23
 Modern Applications using Discrete Mathematical Structures Unit 13 Sikkim Manipal University Page No: 286 Unit 13 Directed Graphs Structure 13.1 Introduction Objectives 13.2 Definitions and Examples 13.3 Binary relation as a digraph 13.4 Euler’s Digraphs 13.5 Matrix Representat ion of Digraphs Self Assessment Questions 13.7 Summary 13.8 Terminal Questions 13.9 Answers 13.1 Introduction The graphs so far studied are undirected graphs (no direction was assigned to the edg e in a graph). In this unit we shall consider directed graphs (graphs in which edges have directions). Many physical situations require directed graphs. The applications of directed graphs are in the street map of city with one-way streets, flow networks with valves in the pipes, and electrical networks. Directed graphs in the form of signal flow graphs are used for system analysis in control theory. Most of the concepts and terminology o f undirected graphs are also applicable to directed graphs. In this unit we see the some of the properties of directed graphs are not shared by undirected graphs.  Objectives  At the end of the unit the studen t must be able to: i) Write the indegree and outdegree of a vertex. ii) Observe the different matrix representati ons of digraphs. iii) Know the tournaments and Euler’s digraphs.. iv) Apply the properties to flows, netw ork and tra ffic problem.

MC0063(B)-unit13-fi

Embed Size (px)

DESCRIPTION

File

Citation preview

  • ModernApplicationsusingDiscreteMathematicalStructures Unit13

    SikkimManipalUniversity PageNo:286

    Unit13 DirectedGraphsStructure

    13.1 Introduction

    Objectives

    13.2 DefinitionsandExamples

    13.3 Binaryrelationasadigraph

    13.4 EulersDigraphs

    13.5 MatrixRepresentationofDigraphs

    SelfAssessmentQuestions

    13.7 Summary

    13.8 TerminalQuestions

    13.9 Answers

    13.1Introduction

    Thegraphssofarstudiedareundirectedgraphs(nodirectionwasassignedto

    theedgeinagraph).Inthisunitweshallconsiderdirectedgraphs(graphsin

    whichedgeshavedirections).Manyphysicalsituationsrequiredirectedgraphs.

    Theapplicationsofdirectedgraphsareinthestreetmapofcitywithoneway

    streets, flow networks with valves in the pipes, and electrical networks.

    Directedgraphsintheformofsignalflowgraphsareusedforsystemanalysis

    incontroltheory.Mostoftheconceptsandterminologyofundirectedgraphs

    are also applicable to directed graphs. In this unit we see the some of the

    propertiesofdirectedgraphsarenotsharedbyundirectedgraphs.

    Objectives

    Attheendoftheunitthestudentmustbeableto:

    i) Writetheindegreeandoutdegreeofavertex.

    ii) Observethedifferentmatrixrepresentationsofdigraphs.

    iii) KnowthetournamentsandEulersdigraphs..

    iv) Applythepropertiestoflows,networkandtrafficproblem.

  • ModernApplicationsusingDiscreteMathematicalStructures Unit13

    SikkimManipalUniversity PageNo:287

    13.2DefinitionsandExamples

    13.2.1Definition:

    A directed graph (or) a digraph D consists of a nonempty set V

    (theelementsof V arenormallydenotedby v1,v2,)andaset E(the

    elementsof Earenormallydenotedby e1,e2,.)andamapping y that

    mapseveryelementof E ontoanorderedpair(vi,vj)ofelementsfrom V.

    Theelementsof V arecalledasverticesornodesorpoints. Theelements

    of E arecalledasedgesorarcsorlines.If e E and vi,vj V such

    that y (e)=(vi,vj),thenwewrite e = jivv .Inthiscase,wesaythat e

    isanedgebetween vi and vj.(Wealsosaythat e isanedgefrom vi to

    vj).(Wealsosaythat e originatesat vi andterminatesat vj).(Anedge

    from vi to vj isdenotedbyalinesegmentwithanarrowdirectedfrom vi

    to vj).

    13.2.2Note

    i) Adirectedgraphisalsorefereedtoasanorientedgraph.

    ii) LetD beadirectedgraphande =vu .

    Then we say that e is incident out of the vertex v, and incident into the

    vertex u.Inthiscase,wesaythatthevertex v iscalledtheinitialvertex

    andthevertex u iscalledtheterminalvertexofe.

    13.2.3 Example

    ThegraphgiveninFigure13.2.3isadigraphwith5verticesandtenedges.

    e9

    v2

    e10

    e5

    e7

    v1

    e8e6

    v4

    v3

    v5

    e1e4

    e3 e2 Fig .13.2.3

  • ModernApplicationsusingDiscreteMathematicalStructures Unit13

    SikkimManipalUniversity PageNo:288

    Here v5 istheinitialvertexand v4 istheterminalvertexfortheedgee7.

    Theedgee5 isaselfloop.

    13.2.4Definition

    i) The number of edges incident out of a vertex v is called the out

    degree(or)outvalenceof v.Theoutdegreeofavertex v isdenoted

    by d+(v).

    ii) The number of edges incident into v is called the indegree (or) in

    valanceof v. The indegreeofavertex v isdenotedby d(v).Note

    thatthedegreeof v isequaltothesumofindegreeandoutdegreeof

    v, foranyvertex v inagraph.(Insymbols, wecanwriteasd(v)=

    d+(v)+d(v)forallvertices v).

    13.2.5Example

    ConsiderthegraphgiveninFig.13.2.3.

    i) Here d+(v1)=3, d+(v2)=1, d+(v3)=1, d+(v4)=1, d+(v5)=4. d(v1)=1,

    d(v2)=2, d(v3)=4,d(v4)=3, d(v5)=0.

    ii) d(v1)=4=3+1=d+(v1)+d(v1) d(v2)=3=1+2=d+(v2)+d(v2),

    andsoon.

    13.2.6 Problem

    Let D be a directed graph. Show that the sum of all indegrees of the

    verticesof D, isequal tothesumofalloutdegreesof theverticesof D

    andeachsumisequaltothenumberofedgesin D.

    [Inotherwords, =

    + n

    1ii )v(d =

    =

    - n

    1ii )v(d =qwhereqisthenumber

    ofedgesin D,and{v1,v2,,vn}isthesetofallverticesin D].

    Solution:Let D beanydigraphwith n verticesandqedges.Whenthe

    indegreesofverticesarecounted,eachedgeiscountedexactlyonce.

    [Thisis,becauseeveryedgegoestoexactlyonevertex].

  • ModernApplicationsusingDiscreteMathematicalStructures Unit13

    SikkimManipalUniversity PageNo:289

    So =

    - n

    1ii )v(d =q ...(i)

    Similarly, when the outdegrees of vertices are counted, each edge is

    countedexactlyonce.[Thisis,becauseeachedgegoesoutofexactlyone

    vertex].

    So =

    + n

    1ii )v(d =q .(ii).

    From(i)and(ii),wegetthat =

    + n

    1ii )v(d =

    =

    - n

    1ii )v(d =q.

    13.2.7Example

    Consider thedigraph inFig.13.2.3.Here thenumberofvertices n = 5,

    andthenumberofedgesq=10.

    Now =

    + n

    1ii )v(d = d

    +(v1)+d+(v2)+d+(v3)+d+(v4)+d+(v5)=3+1+1+1

    +4=10=q

    Also =

    - n

    1ii )v(d = d

    (v1)+ d(v2)+d(v3)+d(v4)+d(v5)=1+2+4+

    3+0=10=q.

    Therefore =

    + n

    1ii )v(d =

    =

    - n

    1ii )v(d =q=thenumberofedges.

    13.2.8Definitions

    i) Avertexvissaidtobeanisolatedvertexif theoutdegreeof v and

    theindegreeof v areequaltozero.(Insymbols,d+(v)=0=d(v)).

    ii) Avertex v inadigraph D issaid tobeapendentvertex if it isof

    degree 1. (Inotherwords,avertex issaid tobeapendentvertex if

    thedegreeof v = d+(v)+d(v)=1).

  • ModernApplicationsusingDiscreteMathematicalStructures Unit13

    SikkimManipalUniversity PageNo:290

    iii) Twodirectededgesaresaid tobeparalleledges if theyaremapped

    ontothesameorderedpairofvertices.

    iv) In other words, two directed edges e and f are said to be parallel

    edges if both e and f originates at the same vertex, and also

    terminatesatthesamevertex.(InthegraphgiveninFig.13.2.3,the

    edges e8, e9,ande10 areparalleledges.Theedgese2 and e3 are

    notparallel).

    13.2.9Note

    i) Let D be directed graph. If we disregard the orientation (that is,

    direction)ofeveryedgein D, thenwegetanundirectedgraph.The

    undirectedgraphobtained(inthisway)from D iscalledtheundirected

    graphcorrespondingto D.

    ii) SupposeHisanundirectedgraph.ToeachedgeofHwecanassign

    adirection.ThenthedigraphobtainediscalledanorientationofH.(or

    adirectedgraphassociatedwithH).

    13.2.10Definition

    Let D1and D2betwodigraphs.Thesetwographsaresaid tobe isomorphic if

    i) thecorrespondingundirectedgraphsareisomorphic,and

    ii) thedirectionsofcorrespondingedgesmustbesame.

    13.2.11Example

    i) Consider the directed graphs D1 and D2 given. The two digraphs D1

    and D2 arenot isomorphic(becausethedirectionof theedgee4 in

    D1 isdifferentfromthedirectionoftheedgee4 in D2).

    e1 e4

    e5

    e2

    e3

    e6

    e1 e4

    e5

    e2

    e3

    e6GraphD1 GraphD2

  • ModernApplicationsusingDiscreteMathematicalStructures Unit13

    SikkimManipalUniversity PageNo:291

    ii) Note that the undirected graphs corresponding to D1 and D2 are

    isomorphic.

    13.2.12Definition

    Adigraph that hasneither selfloopsnorparallel edges is calleda simple

    digraph.

    Inotherwords, adirectedgraph D is said tobea simpledigraph if the

    correspondingundirectedgraphisasimplegraph.Thetwodigraphsgiven

    inExample13.2.11aresimpledirectedgraphs.

    13.2.13Definition

    i) Digraphs that have at most one directed edge between any pair of

    vertices,butareallowed tohaveselfloopsarecalled theasymmetric

    (or)antisymmetricdigraphs.

    ii) AdigraphD issaidtobeasymmetricdigraphifforeveryedge(a,b)

    in D thereisalsoanedge(b,a)in D.

    iii) A digraph that is both simple and symmetric is called a simple

    symmetricdigraph.

    iv) A digraph that is both simple and asymmetric is called simple

    asymmetricdigraph.

    v) A simple digraph is said to be a complete symmetric digraph if it

    satisfiesthefollowingcondition:"Givenanytwoverticesv1andv2 there

    correspondexactlyoneedgedirectedfrom v1 to v2".

    vi) A complete asymmetric digraph (or) tournament (or) a complete

    tournament. is an asymmetric digraph in which there is exactly one

    edgebetweeneverypairofvertices.

    13.2.14Example

    Inthefollowing,

    i) ThegraphD1 isnotasymmetric since thereexist twodirectededges

    between v1 and v2.

  • ModernApplicationsusingDiscreteMathematicalStructures Unit13

    SikkimManipalUniversity PageNo:292

    ii) ThegraphD2 isasymmetric.

    iii) Anynullgraphisasymmetric.

    iv) ThedigraphD3 isacompletesymmetricdigraph.

    13.2.15Observation:

    i) A tournament (means, complete asymmetric digraph) of n vertices

    contains ( ) 2

    1nn - edges.

    Thedirectedgraphgivenin13.2.11isatournament.Inthisgraph,the

    numberofverticesis n=4.

    Thenumberedgesis6= ( ) 2

    144 - =

    ( ) 2

    1nn - .

    ii) Acompletesymmetricgraphof n verticescontains n(n1) edges.

    The digraph given in 13.2.14, D3 is a complete symmetric graph on

    n =4vertices.

    Inthisgraph,thenumberofedgesis12=4(41)= n(n1).

    13.2.16Definition

    Adigraph D issaidtobebalancedif the indegreeof v isequal totheout

    degreeof v foreveryvertex v in D.Inotherwords,adigraph D issaidto

    bebalancedifd+(v)= d(v)forallvertices v inthedigraph D.Abalanced

    digraph isalsoknownas pseudosymmetricdigraph(or)anisograph.

    v2v3

    v1

    G1 G2

    G3

  • ModernApplicationsusingDiscreteMathematicalStructures Unit13

    SikkimManipalUniversity PageNo:293

    Abalanceddigraphissaidtobearegulardigraph if itsatisfythefollowing

    twoconditions:

    i) Theindegreesofalltheverticesof D areequaland

    ii) Theoutdegreesofalltheverticesof D areequal.

    13.3Binaryrelationasadigraph

    Let X beaset.Representtheelementsof X bythesymbols x1,x2,

    Supposethat R isarelationon X.Werepresenttheelementsof X as

    verticesanddrawadirectededgefrom xi to xj if(xi,xj) R.Thenweget

    adirectedgraphwhichrepresentsthegivenrelation R on X.

    13.3.1Example:

    Considertheset X={3,4,5,7,8}andtherelation(R,>)on X.

    Then R={(8,3),(8,4),(8,5),(8,7),(7,3),(7,4),(7,5),(5,4),(4,3)}

    ={(x,y)/ x>y, x,y X}.

    Thegraph D giveninbelowrepresentsthisrelation R on X.

    Itisclearthat,everybinaryrelationonafinitesetcanberepresentedbya

    directedgraphwithout parallel edges. Conversely, if a directed graph D

    withoutparalleledgeswasgiven,thentherecorrespondsabinaryrelation

    onthesetofvertices.

    57

    3

    4

    8

  • ModernApplicationsusingDiscreteMathematicalStructures Unit13

    SikkimManipalUniversity PageNo:294

    13.3.2Definition:

    i) Let X beaset,and R arelationon X(thatis, R X X).If(x,y)

    R, thenwealsowrite xRy.Therelation R issaidtobereflexive

    relation ifxRx forall x X.

    (Notethatthedigraphsofareflexiverelationhaveaselfloopatevery

    vertex).

    Wecalladirectedgraphrepresentingareflexivebinaryrelationonits

    vertexsetasreflexivedigraph.

    A digraph in which no vertex has a selfloop is called an irreflexive

    digraph.

    ii) Let X beaset,and R arelationon X.Wesaythat R is symmetric

    if a,b X, aRb bRa. Notethatadirectedgraph representinga

    symmetricrelationisasymmetricdigraph.

    13.3.3 Example

    ThegraphgiveninD1 isthedigraphofarelationwhichissymmetricbutnot

    reflexive.Thisrelationisontheset{x1,x2,x3,x4}.Someauthorsrepresent

    thisrelationbytheundirectedgraphgiveninD2.NotethatinthegraphD2

    onlyoneundirectededgetakenbetweenapairofvertices(thatarerelated

    undertherelationR).

    13.3.4Definition:

    Let X beaset, and R a relationon X.The relation R issaidtobe

    transitive if a, b, c R, aRb, bRc aRc. A digraph representing a

    transitive relation is called a transitive digraph. [Observe that the graph

    x1 x2

    x3 x4

    GraphG1

    x1 x2

    x4 x3

    GraphG2

  • ModernApplicationsusingDiscreteMathematicalStructures Unit13

    SikkimManipalUniversity PageNo:295

    givenin13.3.1isatransitivedigraph].

    Let X beaset,and R arelationon X.

    i) The relation R is said to be an equivalence relation if it is reflexive,

    symmetricandtransitive.

    ii) Adigraphrepresentinganequivalencerelationiscalledanequivalence

    digraph.

    13.3.5Example

    ConsiderthebinaryrelationR(=Congruentmodulo3)definedontheset

    X={10,11,12,13,14,15,16,17,18,19,20}.

    Wecanobservethatthisrelation Ron X isanequivalencerelation.The

    related equivalencegraphwas given.We are use undirected graph here.

    Observe that the set of vertices is divided into three disjoint equivalence

    classes.Eachofthesesetsformseparatecomponents.Eachcomponentis

    anundirectedsubgraph(duetosymmetry, weareusingundirectedgraph

    withaselfloopateachvertex).Alsonotethat(sinceanytwoelementsinan

    equivalenceclassarerelated)anytwovertices insidethecomponentwere

    joinedbyanedge.

    13.3.6Definition

    LetXbeaset,andRisabinaryrelationonX.ThisrelationRonXmaybe

    representedbyamatrix.Thismatrix iscalledasrelationmatrix. It isa (0,1)

    nnmatrix,where n isthenumberofelementsintheset X ={x1,x2,, xn}.

    11 14

    17 20

    )3(mod2

    10 13

    16 19

    )3(mod1

    15

    12

    18

    )3(mod0

  • ModernApplicationsusingDiscreteMathematicalStructures Unit13

    SikkimManipalUniversity PageNo:296

    Therelationmatrix( ija )isdefinedasfollows:

    ija =1if xiRxj.

    =0otherwise.

    13.3.7 Example:

    The relation matrix of the relation R (" usual grater than") on the set

    X={3,4,5,7,8},istheMatrix

    13.3.8Definition:

    i) Apath v0e1v1e2v2envn issaidtobea directedpathifek isoriented

    from vk1 to vk foreach1 k n.Apathwhichisnotadirected

    pathiscalledasemipath.Inadirectedgraph,theword"path"refers

    toeitheradirectedpathorasemipath.

    ii) Let D beadirectedgraph.Adirectedwalk(in D)fromavertex v to

    u isanalternatingsequenceofverticesandedgesbeginningwith v

    andendingwith u such that eachoneof theedges isoriented (or

    directed)fromthevertexprecedingittothevertexfollowingit.[Inother

    words,awalk v0e1v1e2v2envn intheundirectedgraph D issaidto

    beadirectedwalkif ek isorientedfrom vk1 to vk forall1 k n].

    13.3.9Example:

    ConsiderthegraphgivenintheFig13.2.3.

    i) Thepath v5e8v3e6v4e3v1 isadirectedpathfrom v5 tov1.

    ii) Ifwedisregardtheorientationin D,thenv5e7 v4e6 v3e1v1 isapath.

    Observethatitisnotadirectedpath.Soitisa"semipath".

    34758

    34

    7

    5

    8

    01111

    00011

    01011

    00001

    00000

    .

  • ModernApplicationsusingDiscreteMathematicalStructures Unit13

    SikkimManipalUniversity PageNo:297

    Sinceadirectedwalkisawalk,wehavethatnoedgeappearsmorethan

    once(butavertexmayappearmorethanonce).

    13.3.10Definition:

    Let D beadigraph.

    i) Awalkwhichisnotadirectedwalkiscalledassemiwalk.Weusethe

    term"walk"tomeaneitheradirectedwalk(or)asemiwalk.

    ii) Acircuit(inthecorrespondingundirectedgraph)v0e1v1e2v2envn issaid

    tobea directedcircuit if ek isorientedfrom vk1 to vk forall1 k n.

    iii) Acircuitwhichisnotadirectedcircuitisasemicircuit.

    13.3.11Example:

    Considerthedigraph D given13.2.3.

    i) Thecircuit v1e1v3e6v4e3v1 isadirectedcircuit.

    ii) Thecircuit v1e1v3e6v4e2v1 isnotadirectedcircuit.Soitisasemicircuit.

    Inundirectedgraphs,wedefinetheconnectednessbyusingthenotion"path".

    Astherearetwodifferenttypesofpaths(namelydirectedpath,semipath) in

    digraphs,wehavetwodifferenttypesofconnectednessinthedigraphs.

    13.3.12Definition

    Let D beadigraph.

    i) D issaidtobestronglyconnectedifthereexistsatleastonedirected

    pathfromeveryvertextoeveryothervertex.

    ii) D issaidtobeweaklyconnectedifitscorrespondingundirectedgraph

    isconnected,but D isnotstronglyconnected.

    iii) Wesaythat D isconnectediftheundirectedgraphcorrespondingto

    D is connected. So the word "connected digraph" refers to both

    stronglyconnecteddigraphandweaklyconnecteddigraph.

    iv) If D isnotconnected,thenwesaythat D isadisconnectedgraph.

    13.3.13Example:

    ConsiderthedigraphsD1 and D2 giveninthefollowing.

    i) ThegraphD1 isastronglyconnectedgraph.

  • ModernApplicationsusingDiscreteMathematicalStructures Unit13

    SikkimManipalUniversity PageNo:298

    ii) In the graphD2, there is no directed path from v1 to v4 so it is a

    weaklyconnecteddigraph.

    Since there are two types of connectedness in a digraph, we define two

    typesofcomponents.

    13.3.14Definition

    Let D beadirectedgraph.

    i) Eachmaximal connected (weakly or strongly) subgraph of a digraph

    D,issaidtobeacomponentof D.

    ii) With in each component of D, the maximal strongly connected

    subgraphs are said to be the fragments (or) strongly connected

    fragmentsof D.

    13.3.15Example:

    ConsiderthedigraphgivenintheFig13.3.15.

    ThisgraphconsistsoftwocomponentsH1andH2.

    e2 e2

    v4

    v1

    e1 e4

    e5

    e3

    e6

    e1 e4

    e5

    e3

    e6GraphD1 GraphD2

    v1

    e9

    e13

    e12

    e14

    e11

    Fig13.3.15

    e10

    e1

    e2

    e5

    e3 e4

    e6e7

    e8

    H1

    g2

  • ModernApplicationsusingDiscreteMathematicalStructures Unit13

    SikkimManipalUniversity PageNo:299

    i) ThecomponentH1 containsthreefragments:{e1,e2}{e5, e6, e7, e8}

    and{e10}.

    ii) ThecomponentH2 containsafragment {e11, e12, e13}.

    iii) Itcanbeobservedthat e3, e4 and e9 donotappearinanyfragment

    ofH1.

    13.3.6Definition:

    Let Dbeadigraph.Thecondensation Dc of D isadigraphobtainedby

    usingthefollowingmethod:

    i) Eachstronglyconnectedfragmentistobereplacedbyanewvertex,and

    ii) Foranytwostronglyconnectedcomponentsc1 andc2,thesetofall

    thedirectededgesfromc1 toc2 istobereplacedbyasingledirected

    edge(fromc1 toc2).

    iii) Let D beadirectedgraphand v, u areverticesin D.Then v said

    tobeaccessible(or)reachablefromthevertex u,ifthereisadirected

    pathfrom u to v.

    13.3.7Example:

    Considerthegraph D givenintheFig13.3.15.

    i) Thecomponentsof D areg1,g2.

    ii) Thefragmentsof D areC1={e1,e2}

    C2={e5,e6,e7,e8}C3={e10}andC4={e11,e12,e13}.

    iii) ThefragmentsC1,C2,C3 andC4 aretobeconsideredasvertices.

    iv) Therearetwoedges e3 and e4 fromC1 toC2.

    Thesetwoedges e3 and e4 aretobereplacedbyanedge(sayf1)

    fromtheverticesC1 toC2.

    v) Thereisonlyoneedge e9 fromthefragmentC2 toC3.Sothisedge

    e9 istobedrawnfromthevertexC2 toC3.

    vi)Thereisonlyoneedge(e14)fromthefragmentC4 tothevertexv1. So

    thisedgeistobedrawn(inthecondensation)fromthevertexC4 to v1.

    vii)Finallywegetthecondensation Dc thatwasgivenintheFig13.3.7.

  • ModernApplicationsusingDiscreteMathematicalStructures Unit13

    SikkimManipalUniversity PageNo:300

    13.3.8Observations

    i) Thecondensation Dc ofastronglyconnecteddigraph D isavertex.

    ii) Thecondensation Dc ofadigraph D containsnodirectedcircuits.

    Itisclearthatadigraph D isstronglyconnected "v isaccessiblefrom

    u"forallvertices v and u in D.

    13.4EulersDigraphs

    13.4.1Definition:

    LetDbeadirectedgraph.

    i) A directed walk that starts and ends at the same vertex is called a

    closeddirectedwalk.

    ii) Acloseddirectedwalkwhichtraverseseveryedgeof D exactlyonce,

    iscalledadirectedEulerline.

    iii) D issaidtobeanEulerdigraphifitcontainsadirectedEulerline.

    13.4.2 Example:

    Considerthegraphgiveninthefollowing.

    e9

    v1 Fig. 13.3.7

    C4

    e14

    C3

    C2

    f1

    C1

    a

    fc

    e

    c

    1

    2

    b

    dc

    4

    3

  • ModernApplicationsusingDiscreteMathematicalStructures Unit13

    SikkimManipalUniversity PageNo:301

    Theedgesequencef,a,b,c,d,e formsadirectedEuler line.Hencethis

    graphisaEulerdigraph.

    13.4.3Theorem:

    Let D be a digraph. Then D is an Euler digraph if and only if D is

    connectedandbalanced.

    [thatis, d+(v)=d(v)foreveryvertex v in D].

    13.4.4Definition:

    A connected digraph containingno circuit (neither a directed circuit nor a

    semicircuit)issaidtobeatree.

    13.4.5Note:

    i) Atreeon n verticescontain n1edges(directed).

    ii) Treesindigraphshaveadditionalproperties(thanthoseinundirected

    graphs) and variations resulting from the relative orientations of the

    edges.

    13.4.6Definition:

    A digraph D is said to be an arborescence if it satisfy the following two

    conditions:

    i) Dcontainsnocircuit(neitheradirectedcircuitnorasemicircuit).

    ii) Thereexistsexactlyonevertex v ofzeroindegree(thisvertex v is

    calledtherootofthearborescence).

    13.4.7 Example:

    Thegraphgivenhereisarborescence.

    v(root)

  • ModernApplicationsusingDiscreteMathematicalStructures Unit13

    SikkimManipalUniversity PageNo:302

    13.5 MatrixRepresentationofDigraphs

    13.5.1Definition:

    Let D be a digraph with p vertices. The adjacencymatrix of D is a pp

    matrix(aij)with

    aij= i j1if v v isanarcof D

    0otherwise

    .ItisdenotedbyA(D).

    Theadjacencymatrixforthedigraphgiveninfigure13.5.1is

    01110

    01000

    00010

    10000

    00110

    .

    Thesumof the ith rowentriesof theadjacencymatrixgivesd+(vi)and the

    sumoftheithcolumnentriesgivesd(vi)foreveryi.

    ThepowersofA(D)givethenumberofwalksfromonepointtoanother.

    13.5.2Problem:

    The(i,j)thentryAn isthenumberofwalksoflengthnfromvi tovj.

    Solution:(Byinductiononn)

    Step1:n=1thestatementistruebythedefinitionofadjacencymatrix.

    Step2:Inductionhypothesis:thetheoremistrueforn1.

    LetAn1=(bij).Thereforebij=numberofvivjwalksoflengthn1.

    v2

    e5

    e7

    v1

    e8

    e6

    v4

    v3

    v5

    e1

    e4

    e3e2

    fig13.5.1

  • ModernApplicationsusingDiscreteMathematicalStructures Unit13

    SikkimManipalUniversity PageNo:303

    Step3:ConsiderAn=An1A.

    Thereforethe(i,j)th entryofAn=bi1a1j++bipapj.(1)

    BythedefinitionofA(D),akj=numberofvkvjwalksoflength1.

    Hence by step 2, for every k, 1 k p, bikakj = number of vivj walks of

    lengthnwhoselastarcisvkvj.

    Since anywalkhas one among v1vj, v2vj,,vpvj as the last arc, the right

    handsideofexpression(1)givesthenumberofvivjwalksoflengthn.

    Hence(i,j)thentryofAn isthenumberofvivjwalksoflengthn.

    13.5.3Definition:

    i) LetDbedigraphwithpvertices.ThereachabilitymatrixR=(rij)isthe

    ppmatrixwith

    j iij

    1if v isreachablefromvr =

    0otherwise

    . We assume that each vertex is

    reachablefromitself.

    ii) The distance matrix is the pp matrix whose (i,j)th entry gives the

    distancefromthepointvi tothepointvjandisinfinityifthereisnopath

    fromvi tovj.

    iii) Thedetourmatrix is theppmatrixwhose (i,j)thentry is the lengthof

    anylongestvivjpathandinfinityifthereisnosuchpath.

    13.5.4Example:

    Thereachablematrix,distancematrixandthedetourmatrixrespectivelyare

    forthematrixgivenin13.5.1aregivenbelow.

    11110 111 112

    01000

    10110 , 2331 and 2331 .

    11110 1222 1223

    11110 2331 2332

    1 1

  • ModernApplicationsusingDiscreteMathematicalStructures Unit13

    SikkimManipalUniversity PageNo:304

    SelfAssessmentQuestions

    1.Findtheindegreeandoutdegreeofthefollowingdigraphs

    2. Findthespanningtreeofthedigraphgivenin1(ii).

    3. Verifywhetherornotthefollowingdigraphsareisomorphic?Ifso,write

    theisomorphisms.

    13.7Summary

    In this unit we have investigated the fundamental featuresof the directed

    graphs.Onecanobservethatthepropertiesofdigraphsaresimilartosome

    typesofundirectedgraphs.Thecloserelationshipbetweenbinaryrelation

    anddigraphswasgiven. Directedgraphshave interestingapplications in

    telecommunications,flowsandnetworksandroutingproblems.

    (i)

    c

    ba

    o

    oo

    c

    a

    b

    d

    e

    (ii)

    o

    o

    oo

    o

    1

    2

    3

    4o

    o

    o

    o

    G:

    a

    b

    cd

    G1:

    o o

    o

    o

  • ModernApplicationsusingDiscreteMathematicalStructures Unit13

    SikkimManipalUniversity PageNo:305

    13.8TerminalQuestions

    1. Draw thedigraphs for thedigraphD = {a, b, c, d, e}where thearcs

    representedby {(a,c), (a,d), (b,e), (e,c), (d,c)}. Write the

    indegreeandoudegreeofD.

    FindalsotheconverseD1 (i.e.,reversingtheeacharcdirection inD)

    andfindtheindegreeandoutdegreeofeachpointinD1.

    2. Giveanexampleofadirectedtreewithfivevertices.

    3. Findindegreeandoutdegreeofeachvertex inthefollowingdirected

    graphs.

    13.9Answers

    SelfAssessmentQuestions

    1. i) Indegreea=1

    outdegreea=2

    Similarlyid(b)=1,Od(b)=1

    id(c)=2,Od(c)=1

    ii) id(a)=1id(b)=2id(c)=3id(d)=1id(e)=1

    Od(a)=1Od(b)=2Od(c)=2Od(d)=1Od(e)=1

    (i)

    v1 v2

    v3v4

    v5

    o

    o

    o

    oo

    (ii)

    d

    a b

    c

    oo

    oo

  • ModernApplicationsusingDiscreteMathematicalStructures Unit13

    SikkimManipalUniversity PageNo:306

    2.

    3. DandD1areisomorphicundertheisomorphismf(1)=a,f(2)=b,f(3)=

    c,f(4)=d.

    TerminalQuestions

    1 Thedigraphrepresentingthegivenarcsis

    Theconversedigraphalsocanbefoundinasimilarway.

    2.

    a

    bc

    e

    d

    aa

    o

    oo

    o

    o o

    c

    ebo

    o

    o o

    ob

    d

    a

    d

    e

    ca bo

    o

    o

    o o

  • ModernApplicationsusingDiscreteMathematicalStructures Unit13

    SikkimManipalUniversity PageNo:307

    3. i) indegreev1=2,outdegreev1=1

    indegreev2=2,outdegreev2=2

    Similarforothervertices.(ii).Similarto(i).

  • ModernApplicationsusingDiscreteMathematicalStructures Unit13

    SikkimManipalUniversity PageNo:308

    SuggestedReferences

    1. Bernard Kolman, R.C. Busby, Sharon Ross, Discrete Mathematical

    StructuresPHI,1999.

    2. Deo Narsing, Graph Theory with Applications to Engineering and

    ComputerScience,PrenticeHallIndia,NewDelhi1986.

    3. FraleighJ.B.AFirstCourseinAbstractAlgebra,NarosaPub.House

    ,NewDelhi,1992

    4. Graham R. L., Knuth, D. E., and Patashnik O., Concrete

    Mathematics, A Foundation for Computer Science, 2nd Ed., Addison

    Wesley,1994.

    5. HararyF.,GraphTheory,AdditionWesley,1969.

    6. HersteinI.N.TopicsinAlgebra,NewYork,Blaisdell,1964.

    7. KlirGeorgeJ.andYuanBo,FuzzySetsandFuzzyLogic,PrenticeHall

    India,NewDelhi,2000.

    8. Linz Peter, An Introduction to Formal Languages and Automata,

    NarosaPublishingCompany,1998.

    9. Liu.C.L.,ElementsofDiscreteMathematics,McHill.

    10. Liu.C.L., IntroductiontoCombinatorialMathematics,McGrawHill,

    NewYork,1968

    11. Richard Johnsonbaugh, Discrete Mathematics Pearson Education

    Asia,2001

    12. RosenK.H.,HandBookofDiscreteandCombinatorialMathematics,

    CRCPress,1999.

    13. Shanker Rao, G., Discrete Mathematical Structures, New Age

    InternationalPublishers,2002.

    14. SomasundaramRm. DiscreteMathematicalStructuresPrenticeHall

    IndiaLimited,2003.

    15. Trembly,J.P.,andManohar,R.DiscreteMathematicalStructureswith

    ApplicationstoComputerScience,McGrawHill,1975.

    16. West Dougles B., Introduction to Graph Theory, Prentice Hall India,

    1999.