45
Mathematical Theories of Liquid Crystals II. The Maier-Saupe Theory Epifanio G. Virga Mathematical Institute University of Oxford [email protected] on leave from Department of Mathematics University of Pavia, Italy Summary Introduction Helmholtz Free Energy Soft and Hard Interactions Mean-Field Free Energy Density Functional Theory Maier-Saupe Free Energy 1

Mathematical Theories of Liquid Crystals II.TheMaier ...€¦ · Mathematical Theories of Liquid Crystals II.TheMaier-SaupeTheory Epifanio G. Virga MathematicalInstitute UniversityofOxford

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Mathematical Theories of Liquid Crystals II.TheMaier ...€¦ · Mathematical Theories of Liquid Crystals II.TheMaier-SaupeTheory Epifanio G. Virga MathematicalInstitute UniversityofOxford

Mathematical Theories of Liquid Crystals

II. The Maier-Saupe Theory

Epifanio G. Virga

Mathematical Institute

University of Oxford

[email protected]

on leave from

Department of Mathematics

University of Pavia, Italy

Summary

Introduction

Helmholtz Free Energy

Soft and Hard Interactions

Mean-Field Free Energy

Density Functional Theory

Maier-Saupe Free Energy

1

Page 2: Mathematical Theories of Liquid Crystals II.TheMaier ...€¦ · Mathematical Theories of Liquid Crystals II.TheMaier-SaupeTheory Epifanio G. Virga MathematicalInstitute UniversityofOxford

Introduction

The Maier-Saupe theory of liquid crystals is perhaps the most success-

ful microscopic theory proposed so far to explain the condensation

of the nematic phase. Maier & Saupe (1958)

In essence, it rests on three conceptual pillars:

• it is a mean-field theory;

• it considers only attractive interactions between molecules;

• it applies only to homogeneous phases.

2

Page 3: Mathematical Theories of Liquid Crystals II.TheMaier ...€¦ · Mathematical Theories of Liquid Crystals II.TheMaier-SaupeTheory Epifanio G. Virga MathematicalInstitute UniversityofOxford

Helmholtz Free Energy

We consider a dynamical system with N identical particles in the

Hamiltonian formalism.

Lagrangian

L(q, q) := K(q, q)− U(q)q = (q1, . . . , qN ) ∈ QN generalized coordinates

Q single particle configuration space

q = (q1, . . . , qN ) generalized velocities

K kinetic energy

U potential energy

Hamiltonian

H(q, p) := K + Upj :=

∂L∂qj

conjugate momenta

3

Page 4: Mathematical Theories of Liquid Crystals II.TheMaier ...€¦ · Mathematical Theories of Liquid Crystals II.TheMaier-SaupeTheory Epifanio G. Virga MathematicalInstitute UniversityofOxford

equations of motion

q =∂H∂p

p =− ∂H∂q

QN × RN ⊂ R

2N phase space

canonical ensemble

Imagine a great many replicas of the system described by the same

Hamiltonian H, but differing in the occupation of the phase space, as a

result, for example, of different initial conditions. Different ensembles

differ in their probability density . Gibbs(1902)

4

Page 5: Mathematical Theories of Liquid Crystals II.TheMaier ...€¦ · Mathematical Theories of Liquid Crystals II.TheMaier-SaupeTheory Epifanio G. Virga MathematicalInstitute UniversityofOxford

In the canonical ensemble,

0(q, p) :=1

Ze−

1kT

H(q,p)

k Boltzmann constant

T absolute temperature

partition function

Z :=

RN

dp

QN

dq e−1

kTH(q,p)

Helmholtz free energy

F := −kT lnZ.

The number of particles N , the volume V they occupy, and the tem-

perature T hidden in F are parameters. Equilibrium thermodynamics

results from differentiating F with respect to them. For example,

P = − ∂F∂V

is the pressure

5

Page 6: Mathematical Theories of Liquid Crystals II.TheMaier ...€¦ · Mathematical Theories of Liquid Crystals II.TheMaier-SaupeTheory Epifanio G. Virga MathematicalInstitute UniversityofOxford

Amended configurational partition function

We reduce Z to a purely configurational quantity, by integrating out

the momenta components of H. For a canonical H, purely quadratic

in p, this amounts to extracting a factor (depending on T ) out of Z,

which in turn only affects F by an inessential additive constant.

ZN :=1

N !

QN

e−1

kTU(q)dq FN := −kT lnZN

A classical justification for introducing the correcting factor 1N ! is to

account for the indistinguishability of the particles comprising the sys-

tem.

It has long been known (apparently, to Gibbs himself) that failing to

introduce this correcting factor would make the theory vulnerable to

Gibbs’ paradox for the entropy of mixing ideal gases.

6

Page 7: Mathematical Theories of Liquid Crystals II.TheMaier ...€¦ · Mathematical Theories of Liquid Crystals II.TheMaier-SaupeTheory Epifanio G. Virga MathematicalInstitute UniversityofOxford

Pairwise Interactions

We assume that the N particles only interact in pairs

U(q) = 1

2

N∑

i 6=j=1

U(qi, qj)

U : Q×Q → R

U(qi, qj) = U(qj, qi)

In general, U(q1, q2) comprises the whole energy involved in the in-

teraction between particles q1 and q2. It includes both slowly varying,

long-range potentials, typically responsible for the attraction between

particles, and rapidly varying, short-range potentials, typically respon-

sible for the repulsion between particles, often steric in nature. We

call soft the former component of U and hard the latter.

7

Page 8: Mathematical Theories of Liquid Crystals II.TheMaier ...€¦ · Mathematical Theories of Liquid Crystals II.TheMaier-SaupeTheory Epifanio G. Virga MathematicalInstitute UniversityofOxford

typical potential

0 0.5 1 1.5 2

1

0

1

2

3

4

5

ULJ /ε

r/σ0

rm/σ0

8

Page 9: Mathematical Theories of Liquid Crystals II.TheMaier ...€¦ · Mathematical Theories of Liquid Crystals II.TheMaier-SaupeTheory Epifanio G. Virga MathematicalInstitute UniversityofOxford

Soft and Hard Interactions

U can be decomposed into the sum of its attractive (soft) and repul-

sive (hard) components:

U(q1, q2) = U (A)(q1, q2) + U (R)(q1, q2)

Though, to some extent, such a decomposition is arbitrary, the dis-

tinctive feature of U (R) is its abrupt divergence when the interacting

particles tend to come in contact with one another.

U (R) is often assumed to be arbitrarily close to zero when the interact-

ing particles are close to one another, and to diverge to +∞ as they

touch.

The divergence of U (R) makes it questionable taking averages of

repulsive interactions.

9

Page 10: Mathematical Theories of Liquid Crystals II.TheMaier ...€¦ · Mathematical Theories of Liquid Crystals II.TheMaier-SaupeTheory Epifanio G. Virga MathematicalInstitute UniversityofOxford

only attractions

An assumption of the Maier-Saupe theory is to ignore repulsive in-

teractions:

U (R) ≡ 0

computing the free energy

FN =− kT ln1

N !

QN

(

e−12

1kT

∑Nj=2 U(A)(q1,qj)

)

dq1

× · · ·

×(

e−12

1kT

∑N−1j=1 U(A)(qN ,qj)

)

dqN

=− kT ln1

N !

QN

N∏

h=1

Ihdq1dq2 . . .dqN

Ih(q1, . . . , qN ) := e−12

1kT

∑Nj=1,j 6=h U(A)(qh,qj)

10

Page 11: Mathematical Theories of Liquid Crystals II.TheMaier ...€¦ · Mathematical Theories of Liquid Crystals II.TheMaier-SaupeTheory Epifanio G. Virga MathematicalInstitute UniversityofOxford

Mean-Field Free Energy

Mathematically, a mean-field theory is an approximation that re-

places complicated expressions, difficult to evaluate, which involve

many individual particles and their mutual interactions, with sim-

pler expressions, easier to evaluate, which involve a single, effective

particle.

Physically, it is as if the actions exchanged by particles were replaced

by an effective field that all particles produce and feel at the same

time.

≈ here means “replaced by”

11

Page 12: Mathematical Theories of Liquid Crystals II.TheMaier ...€¦ · Mathematical Theories of Liquid Crystals II.TheMaier-SaupeTheory Epifanio G. Virga MathematicalInstitute UniversityofOxford

replacements

1

2

N∑

j=1,j 6=h

U (A)(qh, qj) ≈ E(qh)

Ih(q1, . . . , qN ) ≈ I(qh) := e−1

kTE(qh)

E single-particle effective potential

mean-field free energy

FN = −kT ln1

N !

QN

N∏

h=1

Ihdq1dq2 . . .dqN

≈ −kT ln1

N !

(∫

Q

e−1

kTE(q)dq

)N

=: F(mf)N

12

Page 13: Mathematical Theories of Liquid Crystals II.TheMaier ...€¦ · Mathematical Theories of Liquid Crystals II.TheMaier-SaupeTheory Epifanio G. Virga MathematicalInstitute UniversityofOxford

upper estimate

It follows from Gibbs-Bogoliubov inequality (and an equivalent ap-

proach to mean-field theory) that the mean-field free energy is larger

than the true free energy it replaces.

Gartland & Virga (2010)

remark

For a deformable particle the configuration space Q will also allow

for extra configurational degrees of freedom in addition to the usual

translational and orientational ones.

13

Page 14: Mathematical Theories of Liquid Crystals II.TheMaier ...€¦ · Mathematical Theories of Liquid Crystals II.TheMaier-SaupeTheory Epifanio G. Virga MathematicalInstitute UniversityofOxford

Density Functional Theory

• The mean-field free energy F(mf)N is a scalar depending on (N, V, T )

only in a parametric form.

• Considering, within the canonical ensemble, how particles

are distributed in the configuration space Q, we construct a

theory where the mean-field free energy becomes a functional

F of the distribution density.

distribution (number) density

ρ := Q → R+

Q

ρ(q)dq = N

effective potential

1

2

N∑

j=1,j 6=h

U (A)(qh, qj) ≈ E(qh) → E(q) := 1

2

Q

ρ(q′)U (A)(q, q′)dq′

14

Page 15: Mathematical Theories of Liquid Crystals II.TheMaier ...€¦ · Mathematical Theories of Liquid Crystals II.TheMaier-SaupeTheory Epifanio G. Virga MathematicalInstitute UniversityofOxford

partitioning Q

Q =

M⋃

i=1

Q(i)

We split the system in a great number, say M , of subsystems

Ni number of particles in the ith subsystem

q(i) ∈ Q(i) core of the ith subsystem

Q(i) ⊂ Q region occupied by the ith subsystem

∆qi measure of Q(i)

discretizing ρ

ρ : Q → R+ ρi := ρ

(

q(i))

Ni = ρi∆qi

M∑

i=1

Ni = N

15

Page 16: Mathematical Theories of Liquid Crystals II.TheMaier ...€¦ · Mathematical Theories of Liquid Crystals II.TheMaier-SaupeTheory Epifanio G. Virga MathematicalInstitute UniversityofOxford

free-energy additivity

F(mf)N =

M∑

i=1

F(mf)Ni

F(mf)Ni

= −kT ln1

Ni!

(∫

Q(i)

e−1

kTE(q)dq

)Ni

F(mf)N = −kT

M∑

i=1

ln1

Ni!

(Ni

ρie−

1kT

E(i)

)Ni

E(i) := E(

q(i))

Stirling’s approximation

ln

(1

Ni!NNi

i

)

≈Ni

16

Page 17: Mathematical Theories of Liquid Crystals II.TheMaier ...€¦ · Mathematical Theories of Liquid Crystals II.TheMaier-SaupeTheory Epifanio G. Virga MathematicalInstitute UniversityofOxford

Free-energy functional

F(mf)N ≈− kT

M∑

i=1

Ni

(

ln1

ρi− E(i)

kT

)

− kTN

Disregarding the last addendum, as it does not depend on ρ, we justify

the definition

F [ρ] := kT

Q

ρ(q) ln ρ(q)dq +1

2

Q2

ρ(q′)ρ(q)U (A)(q′, q)dq′dq

E [ρ] :=1

2

Q2

ρ(q′)ρ(q)U (A)(q′, q)dq′dq

Q

ρ(q)dq = N

17

Page 18: Mathematical Theories of Liquid Crystals II.TheMaier ...€¦ · Mathematical Theories of Liquid Crystals II.TheMaier-SaupeTheory Epifanio G. Virga MathematicalInstitute UniversityofOxford

Maier-Saupe Free Energy

Here we apply the general mean-field theory presented so far to Lon-

don dispersion forces interactions between non-polar molecules.

London dispersion forces

• Liquid crystal molecules are thought of as being both neutral

and with no permanent dipole.

• However, instantaneous dipoles can arise in a molecule and

the electric field thus created can polarize a nearby molecule.

• Though the (time) average of dipoles vanishes in each molecule,

the average energy between induced dipoles does not vanish

and results in an attractive interaction.

• This basic interaction mechanism can easily be understood clas-

sically, but the evaluation of the induced dipole can only be

achieved via a quantum mechanics (perturbative) computa-

tion, relying on a number of approximations.

18

Page 19: Mathematical Theories of Liquid Crystals II.TheMaier ...€¦ · Mathematical Theories of Liquid Crystals II.TheMaier-SaupeTheory Epifanio G. Virga MathematicalInstitute UniversityofOxford

Unsold approximation

Assume that all states in the molecules that contribute to their dis-

persion interaction have excitation energies close to E0.

Unsold (1927), London (1930,1937)

dispersion energy

Udisp = −C

r6U(er)αmolU(er) ·α′

mol C =3

4

E0

(4π)2

r distance between molecular centres

αmol, α′mol molecular polarizability tensors

U(er) := er ⊗ er − 13I

er unit vector along the line joining molecular centres

19

Page 20: Mathematical Theories of Liquid Crystals II.TheMaier ...€¦ · Mathematical Theories of Liquid Crystals II.TheMaier-SaupeTheory Epifanio G. Virga MathematicalInstitute UniversityofOxford

degrees of freedom

Molecules are treated as rigid particles:

Q = B × Ω

B region in space of volume V

Ω orientational manifold

q = (x, ω)

x position vector of molecular centre

ω orientational degrees of freedom (e.g. Euler angles)

attractive potential

U (A)(q, q′) :=

Udisp r ≧ R

0 r < R

20

Page 21: Mathematical Theories of Liquid Crystals II.TheMaier ...€¦ · Mathematical Theories of Liquid Crystals II.TheMaier-SaupeTheory Epifanio G. Virga MathematicalInstitute UniversityofOxford

spatially homogeneous density

ρ(q) = ρ0︸︷︷︸

NV

(ω)

Q

ρ(q)dq = N

Ω

(ω)dω = N ⇒∫

Ω

(ω)dω = 1

effective potential

E(x, ω) = 1

2

B×Ω

ρ0(ω′)U (A)(x, ω;x′, ω′)dx′dω′

= −1

2

Ω

(∫ ∞

R

Cρ0

r4

S2

U(er)αmol(ω)U(er)drdA(er)

)

·αmol(ω′)(ω′)dω′

= −2πCρ0

135R3

Ω

αmol(ω) ·αmol(ω′)(ω′)dω′ + constant

in the thermodynamic limit, N, V → ∞ with ρ0 unchanged.

21

Page 22: Mathematical Theories of Liquid Crystals II.TheMaier ...€¦ · Mathematical Theories of Liquid Crystals II.TheMaier-SaupeTheory Epifanio G. Virga MathematicalInstitute UniversityofOxford

uniaxial molecules

Ω = S2

αmol(ω) = (α‖ − α⊥)q(ω) +1

3(2α⊥ + α‖)I

q(ω) = m(ω)⊗m(ω)− 13I molecular tensor

E(x, ω) = −1

2U0

S2

q(ω) · q(ω′)(ω′)dω′ U0 :=π

45R3

(α‖ − α⊥)2

(4π)2E0ρ0

= −1

2U ′0

S2

P2(m(ω) ·m(ω′))(ω′)dω′ U ′0 :=

2

3U0

E is independent of x

E(ω) = −1

2U0

S2

q(ω) · q(ω′)(ω′)dω′

22

Page 23: Mathematical Theories of Liquid Crystals II.TheMaier ...€¦ · Mathematical Theories of Liquid Crystals II.TheMaier-SaupeTheory Epifanio G. Virga MathematicalInstitute UniversityofOxford

Free-energy functional

F [ρ] : = kT

Q

ρ(q) ln ρ(q)dq +1

2

Q2

ρ(q′)ρ(q)U (A)(q′, q)dq′dq

= kT

Q

ρ(q) ln ρ(q)dq +

Q

E(ω)ρ(q)dq

q = (x, ω)

ρ(q) = ρ0(ω)

FMS[ρ] = kTN

S2

(ω) ln(ρ0(ω))dω

−1

2U0N

S2×S2

(ω′)(ω)q(ω′) · q(ω)dω′dω

S2

(ω)dω = 1

23

Page 24: Mathematical Theories of Liquid Crystals II.TheMaier ...€¦ · Mathematical Theories of Liquid Crystals II.TheMaier-SaupeTheory Epifanio G. Virga MathematicalInstitute UniversityofOxford

(dimensionless) free-energy per particle

FMS[] :=1

NkTFMS[ρ] =

S2

(ω) ln (ω)dω

− 1

S2×S2

(ω′)(ω)q(ω′) · q(ω)dω′dω

β :=U0

kTdimenionless reciprocal temperature

first variation

δFMS()[δ] =

S2

[

(1− λ) + ln (ω)− β

(∫

S2

q(ω′)(ω′)dω′

)

· q(ω)]

δ(ω)dω

λ Lagrange multiplier for∫

S2(ω)dω = 1

24

Page 25: Mathematical Theories of Liquid Crystals II.TheMaier ...€¦ · Mathematical Theories of Liquid Crystals II.TheMaier-SaupeTheory Epifanio G. Virga MathematicalInstitute UniversityofOxford

equilibrium density

eq(ω) =eβ(

∫S2

q(ω′)eq(ω′)dω′)·q(ω)

S2eβ(

∫S2

q(ω′)eq(ω′)dω′)·q(ω)dω=

eβQ·q(ω)

S2eβQ·q(ω)dω

Q =

S2

q(ω′)eq(ω′)dω′

• The integral equilibrium equation for eq becomes the self-

consistency equation for the order tensor Q.

• Q = 0, and eq = 0 ≡ 14π , is a solution for all β.

25

Page 26: Mathematical Theories of Liquid Crystals II.TheMaier ...€¦ · Mathematical Theories of Liquid Crystals II.TheMaier-SaupeTheory Epifanio G. Virga MathematicalInstitute UniversityofOxford

(rescaled) equilibrium free energy

fMS(β,Q) :=1

β(FMS[eq]+ln 4π) =

1

2Q·Q− 1

βln

(1

S2

eβQ·q(ω)dω

)

fMS(β,0) = 0 for all β

critical points

∂fMS

∂Q= Q−

S2q(ω)eβQ·q(ω)dω∫

S2eβQ·q(ω)dω

∂fMS

∂Q= 0 ⇔ Q = 〈q〉eq

The critical points of fMS are solutions to the self-consistency equa-

tion for Q and have necessarily admissible eigenvalues.

26

Page 27: Mathematical Theories of Liquid Crystals II.TheMaier ...€¦ · Mathematical Theories of Liquid Crystals II.TheMaier-SaupeTheory Epifanio G. Virga MathematicalInstitute UniversityofOxford

critical point properties

• We regard fMS(β, ·) as defined in the whole space of symmetric

traceless tensors.

• But fMS(β,Q) represents the mean-field free energy only at its

critical points Q. Its non-critical values are physically irrele-

vant.

• For given β, the order tensor Q at which fMS(β, ·) attains its

least critical value represents the stable equilibrium phase.

• Q = 0 is a critical point of fMS(β, ·) for all values of β.• fMS(β, ·) is an isotropic function:

fMS(β,RQRT) = fMS(β,Q) ∀ R ∈ O(3).

• If Q 6= 0 is a critical point of fMS(β, ·), then Q is uniaxial.

Fatkullin & Slastikov (2005)

Liu, H. Zhang & P. Zhang (2005)

27

Page 28: Mathematical Theories of Liquid Crystals II.TheMaier ...€¦ · Mathematical Theories of Liquid Crystals II.TheMaier-SaupeTheory Epifanio G. Virga MathematicalInstitute UniversityofOxford

scalar order parameters

Q = S

(

ez ⊗ ez −1

3I

)

+ T (ex ⊗ ex − ey ⊗ ey) .

reduced free energy

fMS(β,Q) = fs(β, S, T )

fs(β, S, T ) :=1

3S2 + T 2 − 1

βln

1

∫ 2π

0

∫ π

0

eβgs(ϑ,ϕ;S,T ) sinϑdϑ

gs(ϑ, ϕ;S, T ) = S

(

cos2ϑ− 1

3

)

+ T sin2ϑ cos 2ϕ

coercivity

|gs| <2

3|S|+ |T | ⇒ fs(β, S, T ) >

1

3S2 + T 2 − 2

3|S| − |T |

28

Page 29: Mathematical Theories of Liquid Crystals II.TheMaier ...€¦ · Mathematical Theories of Liquid Crystals II.TheMaier-SaupeTheory Epifanio G. Virga MathematicalInstitute UniversityofOxford

• fs(β, ·, ·) enjoys a 6-fold symmetry in the admissible triangle.

• All critical points of fs(β, ·, ·) lie on the uniaxial lines.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

S

T

U

U′′

O U+

U′′

+

U′

+

U′

We shall restrict the search for the critical values of fs to T = 0.

29

Page 30: Mathematical Theories of Liquid Crystals II.TheMaier ...€¦ · Mathematical Theories of Liquid Crystals II.TheMaier-SaupeTheory Epifanio G. Virga MathematicalInstitute UniversityofOxford

restricted free energy

∂fs

∂T(β, S, 0) = 0 ∀ β, S

All critical points (S0, 0) of fs(β, ·, ·) are critical points of

fu(β, S) := fs(β, S, 0) =1

3S2 − 1

βln

1

2

∫ π

0

eβS(cos2 ϑ− 1

3 ) sinϑdϑ

fu(β, S) =1

3S2 − 2

3S − 1

βln

(

daw(√

βS)

√βS

)

daw(x) := e−x2

∫ x

0

et2

dt

30

Page 31: Mathematical Theories of Liquid Crystals II.TheMaier ...€¦ · Mathematical Theories of Liquid Crystals II.TheMaier-SaupeTheory Epifanio G. Virga MathematicalInstitute UniversityofOxford

Dawson’s integral

2 4 6 8 10-2-4-6-8-10

0.2

0.4

0.6

-0.2

-0.4

-0.6

x

daw

31

Page 32: Mathematical Theories of Liquid Crystals II.TheMaier ...€¦ · Mathematical Theories of Liquid Crystals II.TheMaier-SaupeTheory Epifanio G. Virga MathematicalInstitute UniversityofOxford

change of variables

x :=βS

fu

(

β,x

β

)

=1

β

1

3βx2 − 2

3x− ln

(daw (

√x)√

x

)

equilibria

∂fu

∂S=

2x

3

(1

β−G(x)

)

G(x) :=3

4x√x daw (

√x)

− 3

4x2− 1

2x

limx→0

G(x) =2

15

G(x) ≈ 1

xfor x → +∞ G(x) ≈ − 1

2xfor x → −∞

32

Page 33: Mathematical Theories of Liquid Crystals II.TheMaier ...€¦ · Mathematical Theories of Liquid Crystals II.TheMaier-SaupeTheory Epifanio G. Virga MathematicalInstitute UniversityofOxford

0.05

0.10

0.15

0.20

0.25

2 4 6 8 10-2-4-6-8-10x

y

G(x)

G(x)

x∗

G∗

33

Page 34: Mathematical Theories of Liquid Crystals II.TheMaier ...€¦ · Mathematical Theories of Liquid Crystals II.TheMaier-SaupeTheory Epifanio G. Virga MathematicalInstitute UniversityofOxford

local uniaxial stability

• For 1β

> G∗.= 0.149 there is only one equilibrium solution,

S = 0.

• For 1β< G∗

.= 0.149 there are two extra equilibrium solutions.

• One of the extra solutions has S < 0 for 1β< 2

15 .

∂2fu

∂S2=

3

(1

β−G(x)

)

︸ ︷︷ ︸

0 at equilibrium

−xG′(x)

34

Page 35: Mathematical Theories of Liquid Crystals II.TheMaier ...€¦ · Mathematical Theories of Liquid Crystals II.TheMaier-SaupeTheory Epifanio G. Virga MathematicalInstitute UniversityofOxford

0.05

0.10

0.15

0.20

0.25

2 4 6 8 10-2-4-6-8-10x

y

G(x)

G(x)

x∗

G∗

35

Page 36: Mathematical Theories of Liquid Crystals II.TheMaier ...€¦ · Mathematical Theories of Liquid Crystals II.TheMaier-SaupeTheory Epifanio G. Virga MathematicalInstitute UniversityofOxford

local biaxial stability

fs(β, S, T ) = fu(β, S) + β

(1

β− g (βS)

)

︸ ︷︷ ︸

G(βS)−g(βS)

T 2 +O(T 4)

g(x) :=1

4+

1

4x+

3

16x2− 1

8√x daw (

√x)

− 3

16x√x daw (

√x)

.

36

Page 37: Mathematical Theories of Liquid Crystals II.TheMaier ...€¦ · Mathematical Theories of Liquid Crystals II.TheMaier-SaupeTheory Epifanio G. Virga MathematicalInstitute UniversityofOxford

0.05

0.10

0.15

0.20

0.25

2 4 6 8 10-2-4-6-8-10x

y

G(x)

G(x)

g(x)

x∗

G∗

37

Page 38: Mathematical Theories of Liquid Crystals II.TheMaier ...€¦ · Mathematical Theories of Liquid Crystals II.TheMaier-SaupeTheory Epifanio G. Virga MathematicalInstitute UniversityofOxford

0.05

0.10

0.15

0.20

0.25

2 4 6 8 10-2-4-6-8-10x

y

G(x)

G(x)

x∗

G∗

38

Page 39: Mathematical Theories of Liquid Crystals II.TheMaier ...€¦ · Mathematical Theories of Liquid Crystals II.TheMaier-SaupeTheory Epifanio G. Virga MathematicalInstitute UniversityofOxford

absolute minimizer

• The free energy vanishes on the isotropic phase:

fu(β, 0) = 0

• The free energy of the competing locally stable nematic phase

is negative whenever

G(x) < F (x)

F (x) :=1

x+

3

x2ln

(daw (

√x)√

x

)

39

Page 40: Mathematical Theories of Liquid Crystals II.TheMaier ...€¦ · Mathematical Theories of Liquid Crystals II.TheMaier-SaupeTheory Epifanio G. Virga MathematicalInstitute UniversityofOxford

0.05

0.10

0.15

0.20

0.25

2 4 6 8 10-2-4-6-8-10x

y

G(x)

G(x)

F (x)

x∗ x∗

G∗ G∗

40

Page 41: Mathematical Theories of Liquid Crystals II.TheMaier ...€¦ · Mathematical Theories of Liquid Crystals II.TheMaier-SaupeTheory Epifanio G. Virga MathematicalInstitute UniversityofOxford

0.05

0.10

0.15

0.20

0.25

2 4 6 8 10-2-4-6-8-10x

y

G(x)

G(x)

x∗ x∗

G∗ G∗

41

Page 42: Mathematical Theories of Liquid Crystals II.TheMaier ...€¦ · Mathematical Theories of Liquid Crystals II.TheMaier-SaupeTheory Epifanio G. Virga MathematicalInstitute UniversityofOxford

0.2

0.4

0.6

0.8

1.0

0.03 0.06 0.09 0.12 0.15 0.181/β

S

G∗

S∗

x∗ .= 2.923 G∗ .

= 0.147 S∗ = x∗G∗ .= 0.429

42

Page 43: Mathematical Theories of Liquid Crystals II.TheMaier ...€¦ · Mathematical Theories of Liquid Crystals II.TheMaier-SaupeTheory Epifanio G. Virga MathematicalInstitute UniversityofOxford

Sources

• I. Fatkullin & V. Slastikov, Critical points of the Onsager

functional on a sphere, Nonlinearity, 18, 2005, 2565–2580.

• E.C. Gartland, Jr., & E.G. Virga, Minimum principle for

indefinite mean-field free energies, Arch. Rational Mech.

Anal., 196, 2010, 143–189.

• J.W. Gibbs, Elementary Principles in Statistical Me-

chanics, Charles Scribners’s Sons, New York, 1902. Digitally

reprinted by Cambridge University Press, Cambridge, 2010.

• H. Liu, H. Zhang & P. Zhang, Axial symmetry and classi-

fication of stationary solutions of Doi-Onsager equation on the

sphere with Maier-Saupe potential, Comm. Math. Sci., 3,

2005, 201–208.

• F. London, The general theory of molecular forces, Trans.

Faraday Soc., 33, 1937, 8–26.

43

Page 44: Mathematical Theories of Liquid Crystals II.TheMaier ...€¦ · Mathematical Theories of Liquid Crystals II.TheMaier-SaupeTheory Epifanio G. Virga MathematicalInstitute UniversityofOxford

• W. Maier & A. Saupe, Eine einfache molekulare Theorie des

nematischen kristallinflussigen Zustandes, Z. Naturforsch.,

13a, 1958, 564–566.

• P. Palffy-Muhoray, M.Y. Pevnyi, E.G. Virga & X.

Zheng, The effects of particle shape in orientationally ordered

soft materials, in Mathematics and Materials, vol. 23,

PCMS Series, AMS, 2017, in press.

• M. Kleman & O.D. Lavrentovich, Soft Matter Physics:

An Introduction, Springer-Verlag, New York, 2003.

• J.V. Selinger, Introduction to the Theory of Soft Mat-

ter: From Ideal Gases to Liquid Crystals, Springer, Cham,

2016.

• A.M. Sonnet & E.G. Virga, Dissipative Ordered Fluids:

Theories for Liquid Crystals, Springer Science, New York,

2012.

44

Page 45: Mathematical Theories of Liquid Crystals II.TheMaier ...€¦ · Mathematical Theories of Liquid Crystals II.TheMaier-SaupeTheory Epifanio G. Virga MathematicalInstitute UniversityofOxford

• A. Unsold, Quantentheorie des Wasserstoffmolekulions und

der Born- Landeschen Abstoßungskrafte, Z. Phys., 43, 1927,

563–574.

45