80
Sanshiro Mizuno High Energy Nuclear Physics Group Predefense Session Jan. 23th 2015 Measurement Of Direct Photon Higher Order Azimuthal Anisotropy In √s NN =200GeV Au+Au Collisions at RHICPHENIX

MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

Sanshiro  Mizuno  High  Energy  Nuclear  Physics  Group  

Pre-­‐defense  Session  Jan.  23th  2015  

Measurement  Of  Direct  Photon  Higher  Order    Azimuthal  Anisotropy  

In  √sNN=200GeV  Au+Au  Collisions  at  RHIC-­‐PHENIX

Page 2: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

PreDefence  (M.Sanshiro) 2

Outline

ü Introduc9on  •  Direct  photon  •  MoOvaOon  

 

ü Analysis  •  PHENIX  detector  •  Analysis  method  

 

ü Results  and  Discussion  •  Neutral  pion  vn  •  Direct  photon  vn  •  The  probability  of  resolving  photon  puzzle  

 

ü Summary

2015/1/23

Page 3: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

Introduc9on PreDefence  (M.Sanshiro) 3 2015/1/23

Page 4: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

PreDefence  (M.Sanshiro) 4

Quark-­‐Gluon  Plasma  at  heavy  ion  collision

LaTce-­‐QCD  calculaOon  predicts  ε  ≈  1GeV/fm3  

T  ≈  170MeV  

Quarks  and  gluons  are  predicted  to  move  freely  in  the  state    of  extremely  high  temperature  and  dense  ma[er.    

QGP  has  been  created  at  high  energy  heavy  ion  collision.  •  RHIC  at  BNL  •  LHC  at  CERN  

P.R.D  80,  014504(2009)  

RHIC

2015/1/23

Page 5: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

PreDefence  (M.Sanshiro) 5

History  of  collision  and  photon  emission

ThermalizaOon Hydrodynamics   Freeze-­‐out  HadronizaOon

Direct  photon  analysis  All  photons  except  for  those  originaOng  from  hadron  decays.  •  emi[ed  during  all  stages  of  the  collisions  •  don’t  interact  with  the  medium  

QGP Hadron  Gas  (HG) Collision

Hadron Photon

Hard  sca[ering

2015/1/23

Page 6: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

(GeV/c)Tp0 2 4

γR

1

1.2

1.4

2015/1/23 PreDefence  (M.Sanshiro) 6

(GeV/c)T

p0 5 10

γR

1

2

30-20 %

CalorimeterExternal conversionvirtual photon

The  excess  of  direct  photon

P.R.L.  94,  232301  arXiv:1405.3940  P.R.L.  104,  132301

R� = Ninc./Ndec.

The  excess  of  direct  photon  has  been    measured  via  several  methods.    The  virtual  photon  method  and    external  conversion  photon  method    are  sensiOve  to  low  pT  region.    Less  than  4  GeV/c,  direct  photons  are    included  by  20  %  in  inclusive  photon.  

Page 7: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

PreDefence  (M.Sanshiro) 7

Direct  photon  pT  spectra

arXiv:1405.3940  

The  pT  spectra  in  Au+Au  collision  is    enhanced  compared  with  that  in    p+p  collision  scaled  by  the  number  of    binary  collisions  less  than  4  GeV/c.    

The  excess  of  pT  spectra  is  fi[ed  and    effecOve  temperature  is  extracted.  (Freeze  out  temperature  ≈  100MeV)  

Photons  in  low  pT  are  mainly  radiated  from  very  hot    medium  at  early  9me  of  collisions.  

Au+Au Centrality Effec9ve  temperature

0%  -­‐  20%   239  ±  25  ±  7  (MeV)

20%  -­‐  40% 260  ±  33  ±  8  (MeV)

40%  -­‐  60% 225  ±  28  ±  6  (MeV)

arXiv:1405.3940(2014)

2015/1/23

Page 8: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

8

Azimuthal  anisotropy  (Ellip9c  flow)

PreDefence  (M.Sanshiro)

) R.P.

Ψ -φ=(φd-1 0 1

)R

.P.

Ψ -φd(

dN

210

310

v2  

Reac9on  Plane

charged  parOcle  dφ  distribuOon

•  anisotropic  pressure  gradient  in  parOcipant  zone  (IniOal  state)  •  QGP  expansion  (hydrodynamic  moOon,  η/s)  

(η  is  shear  viscosity  and  s  is  entropy  density)  •  hadron  producOon  mechanism  (coalescence)    

(1)  :  Ini9al  geometry  is  converted  into  final  azimuthal  anisotropy  (2)  :  (expected  to  be)  sensiOve  to  η/s.  

v2 = hcos {2(�� R.P.)}i

2015/1/23

Page 9: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

PreDefence  (M.Sanshiro) 9

Photon  emiang  angle  dependence

Parton  Photon  Par9cipant  zone    Angular  dependence  of  photon  sources    •  IniOal  hard  sca[ering  :  v2≈0  •  Medium  induced  :  v2≤0  •  Jet  fragmentaOon  :  v2≥0  •  RadiaOon  from  expanding  medium  :  v2>0

The  measurement  of  photon  azimuthal  anisotropy  is  a  powerful    probe  to  idenOfy  the  photon  sources.  

2015/1/23

Page 10: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

PreDefence  (M.Sanshiro) 10

P.R.L.  109,  122302(2012)

High  pT  :  very  small  v2  It  is  consistent  with  expectaOon  that  photons  produced  in  the    iniOal  hard  sca[ering  are  dominant.  

Low  pT  :  Comparable  to  hadron  v2  at  around  2  GeV/c  

Ellip9c  flow  of  direct  photon

2015/1/23

Page 11: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

PreDefence  (M.Sanshiro) 11

Direct  photon  puzzle Thermal  radiaOon  photons  are  dominant  in  low  pT  region.    Ellip9c  flow  :  Photon  should  have  small  v2,  since  it  includes  one  from  early  stage    having  small  v2,    

-­‐>  Photons  are  dominantly  emi[ed  at  late  stage.    pT  spectra  :  Emi[ed  from  very  hot  medium  (Teff≈240MeV).  

-­‐>  Photons  are  dominantly  emi[ed  at  early  stage.      There  is  a  discrepancy,  and  it  is  called  “direct  photon  puzzle”.  There  is  no  models  to  explain  both  observables  simultaneously.  

2015/1/23

Page 12: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

Ψ3

Ψ2

Ψn  :  Par9cipant  Plane

Third  order  azimuthal  anisotropy  (v3)

PreDefence  (M.Sanshiro)

v3  is  originaOng  from  fluctuaOon  of  the  shape  of  parOcipants.  The  higher  order  flow  is  expected  to  constrain  the  iniOal  geometry    calculaOng  model  and  η/s  of  QGP.  

12 2015/1/23

N(�� n) / 1 + 2

Xvn cos {n(�� n)}

vn = hcos {n(�� n)}i

Page 13: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

PreDefence  (M.Sanshiro) 13

Why  direct  photon  v3  is  measured?

B

Radial  flow  effect  (blue  shij  effect)  :  It  makes  effecOve  temperature  higher    than  true  temperature.  Photons  from  late  state  are  dominant.  v2>0  :  v3>0    Large  magne9c  field  :  DirecOon  of  magneOc  field  is  strongly    related  with  Ψ2(R.P.)  but  not  with  Ψ3.  v2>0  :  v3≈0      v3  measurement  could  provide  addiOonal    constraint  on  photon  producOon  mechanism.  

P.R.C  89,  044910  (2014)

Effec9v

e  Tempe

rature

2015/1/23

True  Temperature

Page 14: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

PreDefence  (M.Sanshiro) 14

My  ac9vity

2014  (D3):Data  taking  shil  and  Detector  expert

2013  (D2):Data  taking  shil  and  Detector  expert  &  TOF  calibraOon

2012  (D1):Data  taking  shil  and  Detector  expert  &  TOF  calibraOon Talk  ATHIC  2012    

Talk  ATHIC  2014    

Talk  HIC  HIP    

Talk  JPS  spring    

Talk  JPS  fall    

Talk  JPS  spring

Poster    QM  2012    

Talk  QM  2014    

Talk  WPCF  2014    

Iden9fied  par9cle  azimuthal  anisotropy

Neutral  pion  and  direct  photon  azimuthal  anisotropy

Poster  &  Talk    :    Analysis

2015/1/23

Page 15: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

Analysis PreDefence  (M.Sanshiro) 15 2015/1/23

Page 16: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

PreDefence  (M.Sanshiro) 16

PHENIX  detector CNT  |η|  <0.35

1.0<  |η|  <2.8

ReacOon  Plane  detector  (RxNP),  MPC,  BBC    are  used  for  measuring  Event  Plane.  Photons  and  π0  are  detected  by  EMCal  in  CNT.

vn = hcos {n(�� n)}i2015/1/23

Page 17: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

PreDefence  (M.Sanshiro) 17

Centrality  determina9on

Centrality  :  The  size  of  parOcipant  zone  is    classified  by  mulOplicity  in  BBC.    Beam-­‐Beam  Counter  (BBC)  :  Measures  charged  parOcles.  

BBC charge sum 0 500 1000 1500 2000

Cou

nt

10

210

0  % 100  %

2015/1/23

Page 18: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

PreDefence  (M.Sanshiro) 18

Event  plane  and  resolu9on

n =

1

ntan

�1⇣P

wi sinn�iPwi cosn�i

Event  plane  is  determined  for  each    harmonic  “n”.  

Reac9on  Plane  detector(RxN)

Muon  Piston  Calorimeter  (MPC)

RxN(In)  RxN(Out)  RxN(I+O)  

MPC  BBC  RxN(In)+MPC

vtruen

= vobs.n

/Res( n

)

Res( n

) = hcos {n( true

n

� obs.

n

)}i

2015/1/23

Page 19: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

)2invariant mass(GeV/c0 0.1 0.2 0.3

Cou

nt

0

500

1000

1500310×

Real eventMixed eventExtracted signal

20-30 %<2.5(GeV/c)T2.0<pγ + γ → 0π

<0.18γγ0.10<m

PreDefence  (M.Sanshiro) 19

Photon  reconstruc9on Pad  chamber  :  space  point  of  charged    parOcle  track  Electromagne9c  calorimeter(EMCal)  Photons  are  reconstructed  •  Energy  threshold  :  E  >  0.2GeV  •  Shower  shape  :  χ2  <  3  •  Charged  parOcle  rejecOon  at  PC3  :  √(dz)2+(rTsin(dφ))2  >  6.5    π0  (-­‐>γ+γ)  reconstrucOon  •  Asymmetry  cut  :  |E1-­‐E2|/(E1+E2)<0.8  •  Photons  are  detected  in  same  sector  •  Invariant  mass  of  γ+γ      

Mass =p

2E1E2(1� cos ✓)

2015/1/23

Page 20: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

) 2

Ψ - φ | ( = φ Δ| 0 0.5 1 1.5

Cou

nt

4000

5000

6000

310×

20-30 %<2.5(GeV/c)T2.0<p

])}nΨ -φcos{n(n[2v0N

(GeV/c)T

p0 5 10 15

nv

-0.05

0

0.05

0.1

0-20 %RxN(I+O)

2 vinc.γ

3 vinc.γ

PreDefence  (M.Sanshiro) 20

Inclusive  photon  vn  measurement

The  method  of  extracOng  vn  1.  vn=<cos{n(φ-­‐Ψn)}>  2.  dN/dφ  is  fi[ed  by  N0(1+2vncos{n(φ-­‐Ψn)})    Systema9c  uncertainty  •  Photon  selecOon  •  vn  measuring  method  •  Event  plane  determinaOon  

2015/1/23

Page 21: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

) 2

Ψ - φ | ( = φ Δ| 0 0.5 1 1.5

Cou

nt

2000

2500

3000

310×

20-30 %<2.5(GeV/c)T2.0<p

])}nΨ -φcos{n(n[1+2v0N

(GeV/c)T

p0 5 10 15

nv

-0.05

0

0.05

0.1

0-20 %RxN(I+O)

2 v0π

3 v0π

PreDefence  (M.Sanshiro) 21

Neutral  pion  vn  measurement

The  number  of  π0  is  counted  with  respect  to  the  event  plane.  The  azimuthal  distribuOon  is  fi[ed  by  the  equaOon.    Systema9c  uncertainty  •  Photon  selecOon  •  π0  selecOon  •  Event  plane  determinaOon  

N0(1 + 2vn cos {n(�� n)})

2015/1/23

Page 22: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

PreDefence  (M.Sanshiro) 22

Hadronic  decay  photon It  is  impossible  to  idenOfy  photons  originaOng  from  hadron  decay    experimentally.  Decay  photon  pT  spectra  and  vn  should  be  simulated  by    Monte-­‐Carlo  simulaOon.   Par9cle  Data  Group

2015/1/23

Page 23: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

(GeV/c) T

p0 5 10 15 20

Tdy

dpdNT

pπ21

-1210

-910

-610

-310

1

310410

0-20 % PHENIX results

Estimated spectra

1.0× 0π 1.0× ±π

0.1× η 0.01× ω

1.0×pion 0.1× η 0.01× ω 0.001× ρ 0.0001×' η

(GeV/c) T

p0 5 10 15 20

Dat

a/Eq

uatio

n

0.5

1

1.5

2 0π±πη

ω

PreDefence  (M.Sanshiro) 23

Meson  pT  spectra  es9ma9on

Since  it  is  difficult  to  measure  mesons  except  for  pion,    the  other  mesons  pT  spectra  are  esOmated  by  mT  scaling    from  pion  experimental  data.

pT,meson

=q

p2T,pion

+M2meson

�M2pion

P.R.C  69,034909  P.R.L.  101,232301  P.R.C  82,011902  P.R.C  84,044902

2015/1/23

Page 24: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

(GeV/c) T

p0 5 10 15

2v

0

0.05

0.12v

0-20 %RxN(I+O)

pionη

ω

ρ

(GeV/c) T

p0 5 10 15

3v

0

0.05

0.13v

0-20 %RxN(I+O)

pion

η

ω

ρ

PreDefence  (M.Sanshiro) 24

Meson  vn  es9ma9on The  number  of  cons9tuent  scaling

It  is  known  that  hadron  vn  as  a  funcOon    of  KET  are  scaled  by  the  number  of    consOtuent  quark.    Meson  vn  is  esOmated  from  pion  vn.  

pT,meson

=

r⇣qp2T,⇡

+M2⇡

�M⇡

+Mmeson

⌘2�M2

meson

arXiv:1412:1038  

2015/1/23

Page 25: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

(GeV/c) Tp0 5 10 15

Tdy

dpdNT

pπ21

-510

-210

10

410

710

10100-20 %decay photon

0π from dec.γη from dec.γω from dec.γρ from dec.γ

'η from dec.γdec.γall

(GeV/c) Tp0 5 10 15

) ico

ntrib

utio

n ra

tio (

R

-410

-310

-210

-110

1

(GeV/c) Tp0 5 10 15

2v

0

0.05

0.1

0.152

decay photon v

PreDefence  (M.Sanshiro) 25

Hadronic  decay  photon  vn

Decay  photon  vn  is  simulated  from    meson  input.    Systema9c  uncertainty  •  Propagated  from  pion  pT  spectra  •  Propagated  from  pion  vn  •  Event  plane  determinaOon  

vdec.n =X

i

Rivdec.,in

2015/1/23

Page 26: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

(GeV/c)Tp0 2 4

γR

1

1.2

1.4

(GeV/c)T

p0 5 10

γR

1

2

30-20 %

CalorimeterExternal conversionvirtual photon

(GeV/c)T

p0 5 10

2v

-0.05

0

0.05

0.1 2v

0-20 %RxN(I+O)

inclusive photondecay photon

(GeV/c)T

p0 5 10 3v

-0.05

0

0.05

0.1 3v

0-20 %RxN(I+O)

inclusive photondecay photon

PreDefence  (M.Sanshiro) 26

Direct  photon  vn

⌫dir.n =R�⌫inc.n � ⌫dec.n

R� � 1

P.R.L.  94,  232301  arXiv:1405.3940  P.R.L.  104,  132301

Systema9c  uncertainty  •  Propagated  from  inclusive  photon  vn  •  Propagated  from  decay  photon  vn  •  Propagated  from  Rγ •  Event  plane  determinaOon  

R� = Ninc./Ndec.

2015/1/23

Page 27: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

Results  &  Discussion  Neutral  pion  vn

PreDefence  (M.Sanshiro) 27

|η|

Electromagne9c  calorimeter  (CNT) |η|  <  0.35 Reac9on  Plane  detector  (Inner) 1.5  <  |η|  <  2.8 Reac9on  Plane  detector  (Outer) 1.0  <  |η|  <  1.5 MPC 3.1  <  |η|  <  3.8 BBC 3.0  <  |η|  <  3.9

2015/1/23

Page 28: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

(GeV/c)T

p0 5 10

2v

0

0.05

0.1

0.15

0.2

0-10 %

2Neutral pion v

(GeV/c)T

p0 5 10

2v0

0.05

0.1

0.15

0.2

40-50 %

(GeV/c)T

p0 5 10

3v

-0.4

-0.2

0

0-10 %

3Neutral pion v

|<3.8ηRxN(In)+MPC:1.5<||<1.5ηRxN(Out):1.0<|

(GeV/c)T

p0 5 10

3v

-0.4

-0.2

0

40-50 %

(GeV/c)T

p0 5 10

4v

0

0.1

0.2

0.3

0-10 %

4Neutral pion v

(GeV/c)T

p0 5 10

4v

0

0.1

0.2

0.3

40-50 %

PreDefence  (M.Sanshiro) 28

The  event  plane  dependence  of  neutral  pion  vn

Hadrons  in  high  pT  are  originated    from  jet  fragmentaOon.  •  Study  jet  property    In  peripheral  event  v2  and  v4    :    posiOve  v3    :    negaOve    In  the  v2  case,    there  is  the  difference  blue  and  red  

2015/1/23

Page 29: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

〉 part N〈0 100 200 300

2in

tegr

ated

v

-0.2

0

0.2

0.4 2Neutral pion v

< 15 GeV/cT

6 < p

|<3.8ηRxN(In)+MPC:1.5<|

|<1.5ηRxN(Out):1.0<|

〉 part N〈0 100 200 300

3in

tegr

ated

v

-0.2

0

0.2

0.4 3Neutral pion v

< 15 GeV/cT

6 < p

〉 part N〈0 100 200 300

4in

tegr

ated

v

-0.2

0

0.2

0.4

4Neutral pion v

< 15 GeV/cT

6 < p

PreDefence  (M.Sanshiro) 29

Event  plane  dependence  of  π0  vn  in  high  pT

Di-­‐jet  makes  v2,4  >0  and  v3≈0.  Energy  loss  of  path  length  dependence  :  vn  >  0  It  can  be  understood  in  central  event.    NegaOve  v3  and  the  difference  of    red  and  blue  in  v2  are  not  understood.  

2015/1/23

Page 30: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

PreDefence  (M.Sanshiro) 30

Jet  effect  in  event  plane  determina9on

⌘ = � lnn

tan✓

z

o

EMCal  :  |η|<0.35  RxN(Out)  :  1.0<|η|<1.5  RxN(In)  :  1.5<|η|<2.8  MPC  :  3.1<|η|<3.8  Jet

Event  plane  determinaOon  is  much  affected  by  jet  effect  in    peripheral  event  due  to  small  mulOplicity.    The  trend  is  different  in  v2  &  v4  and  v3    due  to  the  iniOal  geometry.  

v2&v4  >  0    :    v3  <  0  

z

2015/1/23

θ

Page 31: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

0 200 400 600 800 1000 1200 14001

10

210

310

410

510

PreDefence  (M.Sanshiro) 31

a  Mul9phase  transport  model  (AMPT) event  generator  (HIJING)  +  parton  cascade  (ZPC)  +  hadronizaOon  +  hadron  cascade  P.R.C  72,  064901    3  M  events  including  Jet  >  20  GeV  are  analyzed.      Centrality  is  defined  by  the  number  of  parOcles  in  3.1<|η|<3.9.    Pions  are  detected  in  |η|<0.35.  Event  Plane  is  measured  in  1  :  1.5<|η|<2.8  (RxN(In))  2:  1.0<|η|<1.5  (RxN(Out))  3:  1.0<|η|<2.8  (RxN(I+O))  4:    3.1<|η|<3.8  (MPC)  5:  3.1<|η|<3.9  (BBC)  6:  1.0<|η|<1.5  +  3.1<|η|<3.9  (RxN(In)+MPC)       Number  of  parOcle

Coun

t

3.1<|η|<3.9

2015/1/23

Page 32: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

(GeV/c)T

p0 5 10

2v

0

0.1

0.2

0.32pion v

40-60 %

Event with Jet>20GeVExperimental RxN(In)+MPCExperimental RxN(Out)

(GeV/c)T

p0 5 10

3v

-0.2

-0.1

0

0.1

0.23pion v

40-60 %

AMPT RxN(In)+MPCAMPT RxN(Out)

PreDefence  (M.Sanshiro) 32

Pion  vn  simulated  by  AMPT  

Event  plane  dependence  is  found  in  v2,  it  is  similar  to  the    experimental  measurement.  The  v3  shows  similar  trend  less  than  5  GeV/c.  

2015/1/23

Page 33: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

Results  &  Discussion  Direct  photon  vn

PreDefence  (M.Sanshiro) 33 2015/1/23

Page 34: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

(GeV/c)T

p0 5 10

2v

0

0.1

0.2

0-20 %Neutral pionDirect photon

(GeV/c)T

p0 5 10

2v

0

0.1

0.2

20-40 %

(GeV/c)T

p0 5 10

3v

-0.05

0

0.05

0.1

0-20 %

(GeV/c)T

p0 5 10

3v

-0.05

0

0.05

0.1

20-40 %

(GeV/c)T

p0 5 10

4v

0

0.1

0.2

0-20 %

(GeV/c)T

p0 5 10

4v

0

0.1

0.2

20-40 %

PreDefence  (M.Sanshiro) 34

The  results  of  neutral  pion  and  direct  photon  vn

•  In  low  pT  region  Direct  photon  has  non-­‐zero  and    posiOve  v2  and  v3.  The  strength  is  comparable  to    the  hadron  v2  and  v3.        •  In  high  pT  region  Direct  photon  vn  is  close  to  zero.  

2015/1/23

Page 35: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

〉 part N〈0 100 200 300

2in

tegr

ated

v

-0.1

0

0.1

0.2

Neutral pionDirect photon

(RxN(I+O))2v<10 GeV/cT6<p

〉 part N〈0 100 200 300

3in

tegr

ated

v

-0.1

0

0.1

0.2 (RxN(I+O))3v

<10 GeV/cT

6<p

〉 part N〈0 100 200 300

4in

tegr

ated

v

-0.1

0

0.1

0.2

(RxN(I+O))4v

<10 GeV/cT6<p

PreDefence  (M.Sanshiro) 35

Centrality  dependence  of  γdir.  and  π0  in  high  pT

γdir.  v2  and  v4  <  π0  v2  and  v4  γdir.  v3  ≈  0    The  direct  photon  vn  is  close  to  zero.  The  difference  between  γdir.  and  π0  is  understood  that  photon    includes  prompt  photon  which  vn≈0.  

2015/1/23

Page 36: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

Blast  wave  model  is  based  on  hydrodynamic  model  Parameterizing  the  expanding  medium  at  freeze-­‐out  temperature    pT  spectra  :      azimuthal  anisotropy  :    6  parameters  Freeze-­‐out  temperature  :  Tf  average  velocity  :  <ρ>  transverse  anisotropy  :  ρ2,  ρ3    spaOal  anisotropy  :  s2,  s3        6  parameters  are  defined  by  hadron  observables.  Photon  spectra  and  vn  are  predicted  as  massless  parOcle  (mass  =  0).  

2015/1/23 PreDefence  (M.Sanshiro) 36

dN

pT dpT/

Zd�I0(↵T )K1(�T )

vn(pT ) =

Rd� cos (n�)In(↵T )K1(�T ){1 + 2sn cos (n�)}R

d�I0(↵T )K1(�T ){1 + 2sn cos (n�)}

↵T (�) = (pT /Tf ) sinh (⇢(�))

�T (�) = (mT /Tf ) cosh (⇢(�))

⇢(�) = ⇢0(1 + 2⇢n cos (n�))

h⇢i =Rr(⇢0 ⇥ r/R

max

)drRr dr

Blast  wave  model

Page 37: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

2015/1/23 PreDefence  (M.Sanshiro) 37

Photon  observables  predicted  blast  wave  model

(GeV/c) T

p0 1 2 3 4

dy TN

/dp

2)d Tpπ

(1/2

-510

-310

-110

10

310

spectraT

PIDed charged hadron pCentrality:0-20%

0.27[MeV]±=107.37fT0.00± =0.65〉ρ〈

10× ±π 5× ±K 1× pp

(GeV/c) T

p0 1 2 3 4

2v

0

0.05

0.1

0.15

2PIDed charged hadron v

0.000±=0.0212ρ

0.000±=0.0332s

Fitting range

Extrapolation

(GeV/c) T

p0 1 2 3 4

3v

0

0.05

0.1

0.15

3PIDed charged hadron v

0.000±=0.0183ρ

0.001±=0.0063s

(GeV/c) T

p0 1 2 3 4

dy TN

/dp

2)d Tpπ

(1/2

-510

-310

-110

10

310

spectraT

Direct photon p

CalorimeterConversion method

(GeV/c) T

p0 1 2 3 4

2v

0

0.05

0.1

0.15

2Direct photon v

(GeV/c) T

p0 1 2 3 4

3v

0

0.05

0.1

0.15

3Direct photon v

Photon  observables  are  well  described  with  parameters  defined  from  hadron.  The  pT  spectra  is  described  though  temperature  is  very  low  (Teff.  =240  MeV).  It  could  be  due  to  strong  radial  flow  (like  blue  shil  correcOon).  

Page 38: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

PreDefence  (M.Sanshiro) 38

The  probability  of  understanding  photon  puzzle

Blast  wave  model  well  describes  photon  pT  spectra  and  vn  at    freeze-­‐out  temperature  (TFO  ≈  100  MeV).  EffecOve  temperature  could  be  affected  by  strong  radial  flow.    The  possibility  that  photons  from  early  stage  are  not  dominant.      Photon  pT  spectra  and  vn  are  calculated  with  blue  shil  effect.  

T 0 = T

s1 + �

1� �

T’  :  apparent  temperature  β  :  velocity  of  photon  source  T  <  T’  

2015/1/23

Page 39: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

PreDefence  (M.Sanshiro) 39

Photon  pT  spectra  and  vn  with  blue  shij  effect Assump9on  of  photon  source  •  temperature  decreases  with  the  Ome  :  T(t)  •  velocity  increases  with  the  Ome  :  β(t)  •  azimuthal  anisotropy  increases  with  the  Ome  vn(pT,  t)  •  thermal  photon  momentum  distribuOon  :          pT  spectra  and  vn  at  final  state  are  calculated  as  :          EffecOve  temperature  is  taken  via  fiTng  by  exponenOal  equaOon  to  pT  spectra.  The  difference  with  experimental  measurement  is  esOmated  as  :  

(Vobs. � V

cal.)/E(stat.� sys.)

nfin.(pT ) =

Zdtn(pT , t) vfin.n (pT ) =

Rdtn(pT , t)vn(pT , t)R

dtn(pT , t)

2015/1/23

Vobs.  :  experimental  measurement  E  :  error  of  Vobs.  Vcal.  :  calculaOon  

n(pT , t) =pT

exp (pT /T (t))� 1

Page 40: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

PreDefence  (M.Sanshiro) 40

time0 0.5 1

N(t)

0

0.5

1

1.5

2

time0 0.5 1

Prob

abili

ty d

ensi

ty

0

0.02

0.04Basic assumption

T,t)dp

Tn(p∫N(t)=

(t)=B tβ

) tT

,t)=C(pT

(pnv

time0 0.5 1

Tem

pera

ture

0

0.1

0.2

0.3 Temperature : T(t)

time0 0.5 1

Velo

city

0

0.2

0.4

0.6 (t)βVelocity :

time0 0.5 1

Azi

mut

hal a

niso

trop

y

0

0.05

0.1 ,t)T

(pnazimuthal anisotropy : v

Basic  assump9on  for  yield,  velocity,  and  anisotropy

The  temperature  is  decreased  from  300  MeV  to  100  MeV.  The  Ome  is  defined  by  temperature.  

2015/1/23

Page 41: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

(GeV/c) T

p0 1 2 3 4 5

spe

ctra

Tp

-610

-410

-210

1

210310 spectra

TThermal photon p

=235(MeV)eff.T

without blue shift correction

Experimental measurement7±25±=239eff.T

=0.15eff. Tσ

(GeV/c) T

p0 1 2 3 4 5

spe

ctra

Tp

-610

-410

-210

1

210310

arXiv:1405.3940<2 GeV/c

Tfit range 0.6<pextrapolation

spectraT

Thermal photon p=265(MeV)eff.T

with blue shift correction

=-1.00eff. Tσ

(GeV/c) T

p0 1 2 3 4 5

2v

0

0.05

0.1

0.15 nDirect photon vn

Calculated photon v

(0-20 %)2

Thermal photon v

=3.742 vσ

(GeV/c) T

p0 1 2 3 4 5

3v0

0.05

0.1

0.15 (0-20 %)

3Thermal photon v

=1.513 vσ

< 3 GeV/cT

is estimated in pn vσ

PreDefence  (M.Sanshiro) 41

EffecOve  temperature  with  blue  shil  is  higher  than  without  correcOon.  The  vn  are  much  underesOmated.

Calcula9on  with  basic  assump9on

2015/1/23

Page 42: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

time 0 0.5 1

Prob

abili

ty d

ensi

ty

0

0.02

0.04

,t)T

n(patT

dp∫N(t)=a=0a=1/4a=1/2

a=1a=2a=4

time 0 0.5 1

)βVe

loci

ty(

0

0.2

0.4

0.6 b(t)=B tβ

b=1/4b=1/2b=1b=2b=4

time 0 0.5 1

Azi

mut

hal a

niso

trop

y0

0.05

0.1 c,t)=C tT

(pnv

c=1/4c=1/2c=1c=2c=4

PreDefence  (M.Sanshiro) 42

Addi9onal  assump9on •  Yield  dependence  Since  photon  source  expands,    the  yield  is  assumed  to  get  large    with  Ome.        •  Velocity  dependence        •  Azimuthal  anisotropy  dependence    

 T    :      V    ∨  :  ∧    T’  :    V’

N(t) =

ZdpT t

an(pT , t)

�(t) = B · tb

vn(pT , t) = C(pT ) · tc

2015/1/23

Page 43: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

time 0 0.5 1

Prob

abili

ty d

ensi

ty0

0.02

0.04

Probability density

PreDefence  (M.Sanshiro) 43

(GeV/c) T

p0 1 2 3 4 5

spe

ctra

Tp

-610

-410

-210

1

210a=0 : 264.88[MeV]a=1/4 : 260.99[MeV]a=1/2 : 257.32[MeV]a=1 : 250.75[MeV]a=2 : 240.07[MeV]a=4 : 226.16[MeV]

(GeV/c) T

p0 1 2 3 4 5

2v

0

0.05

0.1

0.15T

dp/T)-1}T

/{exp(pa t∫N(t)=a=4a=2a=1a=1/2a=1/4a=0

(GeV/c) T

p0 1 2 3 4 5

3v

0

0.05

0.1

0.15

pT  spectra  and  vn  with  rela9ve  yield  dependence

Photons  from  late  stage  :    low  temperature  &  large  vn    The  both  of  effecOve  temperature    and  vn  are  affected.  

N(t) =

ZdpT t

an(pT , t)

2015/1/23

Page 44: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

time 0 0.5 1Ve

loci

ty0

0.2

0.4

0.6 (t)βVelocity :

(GeV/c) T

p0 1 2 3 4 5

spe

ctra

Tp

-610

-410

-210

1

210b=1/4 : 324.93[MeV]b=1/2 : 294.54[MeV]b=1 : 264.88[MeV]b=2 : 244.39[MeV]b=4 : 235.77[MeV]

(GeV/c) T

p0 1 2 3 4 5

2v

0

0.05

0.1

0.15 b (t)=B tβ b=1/4b=1/2b=1b=2b=4

(GeV/c) T

p0 1 2 3 4 5

3v

0

0.05

0.1

0.15

PreDefence  (M.Sanshiro) 44

pT  spectra  and  vn  with  velocity  dependence

EffecOve  temperature  significantly  decreases    with  increasing  “b”.  The  vn  is  a  slightly  affected.  

2015/1/23

�(t) = B · tb

Page 45: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

(GeV/c) T

p0 1 2 3 4 5

spe

ctra

Tp

-610

-410

-210

1

210264.88[MeV]

(GeV/c) T

p0 1 2 3 4 5

2v

0

0.05

0.1

0.15 c,t)=C tT

(pnv c=1/4c=1/2c=1c=2c=4

(GeV/c) T

p0 1 2 3 4 5

3v

0

0.05

0.1

0.15

PreDefence  (M.Sanshiro) 45

pT  spectra  and  vn  with  anisotropy  dependence

Since  pT  spectra  is  not  affected,  effecOve    temperature  is  not  varied.    The  vn  increases  with  “c”  decreasing.  

2015/1/23 time 0 0.5 1

Azi

mut

hal a

niso

trop

y0

0.05

0.1,t)

T(pnAzimuthal : v

vn(pT , t) = C(pT ) · tc

Page 46: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

2015/1/23 PreDefence  (M.Sanshiro) 46

Comparison  with  experimental  measurement

The  differences  (σTeff  and  σv2)  are  varies  uniquely  with  the    parameters  “a”,  “b”,  and  “c”.  They  are  selected  so  that  Teff.  and  v2  are  comparable  to  the    experimental  measurement.  

eff Tσ-4 -2 0 2

2 vσ

0

2

4

6 Basic assumptionyield dependencevelocity dependenceanisotropy dependence

(Vobs. � V

cal.)/E(stat.� sys.)

“c”  geang  large  

“b”  geang  large  

Vobs.  :  experimental  measurement  E  :  error  of  Vobs.  Vcal.  :  calculaOon  result  

N(t) =

ZdpT t

an(pT , t)

�(t) = B · tbvn(pT , t) = C(pT ) · tc

Page 47: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

(GeV/c) T

p0 1 2 3 4 5

spe

ctra

Tp

-610

-410

-210

1

210238.57[MeV]238.85[MeV]237.05[MeV]235.86[MeV]238.60[MeV]238.21[MeV]

(GeV/c) T

p0 1 2 3 4 5

2v

0

0.05

0.1

0.15 a : b : c0.00 : 2.86 : 0.020.25 : 1.98 : 0.030.50 : 1.77 : 0.04

(GeV/c) T

p0 1 2 3 4 5

3v

0

0.05

0.1

0.15 a : b : c1.00 : 1.47 : 0.062.00 : 1.04 : 0.094.00 : 0.63 : 0.14

PreDefence  (M.Sanshiro) 47

pT  spectra  and  vn  with  selected  parameters

Parameter  “b”  is  selected  so  that  effecOve  temperature  is    comparable  to  experimental  measurement.  The  “c”  is  chosen  to  be  comparable  to  v2.  

2015/1/23

Page 48: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

time0 0.5 1

N(t)

0

0.5

1

1.5

2

time0 0.5 1

Prob

abili

ty d

ensi

ty

0

0.02

0.04

a : b : c0.00 : 2.86 : 0.020.25 : 1.98 : 0.030.50 : 1.77 : 0.041.00 : 1.47 : 0.062.00 : 1.04 : 0.094.00 : 0.63 : 0.14

time0 0.5 1

Tem

pera

ture

0

0.1

0.2

0.3 Temperature

time0 0.5 1

Velo

city

0

0.2

0.4

0.6 Velocity

time0 0.5 1

Azi

mut

hal a

niso

trop

y

0

0.05

0.1azimuthal anisotropy

PreDefence  (M.Sanshiro) 48

Selected  dependence  of  velocity  and  anisotropy

The  development  of  velocity  and  vn  could  be  studied.  The  Ome  dependence  of  vn  of  medium  shows  that  vn  is  saturated  early.

2015/1/23

Page 49: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

PreDefence  (M.Sanshiro) 49

Neutral  pion  and  direct  photon  vn  are  measured  in  √sNN  =  200GeV    Au+Au  collisions  at  RHIC-­‐PHENIX  experiment.    Neutral  pion  v2,  v3,  and  v4  show  different  pa[ern  in  high  pT  region.  In  central  collisions,  hadron  shows  non-­‐zero  vn.  

It  could  be  understood  that  jet  path-­‐length  dependence.  In  peripheral  collisions,  v2  &  v4  have  posiOve  while  v3  shows  negaOve.  

It  could  be  due  to  jet  effect  on  determining  event  plane.    Comparison  of  neutral  pion  and  direct  photon  in  high  pT  region.  Hadron  shows  non-­‐zero  while  photon  vn  is  close  to  zero.  It  could  be  understood  that  photon  includes  prompt  photons  with    vn≈0.  

Summary  (1)

2015/1/23

Page 50: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

PreDefence  (M.Sanshiro) 50

Strong  radial  flow  effect  could  be  the  probability  of  explanaOon    “photon  puzzle”.  High  effecOve  temperature  could  be  understood  that  photon    emi[ed  from  the  medium  having  large  radial  velocity  at  late  stage.    Photon  pT  spectra  and  vn  are  calculated  with  blue  shil  effect.    The  Ome  dependences  are  selected  so  that  effecOve  temperature    and  v2  are  comparable  to  the  experimental  measurement.  It  is  found  that  the  medium  azimuthal  anisotropy  is  saturated  early    Ome  of  development.  

Summary  (2)

2015/1/23

Page 51: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

PreDefence  (M.Sanshiro) 51 2015/1/23

Page 52: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

(GeV/c)T

p0 1 2 3 4 5

2v

0

0.1

0.2

0.3

2Direct photon v0-20 %

CalorimeterConversionHess et al. (a)Hess et al. (b)Linnyk et al.

(GeV/c)T

p0 1 2 3 4 5

2v

0

0.1

0.2

0.3

20-40 %arXiv1403.7558 (a)arXiv1403.7558 (b)arXiv1404.3714

(GeV/c)T

p0 1 2 3 4 5

2v

0

0.1

0.2

0.3

40-60 %

PreDefence  (M.Sanshiro) 52

Model  comparison  of  photon  v2

(Orange)  Transport  model  considering  photons  from  hadron  phase  (Blue,  red)  Fireball  model  Hydrodynamic  calculaOons  (cyan,  pink,  and  violet)  including  photons    from  late  state,  are  much  underesOmated.  

PRC  84,054906  PRC  89,034908  

Private  communica9on  

2015/1/23

Page 53: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

(GeV/c)T

p0 1 2 3 4 5

2v

0

0.1

0.2

2Direct photon v20-40 %

CalorimeterConversion

(GeV/c)T

p0 1 2 3 4 5

3v

0

0.1

0.2

3Direct photon v20-40 %

Hess et al. (a)Hess et al. (b)Linnyk et al.

P.R.D 89,026013

arXiv1403.7558 (a)

arXiv1403.7558 (b)

arXiv:1404.3714

PreDefence  (M.Sanshiro) 53

Model  comparison  of  v2  and  v3

Dark  violet  is  based  on  magneOc  field  effect,  upper  limit  is  shown.  Model  calculaOons  of  photon  v3  are  much  smaller  than  experimental    data.  The  data  of  v3  may  help  to  constrain  parameters  in  model  calculaOons.

P.R.D  89,026013  arXiv:1404.3714  

PRC  84,054906  PRC  89,034908  

Private  communica9on

Private  communica9on

2015/1/23

Page 54: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

(GeV/c)T

p0 1 2 3 4 5

2v

0

0.05

0.1

0.15

(RxN(I+O)) inclusive photon2v0-20(%) Calorimeter

Conversion

(GeV/c)T

p0 1 2 3 4 5

3v

0

0.05

0.1

0.15

(RxN(I+O)) inclusive photon3v0-20(%)

PreDefence  (M.Sanshiro) 54

Real  photons  from  external  photon    conversion  at  the  Hadron  Blind    Detector  (HBD)  readout  plane    are  detected.  •  Extend  low  pT  limit    Consistent  inclusive  photon  vn  well  

External  photon  conversion  method MHBD:  Real  track  Mvtx    :  Measured  track

MHB

D[GeV

/c2 ]

Mvtx[GeV/c2]

γ  Invariant  mass  of  e++e-­‐  pair

2015/1/23

Page 55: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

2015/1/23 PreDefence  (M.Sanshiro) 55

1)  real  photon  converts  to  e+e-­‐  in  HBD  backplane  2)  default  assumpOon:  track  come  from  the  vertex  3)  momentum  of  the  conversion  tracks  will  be              mis-­‐measured  (see  black  tracks)  4)  apparent  pair-­‐mass  (about  12MeV)  will  be  measured              for  phtons  5)  assume  the  same  tracks  originate  in  the  HBD  backplane  6)  re-­‐calculate  momentum  and  pair  mass  with  this            “alternate  tracking  model”  7)  for  true  converted  photons  Matm  will  be  around  zero  

Real  track  es9mated  track

MHB

D[GeV

]

Mvtx[GeV]

External  photon  conversion  method

Page 56: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

PreDefence  (M.Sanshiro) 56

Thermal  photons  are  predicted  sensi9ve  to  η/s

Hydrodynamic  calculaOon  predicts  that  direct  photon  is  sensiOve    to  η/s  of  QGP  than  hadron.    

v 2{SP}/v

3{SP}

pT(GeV/c)

arXiv:1403.7558v1  (2014)

2015/1/23

Page 57: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

(GeV/c) T

p0 1 2 3 4

3/v 2v

0

2

4

6

0-20 %

±π

dir.γ

dir.γ/s(0.20) ηMCKLN+dir.γ/s(0.08) ηMCGlb+±π/s(0.20) ηMCKLN+±π/s(0.08) ηMCGlb+

(GeV/c) T

p0 1 2 3 4

3/v 2v

0

2

4

6

20-40 %theory arXiv:1403.7558

arXiv:1412.1038±π

(GeV/c) T

p0 1 2 3 4

3/v 2v

0

2

4

6

40-60 %

PreDefence  (M.Sanshiro) 57

The  ra9o  of  v2  to  v3  in  pT  region

•  Photons  don’t  have  strong  centrality  dependence  at  around    2-­‐3  GeV/c  

•  Pions  increase  from  central  to  peripheral    

Photon  and  pion  show  different  centrality  dependence.  

π±  :  arXiv:1412:1038  Model  :  arXiv:1403.7558  Private  communica9on

2015/1/23

Page 58: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

time0 0.5 1

N(t)

0

0.5

1

1.5

2

time0 0.5 1

Prob

abili

ty d

ensi

ty

0

0.02

0.04Yield dependence

T,t)dp

Tn(pat∫N(t)=

(t)=B tβ

) tT

,t)=C(pT

(pnv

a=0a=1/4a=1/2a=1a=2a=4

time0 0.5 1

Tem

pera

ture

0

0.1

0.2

0.3 Temperature : T(t)

time0 0.5 1

Velo

city

0

0.2

0.4

0.6 (t)βVelocity :

time0 0.5 1

Azi

mut

hal a

niso

trop

y

0

0.05

0.1,t)

T(pnazimuthal anisotropy : v

PreDefence  (M.Sanshiro) 58

Rela9ve  yield  dependence N(t) =

Ztan(pT , t)dpT

RelaOve  probability  density  is  modified.  

2015/1/23

Page 59: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

time0 0.5 1

N(t)

0

0.5

1

1.5

2

time0 0.5 1

Prob

abili

ty d

ensi

ty

0

0.02

0.04Velocity dependence

T,t)dp

Tn(p∫N(t)=

b(t)=B tβ

) tT

,t)=C(pT

(pnv

b=1/4b=1/2b=1b=2b=4

time0 0.5 1

Tem

pera

ture

0

0.1

0.2

0.3 Temperature : T(t)

time0 0.5 1

Velo

city

0

0.2

0.4

0.6 (t)βVelocity :

time0 0.5 1

Azi

mut

hal a

niso

trop

y

0

0.05

0.1,t)

T(pnazimuthal anisotropy : v

PreDefence  (M.Sanshiro) 59

The  velocity  dependence

The  Ome  dependence  of  velocity  is  modified.    

2015/1/23

Page 60: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

time0 0.5 1

N(t)

0

0.5

1

1.5

2

time0 0.5 1

Prob

abili

ty d

ensi

ty

0

0.02

0.04Azimuthal anisotropy dependence

T,t)dp

Tn(p∫N(t)=

(t)=B tβ

c) tT

,t)=C(pT

(pnv

c=1/4c=1/2c=1c=2c=4

time0 0.5 1

Tem

pera

ture

0

0.1

0.2

0.3 Temperature : T(t)

time0 0.5 1

Velo

city

0

0.2

0.4

0.6 (t)βVelocity :

time0 0.5 1

Azi

mut

hal a

niso

trop

y

0

0.05

0.1,t)

T(pnazimuthal anisotropy : v

PreDefence  (M.Sanshiro) 60

The  azimuthal  anisotropy  dependence

2015/1/23

Page 61: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

PreDefence  (M.Sanshiro) 61

eff Tσ-4 -2 0 2

b

0

2

4

6

8

10a : b0 : 2.861/4 : 1.981/2 : 1.77

1 : 1.472 : 1.044 : 0.63

2 vσ0 2 4

c

0

0.5

1

1.5

2

a : b : c0 : 2.86 : 0.02a : b : c

1/4 : 1.98 : 0.03

a : b : c

1/2 : 1.77 : 0.04

a : b : c

1 : 1.47 : 0.06

a : b : c

2 : 1.04 : 0.09

a : b : c

4 : 0.63 : 0.14

Selec9ng  b  and  c

2015/1/23

Page 62: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

PreDefence  (M.Sanshiro) 62

Medium  effect  (RAA)

RAA=1  not  modified  RAA≠1  medium  effect    Hadron  less  than  unity  -­‐>  medium  effect    

RAA

=(1/Nevt

AA

)d2NAA

/dpT

dy

< Ncoll

> /�inel

pp

⇥ d2�pp

/dpT

dy

photon  RAA=1  :  not  modified  

   -­‐>  Emi[ed  from  iniOal  hard  sca[ering  RAA>>1  :  There  are  other  photon  sources  which  are  not  in  p+p  collisions.  

2015/1/23

Page 63: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

PreDefence  (M.Sanshiro) 63

Event  Plane  resolu9on RxN(In)  RxN(Out)  RxN(I+O)  

MPC  BBC  RxN(In)+MPC

vtruen

= vobs.n

/Res( n

)

Extracted  from  the  correlaOon  between  the  event  plane  angle    measured  by  south  and  north.    The  vn  measured  with  event  plane  should  be  corrected  by  the    resoluOon.  

=

qhcos {n( true

n

� obs.

n

)}i

hcos {n( South

n

� North

n

)}i

2015/1/23

Page 64: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

(GeV/c) T

p0 5 10 15

2v

-0.2

0

0.2

0-20 %

|<3.8ηRxN(In)+MPC:1.5<||<1.5ηRxN(Out):1.0<|

2 vdir.γ

(GeV/c) T

p0 5 10 15

2v

-0.2

0

0.2

20-40 %

(GeV/c) T

p0 5 10 15

2v

-0.2

0

0.2

40-60 %

(GeV/c) T

p0 5 10 15

3v

-0.4

-0.2

0

0.20-20 %

3 vdir.γ

(GeV/c) T

p0 5 10 15

3v

-0.4

-0.2

0

0.220-40 %

(GeV/c) T

p0 5 10 15

3v

-0.4

-0.2

0

0.240-60 %

PreDefence  (M.Sanshiro) 64

The  event  plane  dependence  of  direct  photon  vn

2015/1/23

Page 65: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

PreDefence  (M.Sanshiro) 65

Charged  hadron  vn

Non-­‐zero  posiOve  vn  are  observed.  The  trend  of  centrality  dependence  is  not  similar.

P.R.L.  107,  252301  (2011)

2015/1/23

Page 66: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

PreDefence  (M.Sanshiro) 66

Event  Plane  correla9on P.R.L.  107,  252301  (2011)

Ψ2  and  Ψ3  are  uncorrelated.

2015/1/23

Page 67: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

PreDefence  (M.Sanshiro) 67

Iden9fied  charged  par9cle  vn

It  is  observed  that    all  harmonics  have  mass  ordering  there  are  meson  and  baryon  spliTng

arXiv:1412:1038  

2015/1/23

Page 68: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

PreDefence  (M.Sanshiro) 68

The  number  of  cons9tuent  quark  scaling  (NCQ  scale)

(a)  :  v2(KET)/nq  (b)  :  vn1/n  scaling  (a)+(b)  :  vn(KET)/nqn/2

All  parOcles  are  scaled  by  modified  NCQ    scaling.  

arXiv:1412:1038  

2015/1/23

Page 69: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

PreDefence  (M.Sanshiro) 69

π0  and  γdir.  v2  measurement  by  STAR

γdir.  v2  in  high  ET  region  are  consistent  with  0  within  systemaOc    uncertainty,  while  π0  has  posiOve  v2.  

Ahmed  M.  Hamed    shown  at  QM

2015/1/23

Page 70: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

PreDefence  (M.Sanshiro) 70

photon  vn  measurement  by  ALICE

v2

It  is  also  observed  that  γdir.  v2  is  posiOve  in  low  pT  at  LHC-­‐ALICE.  v3  measurement  is  ongoing.

v3 γdec.  v3  γinc.  v3

arXiv:1212.3995v2 Friederike  shown  at  QM

2015/1/23

Page 71: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

PreDefence  (M.Sanshiro) 71

The  comparison  of  charged  pion  and  hydro-­‐model

0 1 2 3 40

0.1

0.2

0.3

0 1 2 3 40

0.1

0.2

0.3

0 1 2 3 40

0.1

0.2

0.3

0 1 2 3 40

0.1

0.2

0.3

0 1 2 3 40

0.1

0.2

0.3

0 1 2 3 40

0.1

0.2

0.3

0-­‐20% 20-­‐40% 40-­‐60%

pT(GeV/c) pT(GeV/c) pT(GeV/c)

pT(GeV/c) pT(GeV/c) pT(GeV/c)

v2

v3

π±  :  arXiv:1412:1038  Model  :  arXiv:1403.7558  Private  communica9on

MCGlb+η/s(=0.08)  MCKLM+η/s(=0.20)

2015/1/23

Page 72: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

0 1 2 3 40

0.1

0.2

0.3

0 1 2 3 40

0.1

0.2

0.3

0 1 2 3 40

0.1

0.2

0.3

0 1 2 3 40

0.1

0.2

0.3

0 1 2 3 40

0.1

0.2

0.3

0 1 2 3 40

0.1

0.2

0.3

PreDefence  (M.Sanshiro) 72

The  comparison  of  direct  photon  and  hydro-­‐model 0-­‐20% 20-­‐40% 40-­‐60%

pT(GeV/c) pT(GeV/c) pT(GeV/c)

pT(GeV/c) pT(GeV/c) pT(GeV/c)

v2

v3 MCGlb+η/s(=0.08)  MCKLM+η/s(=0.20)

π±  :  arXiv:1412:1038  Model  :  arXiv:1403.7558  Private  communica9on 2015/1/23

Page 73: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

2015/1/23 PreDefence  (M.Sanshiro) 73

(GeV/c) T

p0 5 10 15

2v

-0.2

-0.1

0

0.1

0.2

0.30-20 %

RxN(I+O)2v dir.γ

(GeV/c) T

p0 5 10 15

2v

-0.2

-0.1

0

0.1

0.2

0.320-40 %

(GeV/c) T

p0 5 10 15

2v

-0.2

-0.1

0

0.1

0.2

0.340-60 %

(GeV/c) T

p0 5 10 15

3v

-0.2

-0.1

0

0.1

0-20 %

RxN(I+O)3v

(GeV/c) T

p0 5 10 15

3v

-0.2

-0.1

0

0.1

20-40 %

(GeV/c) T

p0 5 10 15

3v

-0.2

-0.1

0

0.1

40-60 %

Page 74: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

2015/1/23 PreDefence  (M.Sanshiro) 74

(GeV/c)T

p0 5 10

nv

0

0.1

0.2

0.3

0.40-10%

2Neutral pion v

(GeV/c)T

p0 5 10

nv

0

0.1

0.2

0.3

0.4Present analysis

P.R.C 88, 064910 (2013)

10-20%

(GeV/c)T

p0 5 10

nv

0

0.1

0.2

0.3

0.420-30%

(GeV/c)T

p0 5 10

nv

0

0.1

0.2

0.3

0.430-40%

(GeV/c)T

p0 5 10

nv

0

0.1

0.2

0.3

0.440-50%

(GeV/c)T

p0 5 10

nv

0

0.1

0.2

0.3

0.450-60%

Comparison  of  neutral  pion  v2  with  previous  results

They  are  consistent  within  systemaOc  uncertainty.

Page 75: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

(GeV/c)T

p0 5 10

2v

0

0.1

0.2

0.3

0-20%

2Neutral pion v

E.P. : RxN(I+O)

(GeV/c)T

p0 5 10

2v

0

0.1

0.2

0.3 Present analysisP.R.L. 109, 122302 (2012)

20-40%

(GeV/c)T

p0 5 10

2v

0

0.1

0.2

0.3

40-60%

(GeV/c)T

p0 5 10

2v

0

0.1

0.2

0.3

0-20%

(GeV/c)T

p0 5 10

2v

0

0.1

0.2

0.3

20-40%

(GeV/c)T

p0 5 10

2v

0

0.1

0.2

0.3

40-60%

2015/1/23 PreDefence  (M.Sanshiro) 75

Comparison  of  neutral  pion  v2  with  previous  results

They  are  consistent  within  systemaOc  uncertainty.

Page 76: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

(GeV/c)T

p0 5 10

2v

0

0.1

0.2

0.3

0-20%

2Inclusive photon v

E.P. : BBC

(GeV/c)T

p0 5 10

2v

0

0.1

0.2

0.3 Present analysisP.R.L. 109, 122302 (2012)

20-40%

(GeV/c)T

p0 5 10

2v

0

0.1

0.2

0.3

40-60%

(GeV/c)T

p0 5 10

2v

0

0.1

0.2

0.3

0-20%

(GeV/c)T

p0 5 10

2v

0

0.1

0.2

0.3

20-40%

(GeV/c)T

p0 5 10

2v

0

0.1

0.2

0.3

40-60%

2015/1/23 PreDefence  (M.Sanshiro) 76

Comparison  of  inclusive  photon  v2    with  previous  results

They  are  consistent  within  systemaOc  uncertainty.

Page 77: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

(GeV/c)T

p0 1 2 3 4 5

nv

0

0.05

0.1

0.15

0.2

0.250-10%

2Neutral pion v

(GeV/c)T

p0 1 2 3 4 5

nv

0

0.05

0.1

0.15

0.2

0.25Present analysis

arXiv:1412.1038 (2014)

10-20%

(GeV/c)T

p0 1 2 3 4 5

nv

0

0.05

0.1

0.15

0.2

0.2520-30%

(GeV/c)T

p0 1 2 3 4 5

nv

0

0.05

0.1

0.15

0.2

0.2530-40%

(GeV/c)T

p0 1 2 3 4 5

nv

0

0.05

0.1

0.15

0.2

0.2540-50%

(GeV/c)T

p0 1 2 3 4 5

nv

0

0.05

0.1

0.15

0.2

0.2550-60%

2015/1/23 PreDefence  (M.Sanshiro) 77

Comparison  of  neutral  pion  v2  with  charged  pion  v2

They  are  consistent  within  systemaOc  uncertainty.

Page 78: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

(GeV/c)T

p0 1 2 3 4 5

nv

0

0.05

0.1

0.150-10%

3Neutral pion v

(GeV/c)T

p0 1 2 3 4 5

nv

0

0.05

0.1

0.15Present analysis

arXiv:1412.1038 (2014)

10-20%

(GeV/c)T

p0 1 2 3 4 5

nv

0

0.05

0.1

0.1520-30%

(GeV/c)T

p0 1 2 3 4 5

nv

0

0.05

0.1

0.1530-40%

(GeV/c)T

p0 1 2 3 4 5

nv

0

0.05

0.1

0.1540-50%

(GeV/c)T

p0 1 2 3 4 5

nv

0

0.05

0.1

0.1550-60%

2015/1/23 PreDefence  (M.Sanshiro) 78

Comparison  of  neutral  pion  v3  with  charged  pion  v3

They  are  consistent  within  systemaOc  uncertainty.

Page 79: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

(GeV/c)T

p0 1 2 3 4 5

nv

0

0.05

0.1

0.15

0.20-10%

4Neutral pion v

(GeV/c)T

p0 1 2 3 4 5

nv

0

0.05

0.1

0.15

0.2Present analysis

arXiv:1412.1038 (2014)

10-20%

(GeV/c)T

p0 1 2 3 4 5

nv

0

0.05

0.1

0.15

0.220-30%

(GeV/c)T

p0 1 2 3 4 5

nv

0

0.05

0.1

0.15

0.230-40%

(GeV/c)T

p0 1 2 3 4 5

nv

0

0.05

0.1

0.15

0.240-50%

(GeV/c)T

p0 1 2 3 4 5

nv

0

0.05

0.1

0.15

0.2

2015/1/23 PreDefence  (M.Sanshiro) 79

Comparison  of  neutral  pion  v3  with  charged  pion  v3

They  are  consistent  within  systemaOc  uncertainty.

Page 80: MeasurementOf)DirectPhoton)Higher)Order)) Azimuthal ...utkhii.px.tsukuba.ac.jp/report/2014/Mizuno_D/Predefence_photon_vn_Sanshiro.pdfSanshiro)Mizuno) High)Energy)Nuclear)Physics)Group)

(GeV/c) T

p0 5 10 15

2v

-0.1

0

0.1

0.2

0-20 %

2Direct photon vE.P. : RxN(I+O)

(GeV/c) T

p0 5 10 15

2v

-0.1

0

0.1

0.2Present analysisP.R.L. 109, 122302 (2012)

20-40 %

(GeV/c) T

p0 5 10 15

2v

-0.1

0

0.1

0.2

40-60 %

(GeV/c) T

p0 5 10 15

2v

-0.1

0

0.1

0.2

0-20 %

2Direct photon vE.P. : BBC

(GeV/c) T

p0 5 10 15

2v

-0.1

0

0.1

0.2

20-40 %

(GeV/c) T

p0 5 10 15

2v

-0.1

0

0.1

0.2

40-60 %

2015/1/23 PreDefence  (M.Sanshiro) 80

Comparison  of  direct  photon  v2  with  previous  results

They  are  consistent  within  systemaOc  uncertainty.