1.87)

    Hence, its magnitude is

    aP   = q a2P x2 + a2P y2 + a2P z2   (1.88)

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    29/195

    PROBLEMS.   29

    Problem 3

    ω   L

    12

    34

    v

     β 

    Figure 26

    The belt conveyor 1  shown in Fig. 26 is mounted at the constant angle β  = 30o

    with respect to the horizontal plane on the rotating table  2 . The table rotates withthe constant angular speed  ω  = 1rad/s whereas the belt  3  moves with the constantlinear velocity v  = 2m/s in the direction shown. Calculate magnitude of velocity andacceleration of the particle  4  travelling without slipping for the position defined bythe distance L  = 5m.

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    30/195

    PROBLEMS.   30

    Solution.

     

     L

    12

    34

    v

     β 

      Z  

    Y ω  t  

    Figure 27

    Axes   XY Z   form the inertial system of coordinates. Axes   xyz   are   fixed tothe rotating table   2   and have its origin at   O. Angular velocity of the system of coordinates xyz   is vertical and its components along  xyz  system of coordinates are

    ω2  =  jω sin β  + kω cos β    (1.89)

    Position vector which determines a position of the particle  4   is

    R =  jL   (1.90)

    Its  first derivative with respect to time produces the absolute velocity of the particle4.

    ˙

    R = R

    0

    + ω2 × R =  j˙

    L +¯̄̄̄̄̄ i j k

    0   ω sin β ω cos β 0   L   0¯̄̄̄̄̄

    = −iLω cos β  +  jv   (1.91)

    Hence, magnitude of the velocity is

    |  Ṙ| =p 

    (Lω cos β )2 + v2 =p 

    (5 · 1 · cos30o)2 + 22 = 4.76 m/s   (1.92)

    The   first derivative of the absolute velocity yields the absolute acceleration of theparticle.

    R̈   =   Ṙ0 + ω2 ×  Ṙ = −ivω cos β  +

    ¯̄

    ¯̄̄̄i j k

    0   ω sin β ω cos β 

    −Lω cos β v   0

    ¯̄

    ¯̄̄̄=   −i2vω cos β − jω2L cos2 β  + kLω2 sin β cos β    (1.93)

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    31/195

    PROBLEMS.   31

    Its magnitude may be calculated according to the following formula.

    |R̈|   = p (2ωv cos β )2 + (Lω2 cos2 β )2 + (Lω2 sin β cos β )2=

    p (2 · 1 · 2 · cos 30o)2 + (5 · 12 · cos2 30o)2 + (5 · 12 sin30ocos30o)2

    = 5.545 m/s2 (1.94)

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    32/195

    PROBLEMS.   32

    Problem 4

     ρ 

     L

    C   D  ρ α 

    ω

     A  A

    1 2

    Figure 28

    Wheel of radius ρ is free to rotate about axle CD  which turns about the verticalaxis with a constant speed ω. The wheel rolls without slipping on the horizontal plane.Determine, as a function of its angular position  α,  the magnitudes of velocity and

    acceleration of the shown in the Fig. 28 point  A .Given are:   ρ, l, ω.

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    33/195

    PROBLEMS.   33

    Solution.

     ρ 

     L

    C   D   ρα 

    ω

     z 

     z 

     x

     y

     x

     y

    12

    1

    2

    1

    2

     x1 X 

     z 

     Z 

    Y   y1

    1O

    o

     A

    ω t 

    2

     β 

     β 

    ω

    ω

    1

    2

    2

    1 O

    L

    1

     F 

    G  E 

    Figure 29

    Axes  XYZ,   in Fig. 29,   form the inertial system of coordinates. Axis  x1y1z1are rigidly attached to the axle  1  and form the body  1   system of coordinates. Itsaxis  x1coincides axis  X  of the inertial system of coordinates. Therefore the angular

    speed of this system of coordinates is

    ω1  = Iω = i1ω   (1.95)

    Axes   x2y2z2   are   fixed to the wheel   2    and its axis   x2   goes through the point   Awhereas its axis z2  coincides axis z1. Its absolute angular velocity  ω2  is assembled of the absolute angular velocity  ω1  and the relative velocity  ω21.

    ω2 = ω1 + ω21   (1.96)

    Direction of the relative angular velocity  ω21,  according to the imposed constraints,

    coincide axis z2.  Since the cone CEF  may by considered as the body  2  cone and thecone CEG  may be considered as the space cone, the absolute angular velocity of thebody 2  mast have direction of the common generating line  EC. Therefore

    ω21  =  ω1 cot β  = ω1L

    ρ  (1.97)

    Since the vector ω21  has opposite direction to the positive direction of axis  z1, vectorof the absolute angular velocity  ω2   is

    ω2  = i1ω + k1(−

    ωL

    ρ

    )   (1.98)

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    34/195

    PROBLEMS.   34

    Position vector of the point  A is

    r = L + ρ = k1L + i2ρ   (1.99)

    Components of the above position vector along system of coordinates  x1y1z1  are asfollows

    rx1   =   r · i1  = k1·i1L + i2·i1ρ =  ρ cos α

    ry1   =   r · j1  = k1· j1L + i2· j1ρ =  ρ sin α

    rz1   =   r · k1 = k1·k1L + i2·k1ρ =  L   (1.100)

    Absolute velocity of the point A as the  first derivative of the vector  r  is

    vA   =   ṙ = r0 + ω1 × r = −i1ρα̇ sin α + j1ρα̇ cos α +¯̄̄̄̄¯

    i1   j1   k1ω   0 0

    ρ cos α ρ sin α L

    ¯̄̄̄̄¯

    =   i1(−ρα̇ sin α) + j1(ρα̇ cos α− ωL) + k1(ωρ sin α)   (1.101)

    Magnitude of the absolute velocity is

    |vA| =  |ṙ| =p 

    (−ρα̇ sin α)2 + (ρα̇ cos α− ωL)2 + (ωρ sin α)2 (1.102)

    Similarly, the  first derivative of the absolute velocity yields the absolute accelerationof the point  A.

    aA   =   v̇A = v0

    A + ω1 × vA = i1 v̇Ax1 +  j1 v̇Ay1 + k1 v̇Az1 +

    ¯̄̄¯̄̄ i1   j1   k1ω   0 0

    vAx1   vAy1   vAz1

    ¯̄̄¯̄̄

    =   i1(v̇Ax1) + j1(v̇Ay1 − ωvAz1) + k1(v̇Az1 + ωvAy1)   (1.103)

    where, according to (1.101)

    vAx1   =   −ρα̇ sin αvAy1   =   ρα̇ cos α− ωLvAz1   =   ωρ sin α   (1.104)

    Hence, the magnitude of absolute acceleration is

    aA =q 

    (v̇Ax1)2 + (v̇Ay1 − ωvAz1)2 + (v̇Az1 + ωvAy1)2 (1.105)

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    35/195

    PROBLEMS.   35

    Problem 5

     P 

     β Ω

    ω

    Figure 30

    A crane shown in Fig. 30 is revolving about vertical axis with the constantangular speed ω  = 1rad/s in the direction shown. Simultaneously the boom is beinglowered at the constant angular speed Ω = 0.5rad/s. Calculate the magnitude of thevelocity and acceleration of the end P  of the boom for the instant when it passes theposition β  = 30o.  The boom has the length  l  = 10m.

    Answer:v = 7.07m/s

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    36/195

    PROBLEMS.   36

    Problem 6

    1 23

    Y  y x  x

     y

     x

     M 

     z 1

    12 3

    1 2 z 

    2

    0

     z 

     y

     y

    3

    2

    3

    o1

    α  t 

    bα 

    v

    ωt 

    ωb

    Figure 31

    The turret on a tank (see Fig. 31) rotates about the vertical axis at angularspeed ω t  and the barrel is being raised at a constant angular speed  ωb. The tank hasconstant forward speed   v. When the barrel is in position defined by angles  αt   andαb  a shell leaves the barrel with muzzle velocity  vs  and acceleration  as. Determinethe absolute velocity  vm  and acceleration  am  of the barrel muzzle as well as absolutevelocity  v  and acceleration  a  of the shell when it leaves the barrel.

    Answer:The components of the absolute position vector of the point  M   that belong to thebarrelrMbx2  = vt sin αt   rMby2 = vt cos αt + l cos αb   rMbz2  =  l sin αbwhere  l  =  constantThe components of the absolute velocity of the point M  that belong to the barrelvMbx2 =  ṙMbx2−ωtl cos αb−ωtvt cos αt   vMby2  =  ṙMby2+ωtvt sin αt   vMbz2 =  ṙMbz2The components of the absolute acceleration of the point M  that belong to the barrel

    aMbx2  =  v̇Mbx2 −ωtvMby2   aMby2  =  v̇Mby2 + ωtvMbx2   aMbz2 =  v̇Mbz2The components of the absolute position vector of the point  M   that belong to theshellrMsx2 = vt sin αt   rMsy2  =  vt cos αt + l(t)cos αb   rMsz2  =  l(t)sin αbwhere  l̇ = vs   l̈ = asThe components of the absolute velocity of the point M  that belong to the shellvMsx2 =  ṙMsx2−ωtl cos αb−ωtvt cos αt   vMsy2 =  ṙMsy2+ωtvt sin αt   vMsz2  =  ṙMsz2The components of the absolute acceleration of the point M  that belong to the barrelaMsx2  =  v̇Msx2 −ωtvMsy2   aMsy2  =  v̇Msy2 + ωtvMsx2   aMsz2  =  v̇Msz2

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    37/195

    PROBLEMS.   37

    Problem 7

     X  Y 

    O

     x

     y

     Z   z 

     z  y

     y

    α 

     x

     z 

     RO

     P 

    11

    1

    1

    O

     

    21

    1

    2

    ω 21

    γ 

    Figure 32

    The link 1  of the mechanical system shown in Fig. 32 performs the rotational

    motion about the absolute axis  Z . Its instantaneous position is determined by theangle   α. The link   2   rotates with respect to the link   1  with the constant relativeangular velocity ω21   . Point P  belongs to the body 2 .

    Given are:   l ,R, ω21, γ , α(t)Produce the expression for:

    1. the components of the linear absolute velocity of the point  P  along the body  1system of coordinates  x1y1z1.

    Answer:vx1  =  Rω21 cos ω21t + Rα̇ sin γ cos ω21t− lα̇ cos γ vy1 = Rα̇ cos γ sin ω21t

    vz1  = −Rω21 sin ω21t−Rα̇ sin γ sin ω21t2. the components of the absolute acceleration of the point P  along the body systemof coordinates x1y1z1.

    Answer:ax1 =  v̇x1 + vz1 α̇ sin γ − vy1 α̇ cos γ ay1  =  v̇y1 + vx1 α̇ cos γ az1  =  v̇z1 − vx1 α̇ sin γ 

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    38/195

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    39/195

    PROBLEMS.   39

    Problem 9

    Y

     Z

    O

     X

     P

    1  z

    2  y 2  x

    2  z

    2 o

    1  x

    1  y

    1 o 1  y

     β 

    α 

     D

    1

    2

    1 o

    2 o

    O

     L

    Figure 34

    The base 1 of the crane shown in Fig. 34 rotates about the vertical axis Z of the inertial system of coordinates  XY Z . Its motion is determined by the angulardisplacement   α. The system of coordinates   x1y1z1   is attached to the base 1. Atthe same time the boom 2 is being raised. This relative motion about the axis  x1is determined by the angular displacement  β . The system of coordinates x2y2z2   is

    attached to the boom.Given are:  L, D, α(t), β (t)Produce the expressions for

    1. the components of the absolute angular velocity of the boom 2 along the  x2y2z2system of coordinates

    Answer:ω2x2 =  β̇ ω2y2  =  α̇ sin β ω2z2 =  α̇ cos β 2. the components of the absolute angular acceleration of the boom 2 along the  x2y2z2system of coordinates

    Answer:ε2x2 =  β̈ ε2y2  = α̈ sin β  +  α̇β̇ cos β ε2z2 = α̈ cos β 

    − α̇β̇ sin β 

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    40/195

    PROBLEMS.   40

    3. the components of the absolute linear velocity of the point  P   along the  x2y2z2system of coordinates

    Answer:

    vPx2 = Dα̇− Lα̇ cos β vPy2  = 0   vPz2  =  β̇L4. the components of the absolute linear acceleration of the point P  along the x2y2z2system of coordinates

    Answer:aPx2  =  Dα̈−Lα̈ cos β  + 2Lα̇β̇ sin β aPy2 = Dα̇2 cos β −Lα̇2 cos2 β −Lβ̇ 

    2aPz2 =

    Lβ̈ −Dα̇2 sin β  + Lα̇2 sin β cos β 

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    41/195

    Chapter 2

    THREE-DIMENSIONAL KINEMATICS OF A RIGID BODY

    DEFINITION: A body which by assumption does not deform and there-fore the distances between two of its points remains unchanged, regardlessof forces acting on the body, is called  rigid body.

     X 

     Z 

    O

     z 

     y

     x

    o

     P 

    r P 

    ro

    r P,o

    ω

    G

    rG,o

    i

     j

    Figure 1

    To analyze motion of a rigid body usually we attach to the body a systemof coordinates   xyz   at an arbitrarily chosen point   o   (see Fig.1). Such a system of coordinates is called body system of coordinates.  The body system of coordinates, in

    a general case, may translate and rotate. Hence, motion of the rigid body may bedetermined in the same manner as the motion of the translating and rotating systemof coordinates. As we remember, motion of the translating and rotating system of coordinates can be determined by a position vector   ro   and a vector of the angularvelocity ω. The angular velocity ω of the body system of coordinates is called angular velocity of the rigid body.

    2.1 GENERAL MOTION

    DEFINITION: If the body system of coordinates translates and rotates,it is said that the body performs the  general motion .

    Let the position of a point   P  with respect to the body system of coordinates (see

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    42/195

    GENERAL MOTION    42

    Fig.1) be defined by a position vector  rP,o. Since components of the vector  rP,o  alongthe system of coordinates xyz  are constant, the relative velocity of  P  with respect tothe body system of coordinates,   r0P ,o,is always 0.  Therefore its absolute velocity is

    vP   =   ṙP   =   ṙo +  ṙP,o  =   ṙo + r0

    P ,o + ω × rP,o  =   ṙo + ω × rP,o   (2.1)

    Similarly, The absolute velocity of the point Q  is

    vQ =   ṙo + ω × rQ,o   (2.2)

    Hence, the relative velocity of the point  Q  with respect to the point  P   is

    vQP    =   vQ − vP   =   ṙo + ω × rQ,o − (ṙo + ω × rP,o) = ω × (rQ,o − rP,o) =ω × rQ,P    (2.3)

    The absolute acceleration of  P   is

    aP   = r̈P  = r̈o +  ω̇ × rP,o + ω × (ω × rP,o)   (2.4)

    The relative acceleration of the point  Q  with respect to the point  P   is

    aQP    =   aQ − aP   = r̈o +  ω̇ × rQ,o + ω × (ω × rQ,o)− r̈o −  ω̇ × rP,o −ω × (ω × rP,o) == +  ω̇ × rQ,P  + ω × (ω × rQ,P )   (2.5)

    The  first termatQP   =  ω̇ × rQ,P    (2.6)

    is called the tangential relative acceleration and the second one

    anQP   = ω × (ω × rQ,P )   (2.7)

    is called the normal relative acceleration.For the kinetics purposes we are often interested in components of the absolute

    velocity of the centre of mass  G  along the body coordinates  xyz. If position of thecentre of mass is defined by a vector   rG,o, the components of its absolute velocityalong the body axes are

    vGx   =   i · (ṙo + ω × rG,o)

    vGy   =   j · (ṙo + ω × rG,o)vGz   =   k · (ṙo + ω × rG,o   (2.8)

    The components of angular velocity along the body coordinates are

    ωx   =   i ·ω

    ωy   =   j · ω

    ωz   =   k · ω   (2.9)

    Absolute angular acceleration ε may be obtained as follow

    ε =  ω̇ =  ω 0 + ω ×ω =  ω 0 (2.10)

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    43/195

    ROTATION ABOUT A POINT THAT IS FIXED IN THE INERTIAL SPACE (ROTATIONALMOTION)   43

    2.2 ROTATION ABOUT A POINT THAT IS FIXED IN THE INER-TIAL SPACE (ROTATIONAL MOTION)

    DEFINITION: If one point of the body considered is motionless withrespect to the inertial frame, it is said that the body performs  rotational motion .

    This motionless point is called centre of rotation  and usually this centre is chosen asthe origin of the body system of coordinates (see Fig. 2).

     Z 

    Y O

     x

     y

     z 

    r

    ω

    rG

    G  P 

     P 

    Figure 2

    The linear velocity of an arbitrarily chosen point  P  of the rigid body as wellas its acceleration is determined by the angular velocity of the body  ω.  Indeed

    vP   =   ṙP   = r0

    P  + ω × rP   = ω × rP    (2.11)

    aP  = r̈P   =  ω̇ × rP  + ω × (ω × rP )   (2.12)

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    44/195

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    45/195

    PROBLEMS.   45

    Solution.

     X 

    α 

     x11

     y11

     z 11

     y11

     x11

     β 

    1

    2  y12

    1

    2 x

     x2

    Ω t  z 12

    2 z 

    µ

    L

     y12

     y2

    1

    2 x

    Figure 4

    In Fig. 4, system of coordinates x11, y11, z

    11  is rigidly attached to the base 1   and

    rotates about the vertical axis  Z   of the inertial system of coordinates  XY Z . Theangular displacement  α   determines uniquely its instantaneous position. System of coordinates x21, y

    21, z

    21 is rigidly attached to the base 1  and it is turned by angle β  about

    axis  x11. System of coordinates x2, y2, z2   is  fixed to the rotor  2 . Its axis y2  coincides

    axis y

    2

    1  and its instantaneous position is determined by the angular displacement Ω

    t.Absolute angular velocity of the rotor  2   is

    ω2   =   ω1 + ω2,1 = k11 α̇ + j2Ω = (k

    21 cos β  +  j

    21 sin β )α̇ + j2Ω

    = ((k2 cosΩt− i2 sinΩt)cos β  +  j2 sin β )α̇ + j2Ω=   i2(−α̇ cos β sinΩt) + j2(α̇ sin β  + Ω) + k2(α̇ cos β cosΩt)   (2.13)

    Position vector of the centre of gravity  G,  according to Fig. 4, is

    RG = L +µ =  j21L + k2µ =  j2L + k2µ   (2.14)

    Hence, its  fist derivative with respect to time yields its absolute velocity

    ṘG = R0

    G + ω2 × RG =

    ¯̄̄¯̄̄ i2   j2   k2−α̇ cos β sinΩt   α̇ sin β  + Ω   α̇ cos β cosΩt

    0   L µ

    ¯̄̄¯̄̄

    = i2(µ(α̇ sin β  + Ω)− Lα̇ cos β cosΩt)+ j2(−µα̇ cos β sinΩt)+k2(−Lα̇ cos β sinΩt)

    (2.15)

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    46/195

    PROBLEMS.   46

    Problem 11

     B

     Z 

    O

     X 

    1

    2

    3

    c

    l  AB

    Figure 5

    Fig. 5 shows the kinematic diagram of a spatial mechanism. Its link 1   canmove along axis  X  and is free to rotate about that axis. The link  2  is hinged to thelink 1   at the point  A  and at the point  B   is connected to the link  3  through a ball joint. The link 3  can move in plane Y Z  along axis which is parallel to  Y .

    Given are:1. Motion of the point A (its position vector  rA).

    2. Distance c  between the point B  and axis  Y .3. Length of the link  2   lAB.Determine:1. Positions of individual links.2. Linear velocity of the link  3 .3. Angular velocity of the link 1.4. Angular velocity of the link 2 .

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    47/195

    PROBLEMS.   47

    Solution.

     B

     Z 

    O

     A

    1

    2

    3

    c z   z 

    12

    1 2

    1

     x  x

     ,

     y

    α 

     β α 

     β 

    2 y

    r

    r

    r BC 

    r BAC 

     A Y 

    Figure 6

    Let x1y1z1   be the body  1   system of coordinates. Its angular position withrespect to the inertial system of coordinates  XY Z ,  may be determined by angle  α.Since the link 2  can rotate with respect to the link  1  about axis z1  only, the relativeposition of the body 2  system of coordinates x2y2z2  is uniquely determined by angleβ .

    A. Matrices of direction cosines.From Fig. 6 one can see that the matrix of direction cosines between systemof coordinates x1y1z1  and inertial system of coordinates  X Y Z  has the following form

    ⎡⎣

    X Y Z 

    ⎤⎦ =

    ⎡⎣

    1 0 00 cos α   − sin α0 sin α   cos α

    ⎤⎦⎡⎣

    x1y1z1

    ⎤⎦   (2.16)

    In the same manner we can easily derive matrix of direction cosines between body  2 system of coordinates  x2y2z2  and system of coordinates  x1y1z1.

    ⎡⎣x1y1z1

    ⎤⎦ = ⎡⎣cos β 

      −sin β    0

    sin β    cos β    00 0 1

    ⎤⎦⎡⎣x2y2z2

    ⎤⎦   (2.17)

    Introduction of Eq. 2.17 into Eq. 2.16 yields matrix of direction cosines between thebody 2  system of coordinates and the inertial one.

    ⎡⎣

    X Y Z 

    ⎤⎦   =

    ⎡⎣

    1 0 00 cos α   − sin α0 sin α   cos α

    ⎤⎦⎡⎣

    cos β    − sin β    0sin β    cos β    0

    0 0 1

    ⎤⎦⎡⎣

    x2y2z2

    ⎤⎦

    =

    ⎡⎣

    cos β    − sin β    0

    cos α sin β    cos α cos β   − sin αsin α sin β    sin α cos β    cos α

    ⎤⎦⎡⎣

    x2

    y2z2

    ⎤⎦

      (2.18)

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    48/195

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    49/195

    PROBLEMS.   49

    where  α̇  and  β̇  are derivatives of expressions 2.25 and 2.26 respectively.D. Velocity of the point  B .Velocity of the point B  can be obtained by direct diff erentiation of expression

    2.27 with respect to time.

    ṙB  = vB  = JṙBC  = JlAB(−α̇ sin α cos β −  β̇ cos α sin β )   (2.33)

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    50/195

    PROBLEMS.   50

    Problem 12

    The point A  of the body 1  shown in Fig. 7 can move along the vertical slide  2 

    which is located along the axis Z  of the inertial system of coordinates  X Y Z . Motionof the point  A   is determined by the following function of time

    Z A = Z A(t)

    The point B  of the body 1  can move along the horizontal slide located in the planeY Z . This slide is by   a   apart from axis   Y . The point   C   is in a constant contactwith the plane  XY . According to the described constraints,motion of the body  1   isuniquely determined by the function Z A.

    Produce:1. Components of the linear velocity of the point  B  and the point C .2. Components of the absolute angular velocity of the body  1.

     X 

     Z 

    O

    a

    a

    a

    90o

     A

     B

     Z(t)

    1

    Figure 7

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    51/195

    PROBLEMS.   51

    Solution.A. direction cosines

     X 

     Z 

    O

    a

    a

    a

    90o

     A

     B

     Z(t)

     z 

     x

     y

    r A

    r B

    r BA

    rC 

    rCA

    rCB

    Figure 8

    Let us consider the following vector equation (see Fig. 8).

    rB  = rA + rBA   (2.34)

    orJrBY   + Ka = KZ A(t) + ka   (2.35)

    Hence

    k = JrBY 

    a  +K(1− Z A

    a  )   (2.36)

    Multiplication of the above vector equation by the units vectors associated with theinertial system of coordinates I, J and K yields the direction cosines between the axisz  and axes of the inertial system of coordinates  X Y Z .

    k · I   = cos∠kI =0k · J   = cos∠kJ =

     rBY a

    k · K   = cos∠kK = 1− Z Aa

      (2.37)

    Sincecos2∠kI + cos2∠kJ + cos2∠kK = 1   (2.38)

    we have that

    (0)2 + ³rBY 

    a ´2

    +µ1−Z Aa ¶

    2

    = 1   (2.39)

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    52/195

    PROBLEMS.   52

    The last relationship permits the unknown component rBY  to be determined as theexplicit function of time

    rBY   = q 2aZ A − Z 2A)   (2.40)To determine the direction cosines between the axis  y  and axes of the inertial systemof coordinates, let us consider equation

    rC  = rA + rCA   (2.41)

    orIX C  + JY C  = KZ A +  ja   (2.42)

    Since according to the above equation

     j = I

    rCX 

    a   + J

    rCY 

    a   −KZ A

    a   (2.43)

    the wanted direction cosines are

     j · I   = cos∠ jI =rCX 

    a

     j · J   = cos∠ jJ = rCY 

    a

     j · K   = cos∠ jK = −Z Aa

      (2.44)

    The following property of the direction cosines

    cos2∠ jI + cos2∠ jJ + cos2∠ jK = 1   (2.45)

    yieldsr2CX  + r

    2CY   + Z 

    2A = a

    2 (2.46)

    The second equation for determination of the unknown  rCX  and rCY  one may obtainby consideration of the following vector equation

    rC  = rB + rCB   (2.47)

    It follows that

    rCB  = rB − rC    (2.48)Multiplication of the above equation by unit vectors   I, J  and   K  respectively yieldscomponents of the vector  rCB  along the initial system of coordinates.

    rCBX    =   rB · I− rC  · I = −rCX rCBY    =   rB · J− rC  · J =rBY −rCY   =

    q 2aZ A − Z 2A−rCY 

    rCBZ    =   rB · K− rC  · K =a   (2.49)

    As one can see from Fig. 7 the length of the vector  rCB  is equal to√ 

    2a. Hence

    r2CBX  + r2CBY   + r

    2CBZ  = 2a

    2 (2.50)

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    53/195

    PROBLEMS.   53

    Therefore the second equation for determination of the components   rCX    and   rCY takes form

    r2CX 

     +µq 2aZ A −

    Z 2A−

    rCY ¶2 + a2 = 2a2 (2.51)

    The above equation together with Eq. 2.46 form set of two equations that determinethe components rCX   and rCY   as explicit functions of time. They are

    rCX    =   a

    s 2(a− Z A)2a− Z A

    rCY    =  Z A(a− Z A)p 

    Z A(2a− Z A)rCZ    = 0   (2.52)

    These equations allow the trajectory of the point  C  to be computed. This trajectoryis shown in Fig. 9 for a  = 1

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0 0.5 1

    r CX 

    r CY 

    Figure 9

    The unit vector associated with axis  x  can be produced as a vector productof unit vectors  j  and k.

    i =  j × k   (2.53)

    where

     j   =   I cos∠ jI + J cos∠ jJ + K cos∠ jK

    k   =   I cos∠kI + J cos∠kJ + K cos∠kK   (2.54)

    Therefore

    i =

    ¯̄̄¯̄̄ I J Kcos∠ jI   cos∠ jJ   cos∠ jK

    0 cos∠kJ   cos∠kK

    ¯̄̄¯̄̄

    = I(cos∠ jJ cos∠kK− cos∠ jK cos∠kJ)+J(

    −cos∠ jI cos∠kK)

    +K(cos∠ jI cos∠kJ)

    (2.55)

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    54/195

    PROBLEMS.   54

    Hence, the direction cosines between the axis x and axes  X Y Z  are

    cos∠iI   = cos∠ jJ cos∠kK

    −cos∠ jK cos∠kJ

    cos∠iJ   =   − cos∠ jI cos∠kKcos∠iK   = cos∠ jI cos∠kJ   (2.56)

    B. Linear velocitiesThe linear velocity of the point  B  can be obtained by diff erentiation of the

    position vector  rB  which according to Eq. 2.40

    rB  = Jq 

    2aZ A − Z 2A + Ka   (2.57)

    Hence

    vB  = J   a− Z Ap 2aZ A − Z 2A

    Ż A   (2.58)

    Similarly, diff erentiation of the vector  rC  yields velocity of the point  C . The positionvector  rC according to Eq. 2.52

    rC  = Ia

    s 2(a− Z A)2a− Z A

    + J  Z A(a− Z A)p 

    Z A(2a− Z A)(2.59)

    HencevC  = IvCX  + JvCY    (2.60)

    where

    vCX    =   −1

    2a2

    Ż A2a− Z A

    √ 2p 

    (2a2 − 3aZ A + Z 2A)

    vCY    =   Ż Aa2 − 3aZ A + Z 2A

    √ Z A

    ³p (2a− Z A)

    ´3   (2.61)Angular velocities.

    The angular velocity of the link  1  may be obtained from the following vector

    relationshipvB  = vA + ω × rBA   (2.62)

    orω × rBA  = vB − vA   (2.63)

    The components of the vector  rBA  along the inertial system of coordinates are

    rBAX    =   rBA · I =ak · I =acos∠kI =0

    rBAY    =   rBA · J =ak · J =acos∠kJ =rBY   =q 

    2aZ A − Z 2A)rBAZ    =   rBA · K =ak · K =acos∠kK =a

    −Z A   (2.64)

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    55/195

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    56/195

    PROBLEMS.   56

    Problem 13

     Z   z 

    a

     s 

    1 2 3

    α 

    α 

     Z   z  y

     X  Y  x

     y

    O

    1

    1

    1

    1

    1

    32

    21 

    1

     P 

    Figure 10

    The base   1   of a robot shown in Fig. 10 rotates about the vertical   Z   andits angular position is determined by the angle  α1.   The link  2  can move along the

    vertical slide of the base and its relative position is determined by  s21.  The link 3   ishinged to the link 2  and the angle α32  determines its relative position.

    Upon assuming that α1, s21, α32  are given functions of time and a, l, are givenparameters, derive expressions for components of:

    1. absolute angular velocity and acceleration of the link 3   along a body  3 system of coordinates.

    2. linear velocity of the point P  along the same system of coordinates.

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    57/195

    PROBLEMS.   57

    Solution.

     Z   z 

    a

     s 

    1 2 3

    l α  

    α  

     Z   z 

     y

     X  Y  x

     y

    1

    1

    1

    1

    1

    32

    21 

    1

    a

    l

    s 21

    r

     z 

     z 

     y 2 3 

    3

    2  y 

     P 

    Figure 11

    In Fig. 11,  the following systems of coordinates were introduced:XY Z  – inertial system of coordinatesx1y1z1  – body 1  rotating system of coordinatesx2y2z2  – body 2  rotating and translating system of coordinatesx3y3z3  – body 3  rotating and translating system of coordinates.The angular velocity of the body  3   is

    ω3  = ω1 + ω21 + ω32

    Since  ω21  = 0 one may obtain the following expression for the angular velocity of thelink 3 .

    ω3   =   ω1 + ω32  = k2 α̇1 + i3 α̇32  = (k3 cos α32 +  j3 sin α32)α̇1 + i3 α̇32

    =   i3 α̇32 +  j3 α̇1 sin α32 + k3 α̇1 cos α32   (2.73)

    The angular acceleration of the body  3  can be obtain as vector derivative of  ω3  withrespect to time.

    ε3   =   ω̇3 = ω0

    3 + ω3 × ω3  =  ω0

    3

    =   i3α̈32 +  j3(α̈1 sin α32 +  α̇1 α̇32 cos α32) + k3(α̈1 cos α32 −  α̇1 α̇32 sin α32)(2.74)

    The position vector of the point  P , according to Fig. 11 is

    r   =   s21 + a + l = k2s21 +  j2a + j3l

    = (k3 cos α32 +  j3 sin α32)s21 + ( j3 cos α32−

    k3 sin α32)a + j3l

    =   j3(s21 sin α32 + a cos α32 + l) + k3(s21 cos α32 − a sin α32)   (2.75)

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    58/195

    PROBLEMS.   58

    Its first derivative with respect to time represents the wanted velocity of the point  P .

    ṙ = r0 + ω3 × r   (2.76)

    where

    r0 =   j3(ṡ21 sin α32 + s21 α̇32 cos α32 − aα̇32 sin α32)+k3(ṡ21 cos α32 − s21 α̇32 sin α32 − aα̇32 cos α32)   (2.77)

    ω3 × r   =

    ¯̄̄¯¯̄

    i3   j3   k3α̇32   α̇1 sin α32   α̇1 cos α32

    0   s21 sin α32 + a cos α32 + l s21 cos α32 − a sin α32

    ¯̄̄¯¯̄=   i3[(s21 cos α32 − a sin α32)α̇1 sin α32 − (s21 sin α32 + a cos α32 + l)α̇1 cos α32]+ j3[−(s21 cos α32 − a sin α32)α̇32]

    +k3[(s21 sin α32 + a cos α32 + l)α̇32]   (2.78)

    Upon adding the two above expression together, one may obtain components of ve-locity of the point  P   in the following form

    ṙ = i3(−aα̇1 − lα̇1 cos α32) + j3(ṡ21 sin α32) + k3(ṡ21cosα32 + lα̇32)   (2.79)

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    59/195

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    60/195

    PROBLEMS.   60

    Solution.

     X   x

     Z Q

     P γ 

    γ 

    γ 

     z O

     y

     β 

    1

     x

     z 

     y

    2

    3

    1

     Z   z 1

    α =ω t 

    r P 

    rQ

    rQP 

    Figure 13

    From Fig. 13 one can see that

    rQ = rP  + rQP    (2.80)

    The above vectors can be expressed as follows.

    rP    =   i1r   (2.81)

    rQ   =   K rQ cos β  + I rQ sin β    (2.82)

    rQP    =   k2l = i1l cos γ x +  j1l cos γ y + k1l cos γ z   (2.83)

    where γ x, γ y  and γ z  are angles between the axis  z2  and axes of the system of coordi-nates  x1y1z1.Introduction of the above expressions into Eq. 2.80 yields

    KrQ cos β  + IrQ sin β  = i1r + i1l cos γ x +  j1l cos γ y + k1l cos γ z   (2.84)

    Multiplication of the equation Eq. 2.84 by the unit vectors   i1, j1  and k1   respectively

    off ers three scalar equations.

    rQ cos α sin β    =   r + l cos γ x   (2.85)

    −rQ sin α sin β    =   l cos γ y   (2.86)rQ cos β    =   l cos γ z   (2.87)

    Hence

    cos γ x   = (rQ cos α sin β − r)/l   (2.88)cos γ y   = (−rQ sin α sin β )/l   (2.89)cos γ z   = (rQ cos β )/l   (2.90)

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    61/195

    PROBLEMS.   61

    The direction cosines have to fulfil the following relationship

    cos2 γ x + cos2 γ y + cos

    2 γ z  = 1   (2.91)

    Introduction of Eq’s.. 2.88, 2.89 and 2.90 into Eq. (2.91) yields

    (rQ cos α sin β − r)2 + (−rQ sin α sin β )2 + (rQ cos β )2 = l2 (2.92)

    After simple manipulation, the equation 2.15 takes form 2.93.

    r2Q + (−2r cos α sin β )rQ + (r2 − l2) = 0   (2.93)

    Hence, the instantaneous position of the point   Q   is determined by the followingexpression.

    rQ = r cos α sin β  ± (r2

    cos2

    α   sin2

    β − r2

    + l2

    )1/2

    (2.94)Since axis   Z 3   is motionless, the   fist derivative with respect to time of the aboveexpression yields absolute velocity of the point  Q.

    ṙQ = −rα̇ sin α sin β  ± r2α̇ cos α sin α sin2 β/(r2 cos2 α   sin2 β − r2 + l2)1/2 (2.95)

    There are two possible solution. One corresponds to sign ’+’ and the other corre-sponds to sing ’-’.

     X 

     P 

    Q Z 

     Z 

    1 2

    O

     β 

    3

    3

    Q-

    +

    Figure 14

    The physical interpretation of those two solutions is given in Fig. 14.

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    62/195

    PROBLEMS.   62

    Problem 15

     Z 

     z 1

     y1

     y1

     X  x1

    1

     y2

     x2

     z 1 z 2

     y2

    2

    2

    2

    3

    3

     z 

     x3

     y3

     P 

     P 

    3

    ω21t 

    α 

     β 

     A

     A

    O

    O

    o1

    o2

    o3

    o2

     s

     z 2

    Figure 15

    A sketch of the Ferris Wheel is shown in Fig. 15. Its base 1  oscillates about thehorizontal axis X  of the X Y Z   inertial system of coordinates. The instantaneous po-sition of this base is determined by the angular position α. The system of coordinatesx1y1z1  is rigidly attached to the base 1.

    The relative angular velocity of the wheel   2   with respect to the base   1   isconstant and is equal to  ω21. The system of coordinates x2y2z2  is rigidly attached tothe wheel 2 .

    The seat 3  is hinged to the wheel at the point  A. The instantaneous position

    of the seat 3  with respect to the wheel  2  is determined by the angular displacementβ . The system of coordinates  x3y3z3  is rigidly attached to the seat 3 .Produce expression for components of:1. the absolute angular velocity of the seat  3  along the system of coordinates

    x3y3z32. the absolute angular acceleration of the seat  3  along the system of coordi-

    nates  x3y3z33. the absolute linear velocity of the point  P  along the system of coordinates

    x3y3z3Given are:   r,l,s,ω21, α(t), β (t).

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    63/195

    PROBLEMS.   63

    Solution

     Z  z 1

     y1

     y1

     X  x1

    1

     y2

     x2

     z 1

     z 2

     y 2 

    2

    2

    3

     z 

     x3

     y3

     P  

     P 

    3

    ω21t 

    α 

     β 

     A

     A

    O

    o1

    o2

    o3

    o2

     s 

    r  

     z 2

    o2

    Figure 16

    The absolute angular velocity of the system of coordinates  x1y1z1.

    ω1 = i1 α̇   (2.96)

    The absolute angular velocity of the system of coordinates  x2y2z2.

    ω2  = ω1 + ω21 = i1 α̇ + k2ω21   (2.97)

    The absolute angular velocity of the system of coordinates  x3y3z3

    ω3  =  ω2 + ω32  = i1 α̇ + k2ω21 + i3 β̇    (2.98)

    Since

    i1   =   i2 cos ω21t− j2 sin ω21t = i3 cos ω21t− ( j3 cos β − k3 sin β )sin ω21t ==   i3 cos ω21t + j3(− cos β sin ω21t) + k3(sin β sin ω21t)   (2.99)

    k2   =   j3 sin β  + k3 cos β 

    the components of the angular velocity along the system of coordinates are  x3y3z3

    ω3   = (i3 cos ω21t + j3(− cos β sin ω21t) + k3(sin β sin ω21t))  α̇+ ( j3 sin β  + k3 cos β ) ω21 + i3 β̇ 

    =   i3

    ³α̇ cos ω21t +  β̇ ́ + j3 (−α̇ cos β sin ω21t + ω21 sin β )

    +k3(α̇ sin β sin ω21t + ω21 cos β )

    (2.100)

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    64/195

    PROBLEMS.   64

    The absolute angular velocity of the seat 3 is equal to  ω3.The absolute angular acceleration of the seat is equal to the absolute angular

    acceleration of the system of coordinates x3y3z3

    ε   =   ω̇3  =  ω0

    3 + ω3 × ω3  =

    =   i3(α̈ cos ω21t−  α̇ω21 sin ω21t + β̈ + j3

    ³−α̈ cos β sin ω21t +  α̇β̇ cos β sin ω21t−  α̇ω21 cos β cos ω21t + ω21 β̇ cos β ́

    +k3

    ³α̈ sin β sin ω21t +  α̇β̇ cos β sin ω21t +  α̇ω21 sin β cos ω21t− ω21 β̇ sin β ́(2.101)

    According to Fig. 16 the absolute position vector of the point  P   is

    RP    =   k2l + j2r + k3(−s)= ( j3 sin β  + k3 cos β ) l + ( j3 cos β − k3 sin β ) r + k3(−s)   (2.102)=   i3 (0) + j3 (l sin β  + r cos β ) + k3 (l cos β − r sin β − s)

    The  first derivative of this vector yields the absolute liner velocity of the point  P.

    vP    =   ṘP   = R0

    P  + ω3 × RP 

    =   j3

    ³lβ̇ cos β ́ − rβ̇ sin β ) + k3

    ³−lβ̇ sin β − rβ̇ cos β ́

    +¯̄̄̄̄̄ i3   j3   k3˙

    α cos ω21t +  ˙

    β   −˙α cos β sin ω21t + ω21 sin β 

      ˙α sin β sin ω21t + ω21 cos β 0   l sin β  + r cos β l cos β − r sin β − s

    ¯̄̄̄̄̄=   i3vPx3 +  j3vPy3 + k3vPz3

    (2.103)

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    65/195

    PROBLEMS.   65

    Problem 16

     Z   X  z 

     x

     y

     y

     x

     x

    1 2 3

    1

    1

    2

    2

    1

    1

     P 

    Oo2

    O α 

     β 

    ω 32

    a

    b

    Figure 17

    Fig. 17 shows a diagram of a wheel excavator. Its base 1  rotates about thevertical axis  Y   of the inertial system of coordinates   XY Z . System of coordinatesx1y1z1  is rigidly attached to the base 1. Its instantaneous position is determined bythe angle α.  The arm 2  rotates with respect to the base 1  about axis that is parallelto   z1.   System of coordinates   x2y2z2   is rigidly attached to the arm 2. Its relativeangular position is determined by an angle β .

    The wheel  3  rotates with respect to the arm  2  about axis that is parallel toz1  with the angular velocity  ω32.

    Given are:   α(t),  β (t), ω32(t),  a,  b.Produce

    1. the expressions for the components of the absolute angular velocity of the wheel 3 along system of coordinates  x2y2z2.

    Answer:

    ω3x2 =  α̇ sin β ω3y2 =  α̇ cos β ω3z2 =³

    β̇  + ω32´

    2.  the expressions for the components of the absolute linear velocity of the point  P along system of coordinates  x2y2z2.

    Answer:vPx2 = 0   vPy2 = −bβ̇ vPz2 = −aα̇− bα̇ cos β 3. the expressions for components of the absolute acceleration of the point P   alongsystem of coordinates  x2y2z2.

    Answer:aPx2  =  vPz2 α̇ cos β − vPy2 β̇ aPy2 =  v̇Py2 − vPz2 α̇ sin β aPz2 =  v̇Pz2 + vPy2 α̇ sin β 

  • 8/20/2019 Mechanics of Rigid Body by Janusz Krodkiewski Melbourne Text Book

    66/195

    PROBLEMS.   66

    Problem 17

    1

    2

    3

    4 Z z 

    ω 

     B β 

     y

     y

    l l/2

    G

     A

    3

    1 3

    1

     A

    1

    Figure 18

    Fig. 18 shows the kinematic scheme of a mechanism. Its link  1  rotates with aconstant angular velocity ω