4
Inelastic Deformation Shinichi Hirai Dept. Robotics, Ritsumeikan Univ. Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Inelastic Deformation 1 / 32 Agenda 1 One-dimensional Inelastic Deformation 2 Multi-dimensional Inelastic Deformation 3 Finite Element Method in Inelastic Deformation Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Inelastic Deformation 2 / 32 Elastic/viscoplastic/rheological deformation elastic rheological plastic Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Inelastic Deformation 3 / 32 Maxwell model E c E : Young’s modulus c : viscous modulus ε ela : strain at elastic element ε vis : strain at viscous element ε: strain σ: stress ε = ε ela + ε vis σ = E ε ela , σ = c ˙ ε vis stress-strain relationship in Maxwell model: ˙ σ + E c σ = E ˙ ε Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Inelastic Deformation 4 / 32 Maxwell model ordinary differential equation of the first order: ˙ σ + E c σ = E ˙ ε stress at time t : σ(t )= t 0 Ee - E c (t -t ) ˙ ε(t ) dt In general, σ(t )= t 0 r (t - t ε(t ) dt Function r (t - t ): relaxation function Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Inelastic Deformation 5 / 32 Three-element model E c 1 c 2 E : Young’s modulus c 1 , c 2 : viscous moduli ε voigt : strain at Voigt element ε vis : strain at viscous element ε: strain σ: stress ε = ε voigt + ε vis σ = E ε voigt + c 1 ˙ ε voigt , σ = c 2 ˙ ε vis stress-strain relationship in three-element model: ˙ σ + E c 1 + c 2 σ = c 1 c 2 c 1 + c 2 ¨ ε + Ec 2 c 1 + c 2 ˙ ε Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Inelastic Deformation 6 / 32 Three-element model ordinary differential equation of the first order: ˙ σ + E c 1 + c 2 σ = c 1 c 2 c 1 + c 2 ¨ ε + Ec 2 c 1 + c 2 ˙ ε stress at time t : σ(t )= t 0 r (t - t ε(t ) dt where r (t - t )= Ec 2 c 1 + c 2 e - E c 1 +c 2 (t -t ) ( 1+ c 1 E d dt ) Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Inelastic Deformation 7 / 32 Isotropic deformation models elastic deformation specified by a constant E : σ = E ε 2D isotropic elastic deformation specified by two constant λ and μ (Lam´ e’s constants): σ =(λI λ + μI μ )ε I λ = 1 1 0 1 1 0 0 0 0 , I μ = 2 0 0 0 2 0 0 0 1 Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Inelastic Deformation 8 / 32

Maxwell model - 立命館大学

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Maxwell model - 立命館大学

Inelastic Deformation

Shinichi Hirai

Dept. Robotics, Ritsumeikan Univ.

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Inelastic Deformation 1 / 32

Agenda

1 One-dimensional Inelastic Deformation

2 Multi-dimensional Inelastic Deformation

3 Finite Element Method in Inelastic Deformation

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Inelastic Deformation 2 / 32

Elastic/viscoplastic/rheologicaldeformation

elastic

rheological

plastic

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Inelastic Deformation 3 / 32

Maxwell model

E c

E : Young’s modulusc : viscous modulusεela: strain at elastic elementεvis: strain at viscous elementε: strainσ: stress

ε = εela + εvis

σ = Eεela, σ = c εvis

stress-strain relationship in Maxwell model:

σ +E

cσ = E ε

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Inelastic Deformation 4 / 32

Maxwell modelordinary differential equation of the first order:

σ +E

cσ = E ε

stress at time t:

σ(t) =

∫ t

0

Ee−Ec (t−t ′)ε(t ′) dt ′

In general,

σ(t) =

∫ t

0

r(t − t ′) ε(t ′) dt ′

Function r(t − t ′): relaxation function

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Inelastic Deformation 5 / 32

Three-element model

E

c1

c2

E : Young’s modulusc1, c2: viscous moduliεvoigt: strain at Voigt elementεvis: strain at viscous elementε: strainσ: stress

ε = εvoigt + εvis

σ = Eεvoigt + c1εvoigt, σ = c2ε

vis

stress-strain relationship in three-element model:

σ +E

c1 + c2σ =

c1c2

c1 + c2ε +

Ec2

c1 + c2ε

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Inelastic Deformation 6 / 32

Three-element modelordinary differential equation of the first order:

σ +E

c1 + c2σ =

c1c2

c1 + c2ε +

Ec2

c1 + c2ε

stress at time t:

σ(t) =

∫ t

0

r(t − t ′) ε(t ′) dt ′

where

r(t − t ′) =Ec2

c1 + c2e− E

c1+c2(t−t ′)

(1 +

c1

E

d

dt

)

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Inelastic Deformation 7 / 32

Isotropic deformation modelselastic deformationspecified by a constant E :

σ = Eε

2D isotropic elastic deformationspecified by two constant λ and µ (Lame’s constants):

σ = (λIλ + µIµ)ε

Iλ =

1 1 01 1 00 0 0

, Iµ =

2 0 00 2 00 0 1

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Inelastic Deformation 8 / 32

1

Page 2: Maxwell model - 立命館大学

Isotropic deformation modelsviscoelastic deformationspecified by an operator E + c d/dt:

σ =

(E + c

d

dt

2D isotropic viscoelastic deformationspecified by two operators λ and µ:

σ = (λIλ + µIµ)ε

λ = λela + λvis d

dt, µ = µela + µvis d

dt

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Inelastic Deformation 9 / 32

Isotropic deformation modelsviscoplastic deformationspecified by a convolution with a relaxation function:

σ(t) =

∫ t

0

r(t − t ′) ε(t ′) dt ′

2D isotropic viscoplastic deformationspecified by two relaxation functions:

σ(t) =

∫ t

0

R(t − t ′) ε(t ′) dt ′

R(t − t ′) = rλ(t − t ′)Iλ + rµ(t − t ′)Iµ

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Inelastic Deformation 10 / 32

Isotropic deformation modelsviscoplastic deformationa relaxation function:

r(t − t ′) = E exp

{−E

c(t − t ′)

}

2D isotropic viscoplastic deformationtwo relaxation functions:

rλ(t − t ′) = λela exp

{−λela

λvis(t − t ′)

}

rµ(t − t ′) = µela exp

{−µela

µvis(t − t ′)

}

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Inelastic Deformation 11 / 32

Isotropic deformation modelsrheological deformationspecified by a convolution with a relaxation function:

σ(t) =

∫ t

0

r(t − t ′) ε(t ′) dt ′

2D isotropic rheological deformationspecified by two relaxation functions:

σ(t) =

∫ t

0

R(t − t ′) ε(t ′) dt ′

R(t − t ′) = r rheoλ (t − t ′)Iλ + r rheo

µ (t − t ′)IµShinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Inelastic Deformation 12 / 32

Isotropic deformation modelsrheological deformationa relaxation function:

r(t − t ′) =Ec2

c1 + c2e− E

c1+c2(t−t ′)

(1 +

c1

E

d

dt

)

2D isotropic rheological deformationtwo relaxation functions:

r rheoλ (t − t ′) =

λelaλvis2

λvis1 + λvis

2

exp

{− λela

λvis1 + λvis

2

(t − t ′)

}(1 +

λvis1

λela

d

dt

)

r rheoµ (t − t ′) =

µelaµvis2

µvis1 + µvis

2

exp

{− µela

µvis1 + µvis

2

(t − t ′)

}(1 +

µvis1

µela

d

dt

)

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Inelastic Deformation 13 / 32

Nodal elastic forcesstress-strain relationship

σ = (λIλ + µIµ)ε

a set of elastic forces applied to nodal points:

elastic force = −(λJλ + µJµ)uN

from stress-strain relationship to nodal force setreplacing Iλ by Jλ, Iµ by Jµ, and ε by uN in thestress-strain relationship yields the elastic force set

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Inelastic Deformation 14 / 32

Nodal viscoelastic forcesstress-strain relationship

σ = (λelaIλ + µelaIµ)ε + (λvisIλ + µvisIµ)ε

replacing Iλ by Jλ, Iµ by Jµ, and ε by uN in thestress-strain relationship yields a viscoelastic force set

⇓a set of viscoelastic forces applied to nodal points:

viscoelastic force = − Jλ(λelauN + λvisuN)

− Jµ(µelauN + µvisuN)

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Inelastic Deformation 15 / 32

Nodal viscoplastic forcesstress-strain relationship

σ(t) = Iλ

∫ t

0

rλ(t − t ′) ε(t ′)dt ′ + Iµ

∫ t

0

rµ(t − t ′) ε(t ′)dt ′

replacing Iλ by Jλ, Iµ by Jµ, and ε by uN in thestress-strain relationship yields a viscoplastic force set

⇓a set of viscoplastic forces applied to nodal points

viscoplastic force = − Jλ

∫ t

0

rλ(t − t ′) uN(t ′) dt ′

− Jµ

∫ t

0

rµ(t − t ′) uN(t ′) dt ′

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Inelastic Deformation 16 / 32

2

Page 3: Maxwell model - 立命館大学

Nodal viscoplastic forcesintroduce

fλ =

∫ t

0

λela exp

{−λela

λvis(t − t ′)

}uN(t ′) dt ′

fµ =

∫ t

0

µela exp

{−µela

µvis(t − t ′)

}uN(t ′) dt ′

Vectors fλ and fµ have dimension of force/length

viscoplastic force = −Jλfλ − Jµfµ

fλ = −λela

λvisfλ + λelauN = −λela

λvisfλ + λelavN

fµ = −µela

µvisfµ + µelauN = −µela

µvisfµ + µelavN

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Inelastic Deformation 17 / 32

Nodal viscoplastic forces

ordinary differential equation of the first order:

σ +E

cσ = E ε

fλ = −λela

λvisfλ + λelauN = −λela

λvisfλ + λelavN

fµ = −µela

µvisfµ + µelauN = −µela

µvisfµ + µelavN

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Inelastic Deformation 18 / 32

Nodal rheological forcesstress-strain relationship

σ(t) = Iλ

∫ t

0

r rheoλ (t−t ′)ε(t ′)dt ′+Iµ

∫ t

0

r rheoµ (t−t ′)ε(t ′)dt ′

replacing Iλ by Jλ, Iµ by Jµ, and ε by uN

rheological force = − Jλ

∫ t

0

r rheoλ (t − t ′) uN(t ′) dt ′

− Jµ

∫ t

0

r rheoµ (t − t ′) uN(t ′) dt ′

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Inelastic Deformation 19 / 32

Nodal rheological forcesintroduce

fλ =

∫ t

0

λelaλvis2

λvis1 + λvis

2

e− λela

λvis1

+λvis2

(t−t ′)(uN +

λvis1

λelauN

)(t ′) dt ′

fµ =

∫ t

0

µelaµvis2

µvis1 + µvis

2

e− µela

µvis1

+µvis2

(t−t ′)(uN +

µvis1

µelauN

)(t ′) dt ′

Vectors fλ and fµ have dimension of force/length

rheological force = −Jλfλ − Jµfµ

fλ = − λela

λvis1 + λvis

2

fλ +λelaλvis

2

λvis1 + λvis

2

vN +λvis

1 λvis2

λvis1 + λvis

2

vN

fµ = − µela

µvis1 + µvis

2

fµ +µelaµvis

2

µvis1 + µvis

2

vN +µvis

1 µvis2

µvis1 + µvis

2

vN

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Inelastic Deformation 20 / 32

Nodal rheological forces

ordinary differential equation of the first order:

σ +E

c1 + c2σ =

c1c2

c1 + c2ε +

Ec2

c1 + c2ε

fλ = − λela

λvis1 + λvis

2

fλ +λelaλvis

2

λvis1 + λvis

2

vN +λvis

1 λvis2

λvis1 + λvis

2

vN

fµ = − µela

µvis1 + µvis

2

fµ +µelaµvis

2

µvis1 + µvis

2

vN +µvis

1 µvis2

µvis1 + µvis

2

vN

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Inelastic Deformation 21 / 32

FE formulation of viscoplastic deformation

a set of equations of elastic deformation:

−KuN + fext + AλA − MuN = 0

elastic force

⇓a set of equations of viscoplastic deformation:

−Jλfλ − Jµfµ + fext + AλA − MuN = 0

viscoplastic force

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Inelastic Deformation 22 / 32

FE formulation of viscoplastic deformation

uN = vN[M −A

−AT

] [vN

λA

]=

[−Jλfλ − Jµfµ + fext

AT(2αvN + α2uN)

]

fλ = −λela

λvisfλ + λelavN

fµ = −µela

µvisfµ + µelavN

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Inelastic Deformation 23 / 32

FE formulation of rheological deformation

a set of equations of elastic deformation:

−KuN + fext + AλA − MuN = 0

elastic force

⇓a set of equations of rheological deformation:

−Jλfλ − Jµfµ + fext + AλA − MuN = 0

rheological force

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Inelastic Deformation 24 / 32

3

Page 4: Maxwell model - 立命館大学

FE formulation of rheological deformation

uN = vN[M −A

−AT

] [vN

λA

]=

[−Jλfλ − Jµfµ + fext

AT(2αvN + α2uN)

]

fλ = − λela

λvis1 + λvis

2

fλ +λelaλvis

2

λvis1 + λvis

2

vN +λvis

1 λvis2

λvis1 + λvis

2

vN

fµ = − µela

µvis1 + µvis

2

fµ +µelaµvis

2

µvis1 + µvis

2

vN +µvis

1 µvis2

µvis1 + µvis

2

vN

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Inelastic Deformation 25 / 32

Example (Sample Program)

simulation movie

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Inelastic Deformation 26 / 32

Example (Sample Program)

simulation movie

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Inelastic Deformation 27 / 32

Summary

one-dimensional inelastic deformationMaxwell model for viscoplastic deformation

three-element model for rheological deformation

2D/3D inelastic deformationisotropic deformation models

formulating nodel force sets

finite element formulation

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Inelastic Deformation 28 / 32

Simulating Inelastic DeformationReport #7 due date : Jan. 29 (Fri)Simulate the deformation of a rectangular inelasticobject shown in the figure.

P2P3 is fixed to the floor.P1 and P4 may slide on the floor.[ 0, tpush ] push P14P15 downward[ tpush, thold ] keep P14P15

[ thold , tend ] release P14P15

Use appropriate values of geometrical and physicalparameters of the object.

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Inelastic Deformation 29 / 32

Simulating Inelastic Deformation

P5

P3

P6

P2P1

P7

P4

P9 P10 P11

P13 P14 P15

P8

P12

P16

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Inelastic Deformation 30 / 32

AppendixLet us solve the following ordinary differential equation:

x + ax = u(t)

Assuming x(0) = 0, Laplace transform of the aboveequation yields

sX − aX = U

Thus, we have

X (s) =1

s − aU ,

implying that x(t) is the convolution of eat and u(t).Consequently,

x(t) =

∫ t

0

ea(t−τ)u(τ) dτ

Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Inelastic Deformation 31 / 32

AppendixDifferentiating

x(t) =

∫ t

0

ea(t−τ)u(τ) dτ = eat

∫ t

0

e−aτu(τ) dτ

with respect to t, we have

x = aeat

∫ t

0

e−aτu(τ) dτ + eat · e−atu(t)

= a

∫ t

0

ea(t−τ)u(τ) dτ + u(t)

= ax + u(t),

which coincides with the ordinary differential equation.Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Inelastic Deformation 32 / 32

4